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Abstract—Honeypot still plays an important role in network

security, especially in analyzing attack type and defining at-

tacker patterns. Previous research has mainly focused on de-

tecting attack pattern while categorization of type has not yet

been-comprehensively discussed. Nowadays, the web applica-

tion is the most common and popular way for users to gather

information, but it also invites attackers to assault the system.

Therefore, deployment of a web honeypot is important and its

forensic analysis is urgently required. In this paper, authors

propose attack type analysis from web honeypot log for foren-

sic purposes. Every log is represented as a vertex in a graph.

Then a custom agglomerative clustering to categorize attack

type based on PHP-IDS rules is deployed. A visualization

of large graphs is also provided since the actual logs contain

tens of thousands of rows of records. The experimental results

show that the proposed model can help forensic investigators

examine a web honeypot log more precisely.

Keywords—access log, attack type, graph agglomerative cluster-

ing, visualization of large graphs.

1. Introduction

A honeypot is a system that lets attackers hack into it

and records all activities so that their behavior can be ob-

served [1]. There are several types of honeypots based on

various services for example web, SSH, database, and net-

work traffic or using the level of interaction or the responses

given to the attacker, i.e. low, medium, and high [1]. The

use of honeypots for forensic analysis was first developed in

2002 [2]. The researchers proposed a new forensic model

and two architectures for honeypots, serial and parallel.

In [3] the researcher tried to find the root cause of attack

in a honeypot and the association rules were deployed to

detect suspicious activity.

Forensic analysis can be conducted of both network traf-

fic [4] and the compromised host [5] to get more detailed

information from honeypot logs. More advanced tech-

niques to review honeypot capabilities were introduced by

using file system journaling [6]. It provided deeper anal-

ysis through file system abstraction to achieve meta data

archiving. Forensic investigators are also able to generate

attack statistics reports from honeypot deployment as ob-

served in [7], [8]. Riebach et al. provided a case study of

honeypot deployment to support forensic analysis and gave

more attention to worm activities and classical multi-phase

attack [9].

The investigation can be conducted in real time, usually

called live forensic, as designed in [10] and the author fo-

cused on HTTP, FTP, POP3, and telnet protocols. Virtu-

alization technology, cheaper than physical infrastructure

could be used to deploy honeypots and supply real time

forensics [11]. Attacker pattern was deeply investigated

in [12] by clustering technique and time series analysis.

The honeypot could be used for army of zombies detec-

tion [13]. They supplied an accurate observation of a bot-

net attack from honeypot trace. The other study of network

forensics based on honeypot has been comprehensively de-

scribed in [14]. They provided a survey, comparison, and

future directions for this research area. Another work to

provide honeypot for production mode of web application

has been proposed by Pohl et al. since most honeypots

only provide service in a non-productive environment [15].

The implementation of many honeypot platforms is also

presented in [16]. However, these previous works still have

not provided any interactive, collaborative, or real tools to

model and visualize a web honeypot log.

Valli presented a visualization of honeypot data based on

graph theory using Graphviz library and exploited After-

Glow for generating link graphs [17]. However, it could

not provide interactive display for forensic investigators al-

though could give large graph visualization. A recent study

by Cabaj gives a graph visualization to assist in data analy-

sis generated by honeypots [18]. The paper described visu-

alization of the Honeypot Management System (HPMS) de-

ployed at Institute of Computer Science, Warsaw University

of Technology, but unfortunately this work only handled an

attack to phpMyAdmin.

In this paper, a model for web honeypot logs based on graph

theory is proposed. The authors will adopt the graph model

to represent a log, and clustering technique will be deployed

to analyze attacks for forensic purposes. The forensic in-

vestigation will be covered, which needs to know the origin

and the type of penetration, e.g., cross site scripting or re-

mote file inclusion. The visualization of proposed method

will relax the one proposed by Cabaj [18].

The rest of this paper is organized as follows. Section 2

briefly describes the proposed log model based on graph

theory, rule-based attack detection technique, and visual-

ization of generated large graph. Section 3 explains ex-

perimental results and its analysis. Finally, conclusion and

future works are discussed in Section 4.

2. Proposed Method

2.1. Graph-based Agglomerative Cluster

The main evidence for forensic analysis is the raw access

log containing every request to the web honeypot. This
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artifact was provided by Honeynet Project [19]. Authors

then define graph G = (V,E) to represent all access logs,

propose custom agglomerative clustering on the set of ver-

tices V , and generate edges E during the clustering process.

The similarity measurement for clustering is used based

on the node’s attributes value, i.e., attack type, attacker’s

IP address, origin city and country. This gives an exact

similarity since these properties are standardized for all

vertices. Therefore, there are six levels of hierarchy in the

resulting cluster, i.e., one level for leaf vertex representing

the raw request and five upper-levels of intermediate nodes,

which represent cluster root of attack type, IP address, city,

country, and top-level cluster of the main graph used for

overall forensic analysis. Cluster C as a subgraph of G is

defined as:

C =
{

Cli |C ⊂G, l = 0,1, . . . 5 and i = 0,1, . . . , p
}

, (1)

where l is level of hierarchy and p is a set of the total

number of clusters in specific level l as shown in Fig. 1 and

every level is represented by a different color. Meanwhile,

the node size also depicts level in graph – the deeper the

level, the smaller its size.

level 5
level 4
level 3
level 2
level 1
level 0

Fig. 1. Illustration of hierarchy level in proposed method. (See

color pictures online at www.nit.eu/publications/journal-jtit)

In addition, by Vl j
the set of vertices of G in cluster level l

is denoted:

V = {v0 j
,v1 j

, . . . ,vlm} , (2)

where j = 0,1, . . . ,m and m is the total number of logs

plus intermediate nodes created during clustering in level l.

These vertices store every record and its attributes including

id, attacker’s remote address, time stamp, raw request, re-

ferrer, user agent, origin city and country, attack type and

its description. Thus, some flags are also maintained as

node’s attributes in order to handle the clustering process,

i.e., is attackroot, is iproot, is cityroot, is countryroot, and

is mainroot. These flags also distinguish whether or not

a vertex is a root of a particular cluster.

Furthermore, there are six types of edges based on cluster

level, El . These edges connect vertices to the intermediate

node in each cluster and are defined as follows:

E = {E0k
,E1k

, . . . ,Eln} (3)

where k = 0,1, . . . ,n and n is total number of cluster Cli .

For each Elk , one can see an edge as a tuple consisting of

a vertex and its connected cluster root:

Elk = {(v0 j
,R0i

),(v1 j
,R1i

), . . . , (vl j
,Rli)} , (4)

where variable i, j, and l have been described in previous

equations.

Before creating edges E , all of the vertices based on IP

address and attack type attributes are clustered. For each

cluster, the procedure creates one vertex as an intermediate

node acting as cluster root R. In other words, all vertices

except vm are an intermediate node. Formally,

R = V \ {vx j
}, x = 0,1, . . . , m−1 . (5)

After that, every vertex in cluster Cli will have an edge to

the root R(l−1)i
so that Elk is a set of edges in Cli . The first

created R will act as R4i
, root of cluster by attack type, and

every R4 has an edge to R3, root of cluster by attacker’s IP

address. This step will provide E4 and generates all C4i
and

its R4i
. In this way, investigators can easily examine how

many and what type of attacks were attempted from one IP

address. The illustration of how to cluster vertices based

on attack type and IP address are given in Figs. 2 and 3,

respectively, where the vertices with the same attribute

have the same color. In these figures, only 26 records

consisting of two detected attacks (cross-site scripting

and local file inclusion), seven IP addresses, three cities

(Budapest, Seoul, and Osan), and two countries (Hun-

gary and Korea) from the first file of the Honeynet Project

Cross-Site Scripting (XSS)
none
normal

Local File Inclusion (LFI)

Fig. 2. Cluster by attack type.

193.224.164.47
none

124.0.24.82

81.182.193.240
203.236.3.225
210.94.41.89

59.12.14.25
203.236.3.241

Fig. 3. Cluster by IP address.
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dataset [19] in order to reduce the complexity of visuali-

zation are used.

The clustering continues to agglomerate existing group C3

based on the origin city and then country of attacker. This

geographic information is based on IP address and can be

retrieved using the open GeoIP API module provided by

MaxMind [20] and its Python bindings [21] for easy imple-

mentation. This procedure will produce cluster C2, cluster

by city, and C1, cluster by country. The edges are drawn

from every vertex in C2 and C1 to their respective inter-

mediate root R so that we now have E1 and E2. Figure 4

provides clustering based on city data and the illustration

of cluster by country can be easily inferred from Fig. 4.

All illustrations in this section use the Yifan Hu graph lay-

out [22] implemented in Gephi graph editor [23]. The

more complex graph drawing will be explained in the next

subsection.

Budapest Seoul Osan none

Fig. 4. Cluster by city.

In the last iteration, all separate clusters C1 are connected

to the main root R0, resulting in both sets of edges E0 and

the cluster C0. Through the clustering, each root flag is set

to True according to processed level. This bottom-up ap-

proach provides a complete graph for forensic analysis and

understanding the origin of attacks. The proposed method

also provides a natural hierarchical structure to assist foren-

sic investigators to understand attacker’s behavior.

2.2. Attack Type Detection Using PHP-IDS Rules

The authors match every request log with the PHP-Intrusion

Detection System (PHP-IDS) [24]. PHP-IDS rules cur-

rently contain 78 filters categorized to nine attack types:

cross-site scripting (XSS), SQL injection (SQLi), cross-site

request forgery (CSRF), denial of service (DoS), directory

traversal (DT), spam, information disclosure (ID), remote

file execution (RFE), and local file inclusion (LFI). Orig-

inally, these filters are utilized to check whether or not

a request is suspicious in a PHP-based web application and

it is installed and preconfigured inside the application.

However, instead of using PHP-IDS to detect attack in ante

mortem conditions, the rules to assist forensic investiga-

tors are adopted, when examining the type of attack in post

mortem fashion. PHP-IDS filters contain a sequence of reg-

ular expression (regex), which is developed and maintained

periodically by the community. The examples of PHP-IDS

filters are given in Table 1 [24].

Table 1

Example of PHP-IDS filters

No. Filter and description Tag

1

(?:%u(?:ff|00|e\d)\w\w)|

XSS
(?:(?:%(?:e\w|c[^3\W]|))(?:%\w\w)(?:%\w\w)?)

Detects halfwidth/fullwidth encoded unicode HTML

breaking attempts

2

(?:(?:[;]+|(<[?%](?:php)?)).*[^\w]

RFE

(?:echo|print|print_r|var_dump|[fp]open))|

(?:;\s*rm\s+-\w+\s+)|(?:;.*{.*\$\w+\s*=)|

(?:\$\w+\s*\[\]\s*=\s*)

Detects code injection attempts

3

(?:%c0%ae\/)|(?:(?:\/|\\)(home|conf|usr|etc|

LFI

proc|opt|s?bin|local|dev|tmp|kern|[br]oot|sys|

system|windows|winnt|program|%[a-z_-]{3,}%)

(?:\/|\\))|(?:(?:\/|\\)inetpub|

localstart\.asp|boot\.ini)

Detects specific directory and path traversal

To implement the filters in test environment, an Apache

Scalp, a Python implementation of PHP-IDS [25] updated

using the newest PHP-IDS rules is deployed. Every filter

can be attached to one or more attack types (tag) but only

the first-found one using non-exhaustive mode in Apache

Scalp is included. The procedure first parses the raw re-

quest, detects the HTTP method used, and then compares

the request line to every regular expression in predefined

filters. It returns the attack type for each attacker request

to the web honeypot server.

2.3. Large Graph Visualization for Attack Type Analysis

The authors use Gephi [23] as graph editor and

OpenOrd [26] as large graph layout since there are tens

of thousands of logs to process and the existing typical lay-

out can not well visualize large graph generated. Previous

visualization by Cabaj [18] only displays a small portion

of the attack where the vertices represent attacker, malware

filename, and malware server. The display only showed

a small part of the graph so the investigator may not see

the entire attack attempts.

Presented work improves upon the one from [18] where

the visualization is created as a tool to help forensic in-

vestigators inspect the attack type and the attacker location

comprehensively using a large graph layout. An example

of overall graph is shown in Fig. 5 where each color repre-

sents an attacks type: cross-site scripting (light green), re-

mote file execution (purple), and local file inclusion (dark

green) [19]. Normal means the request is not malicious

and None is for an intermediate node for clustering. One

can see in Fig. 5 that this visualization model will easily

help the investigator to view, check, and analyze both nor-

mal requests and attempted attacks to the web honeypot as

a whole. One can not clearly see the local file inclusion

attack since it has only a very small number compared to

overall records.
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normal

Cross-Site Scripting (XSS)

Remote File Execution (RFE) none

Local File Inclusion (LFI)

Fig. 5. Generated graph G from Honeynet Project dataset.

To enable the collaboration and interactive graph, the net-

work graph from Gephi to Sigma.js was exported and

hosted it a in Sigma.js server so that the investigator can

access this visualization using a web interface. Sigma.js is

a JavaScript library based on Node.js that is specially de-

signed for interactive graph drawing [27]. The interactive

mode means that the user is provided with a clickable ver-

tex and cluster of vertices. This technique completes the

analysis provided by large graph visualization with detailed

examination of each request by displaying more detailed in-

formation when a node is clicked.

3. Experimental Results

The dataset used in this experiment is taken from the

Honeynet Project [19], which is a real-life log from

honeypot deployed in 2006. The complete dataset con-

tains all logs in the /var/log directory from Linux Fedora

operating system. As the authors focused on web honeypot,

only the access log file from /var/log/httpd has been taken

into account. There are 32 access log files consisting of

31 archives and one recent log containing 14,398 lines of

raw requests, and we examined only the last one. Every

line in the log file will be parsed and each entity becomes

vertex’s attributes as described in Subsection 2.1.

To manage and implement the graph, the Python-

igraph [28] was used since it is fast, community-supported,

and open source. It is also designed for efficiency, porta-

bility, and deployment-friendly. Apache Scalp [25] is em-

ployed to detect attack type in every request log.

The output from graph implementation using Python-igraph

is a GraphML file, a XML-based format for graphs. This

file is processed using Gephi to add color and provide clear

and precise layout. The processed graph is then exported to

Sigma.js code using Sigma.js exporter plugin in Gephi [29]

and the resulting network is configured in Sigma.js server.

This action will enable collaborative and interactive visual-

ization between forensic investigators using web-based in-

terface.

The graph G produced from Subsection 2.1 (Fig. 5), which

is exported to Sigma.js server, is depicted in Fig. 6. When

an investigator clicks a vertex, this tool will show de-

tailed information about all attributes. It can be zoomed

and slid smoothly to view the node accurately as shown

in Fig. 7.

Fig. 6. Large graph visualization in Sigma.js web interface.

Fig. 7. The display when investigator clicks the root of attack

type cluster.

There are three attack types detected in this dataset: 14.66%

cross-site scripting (XSS), remote file execution (RFE)

with 11.64%, local file inclusion (LFI) with 0.13%, and

the normal request account of 65.83%. Table 2 depicts the

examples of detected requests based on every PHP-IDS fil-

ter shown in Table 1. In the first example, the attacker tried

to run a script while in the second one he executed a remote

script that was previously downloaded using wget com-

mand. The last example shows that the attacker attempts

to run an unauthorized file in local directory.
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Table 2

Example of detected malicious requests

No. Raw request Attack

1

193.224.164.47 - - [27/Feb/2006:03:01:23

XSS
-0500] "GET /scripts/..%%35c../winnt/

system32/cmd.exe?/c+dir HTTP/1.0" 400

297 "-" "-"

2

62.175.253.180 - - [22/Jan/2006:08:28:17

RFE

-0500] "GET /awstats/awstats.pl?configdir=|

echo;echo%20YYY;cd%20%2ftmp%3bwget%20209

%2e136%2e48%2e69%2fmirela%3bchmod%20%2bx

%20mirela%3b%2e%2fmirela;echo%20YYY;echo|

HTTP/1.1" 404 296 "-" "Mozilla/4.0

(compatible; MSIE 6.0; Windows NT 5.1;)"

3

218.26.222.13 - - [07/Feb/2006:01:36:28

LFI-0500] "GET /c/winnt/system32/cmd.exe?/

c+dir HTTP/1.0" 404 293 "-" "-"

Table 3

Top five countries and their cities for each attack type

No. Attack type Country City Count

1 Cross-Site Scripting (XSS)

n/a n/a 1497

US Amana 138

US Livingston 120

DE Berlin 108

US Pleasanton 84

2 Remote File Execution (RFE)

n/a n/a 753

CN Beijing 245

US Dallas 99

FR Bischheim 74

US Saint Louis 60

3 Local File Inclusion (LFI)

n/a n/a 4

CN Harbin 2

CN Jinan 2

HU Budapest 2

US Schaumburg 2

List of countries: US – United States, DE – Germany, CN – China,
FR – France, HU – Hungary.

Table 4

Top ten attacker’s IP addresses

No. IP address Attack type Count

1 64.6.73.199 Cross-Site Scripting 138

2 81.114.87.11 Cross-Site Scripting 138

3 80.55.248.206 Cross-Site Scripting 132

4 200.99.135.130 Cross-Site Scripting 120

5 209.137.246.36 Cross-Site Scripting 120

6 211.99.203.228 Remote File Execution 120

7 64.214.80.6 Cross-Site Scripting 108

8 82.127.23.55 Cross-Site Scripting 108

9 85.214.20.161 Cross-Site Scripting 108

10 82.177.96.6 Remote File Execution 107

Table 3 shows the top five countries and their respec-

tive cities for each attack type while Table 4 lists the top

10 attacker’s IP addresses. One can see that there are

very high “n/a” values in Table 3 since the free and open

source version of GeoIP API is used [20] and the pro-

vided data are not as complete as in the paid one. As

stated in Table 3, the most frequently detected IP address

(64.6.73.199) attempted an XSS attack as shown in Table 4.

The remote file inclusion attacks are also included in the

top ten IP addresses while there is no local file inclusion

since it only has a very small number of attempts from the

whole dataset.

4. Conclusions and Future Works

In this paper, a graph-based forensic analysis have been im-

plemented to examine an access log from a web honeypot.

The proposed method employs an agglomerative clustering

to group every record and to model them as an undirected

graph. The clustering has some levels based on node’s at-

tributes, i.e., attack type, attacker IP address, and attacker’s

origin city and country. Every log is checked for its mali-

ciousness, then visualized using a large graph layout, and

then accessed using a web browser. These procedures will

help forensic investigators to examine logs to work interac-

tively and collaboratively with others.

In the future, authors plan to include more access logs

archived in /var/log/httpd. This strategy will enable the in-

vestigator to comprehensively analyze through the last pe-

riod of log rotation (the most common time frame is one

month). The Sigma.js web interface will be improved to

view a specific range of time, although it still displays

a large graph generated from thousands of logs. In ad-

dition, the proposed method can be extended to become

live forensic analysis of a web honeypot or typical web

application by reading and parsing the access log peri-

odically. This approach provides administrators real-time

monitoring and reports if there are any attack attempts to

their system. In relation to the types of offensive activity,

the system will be enhanced with OWASP ModSecurity

Rules [30] which contains more complete rules since it is

actually a web application firewall but that can be utilized

in a forensic manner. To increase the reliability of the pro-

posed technique, authors also plan to implement a graph

database such as Neo4j or Titan (natively distributed one)

to make analyzed logs become persistent and able to be

queried any time.
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