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Abstract—Dimensioning of telecommunications networks re-

quires the allocation of the flows (bandwidth) to given traffic

demands for the source-destination pairs of nodes. Unit flow

allocated to the given demand is associated with revenue that

may vary for different demands. Problem the decision-making

basic algorithms to maximize the total revenue may lead to the

solutions that are unacceptable, due to “starvation” or “lock-

ing” of some demand paths less attractive with respect to the

total revenue. Therefore, the fair optimization approaches

must be applied. In this paper, two fair optimization meth-

ods are analyzed: the method of ordered weighted average

(OWA) and the reference point method (RPM). The study as-

sumes that flows can be bifurcated thus realized in multiple

path schemes. To implement optimization model the AMPL

was used with general-purpose linear programming solvers.

As an example of the data, the Polish backbone network was

used.

Keywords—allocation problem, decision problems, fair-opti-

mization, linear programming, multi-criteria, networks, ordered

weighted averaging, OWA, reference point method, RPM.

1. Introduction

Many times in real life people meet with decision prob-

lems affecting on different ranks to various types of busi-

ness, organizations, systems, networks or other more or less

complex structures. Even in the household, everyone meets

with decision problems affects to people comfort of living,

safety, etc. In each of these problems, the decision-maker

is taking some specific preferences and selecting accord-

ing to them. If the problem can be written in the form of

linear constraints and objective function, then existing soft-

ware can be used to generate solutions of specific kind of

problems [1], [2]. This could be the production problems,

the knapsack problems, the selection of the optimal struc-

ture of the investment portfolio, whole range of problems

related to networks [2] or the problem related to planning

the allocation of resources [3].

Telecommunications networks are facing increasing de-

mand for many services. Therefore, the problem to de-

termine how much traffic of every demand (traffic stream)

should be admitted into the network and how the admit-

ted traffic should be routed through the network so as to

satisfy the requirements of high network utilization and

guarantee fairness to the users, is one of the most chal-

lenging problems of current telecommunications networks

design [4], [5]. The problem, usually referred to as the net-

work-dimensioning problem, is related to planning deploy-

ment of the network resources (bandwidth, link capacity,

etc.) [3]–[5]. There are two main objectives against which

the decision is optimized. The first one is to maximize the

profit from each unit of the transmitted load on each de-

mand, and the second one is to guarantee some fairness to

prevent blocking the paths where profit is less attractive.

Figure 1 shows the case of overlapping demands. Assuming

that the capacity of arc e3 is less than the capacity of both

e1 and e2 consider the problem of the allocation of load

demands d1 and d2. Each unit load attributed to demand

is profitable. When the value of the unconsolidated profit

will be different, the optimal solution may result in larger

load values assigned to more profitable paths discriminating

those less attractive.
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Fig. 1. An example illustrates bandwidth allocation problem on

demands d1 and d2.

While the objective related to the maximization of profit is

simple for mathematical formulation as the product of unit

profit attributable to the path and the amount of the allo-

cated load on it, the second objective of fairness requires

some deeper consideration [6]. One way is to attach the

rigid restrictions on the minimum requirements for a given

path. This simple method does not give reliable results.

It requires the knowledge of the decision maker about the

minimum values of allocated resources. Unfortunately, it

is difficult to estimate in the most cases. Several fair al-

location schemes based on the concepts of equitable opti-
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mization have been considered and analyzed, c.f. [7], [8].

These models are:

• max-min [2],

• lexicographic max-min [2], [9], [10],

• proportional fairness (PF) [11],

• ordered weighted averages (OWA) [12], [13],

• reference point method (RPM) [14].

The most important feature in each of those methods is tak-

ing into account impartiality and equitability in the prefer-

ence model. Both properties are guaranteed by comparing

ordered vectors making the original sequence of objective

functions not relevant for optimization. During the im-

plementation of the methods based on ordered outcomes

one can take advantage of a problem that returns the k-th

largest or the smallest value of the function of resource

allocation on a set of requirements D [15]. For this pur-

pose, binary variables zkd and unlimited variable tk have

been introduced. The model, which allows to receive each

further objective function values in descending order can

be written as follows:

f (x)k = min tk , (1)

subject to:

tk − yd ≥−Czkd ,zkd ∈ {0,1},∀d ∈ D ,

m

∑
j=1

zkd ≤ k−1 .

Such a formulation allows one to obtain the largest value

for k = 1 from the whole set of f (x) values. Further, for any

k > 1 one gets the k-th value in non-increasing order. In this

case formulation brakes k−1 restrictions using constant C
with suitable large value (the largest achievement function

value).

Similarly, can be determined successive values of f (x)
in non-decreasing order. The corresponding optimization

model can be written as:

f (x)k = max tk , (2)

subject to:

tk − yd ≤Czkd ,zkd ∈ {0,1},∀d ∈ D ,

m

∑
j=1

zkd ≤ k−1 .

The study is focused on OWA and the RPM models. Both

methods allow to control the solution in their characteristic

way, and allow to obtain results more or less fair. In de-

termining the level of fairness, some abstract index has to

be considered. It was also assumed, that in the case if for

at least one of demand the allocated traffic load in the net-

work has value of 0, then the solution is not fair. Further,

fairness of solutions will become greater when the results

are most aligned with each other. In statistics, this is rep-

resented by the so-called inequality measures [16]. Such

measures are variance, standard deviation and kurtosis for

example. Nonlinear dependencies complicate the possibil-

ity of their direct use in implementation of the large-scale

network optimization model but on the other hand they can

be used in the simple way to evaluate a final result of the

test method.

Consider the outcome vectors set U , that is the set of

revenue vectors for all achievable utility allocations. The

quality of obtained result when selecting the method can

be assessed by the ratio defining the loss of total revenue

gained from the method maximizing the revenue disregard-

ing fairness issues. This ratio is called the price of fair-

ness (POF) [17] and it is defined by formula:

POF(U) =
max(U)− fair(U)

max(U)
, (3)

where: POF(U) – price of fairness max(U) – optimal solu-

tion in pure objective function maximization case fair(U) –

fair solution.

2. Mathematical Models

The problem will be analyzed on sample data obtained from

the library SNDlib [18]. Exactly, the topology of the Polish

backbone network has been chosen. The complete graph

with nodes arranged and labeled arcs is shown in Fig. 2.
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Fig. 2. Network topology of considered optimization problem.

Task of dimensioning is based on an allocation of the load

on 10 pairs of source-destination demands. Pairs were se-

lected in a way to represent a situation of overlapping paths

to occur some links shared by them (Fig. 3). In order to en-

sure the possibility of paths bifurcation the network model

is based in the node-link approach. This requires to rep-

resent the graph with an incidence matrix of vertices and

arcs. Its coefficients are parameters anl and bnl. For each
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demand it was assigned the revenue value of the passage

unit load by the demand. All of the values of variables are

treat as integers. All the notations used in calculations are

listed below:

• N – set of nodes (ni – i-th node in network),

• L – set of arcs (li – i-th arc in network),

• P – vector of revenues per unit of capacity allocated

on d-th demand (pd – d-th demand unit revenue),

• D – set of demands between source-destination node

pairs,

• C – vector of capacities of l-th arcs in the network

(cl – l-th arc’s capacity),

• sd – source assigned to d-th demand,

• ed – destination assigned to d-th demand.

Auxiliary parameters are:

• dnl – parameter having logical value which takes 1

in case of l-th arc comes out from n-th node and 0

in contrary case,

• bnl – parameter having logical value which takes 1

in case of l-th arc comes into from n-th node and 0

in contrary case.

Used variables:

• hd – allocated values of bandwidth on d-th demand

between source and destination point,

• xld – value of bandwidth allocated on l-th arc used

in d-th demand.
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Fig. 3. Illustration of given demands of bandwidth allocation in

assumed network topology.

Objective function:

max ∑
d∈D

hd pd , (4)

subject to:

∑
l∈L

dslxld−∑
l∈L

bslxld = hd , ∀d ∈ D,s = sd , (5)

∑
l∈L

belxld−∑
l∈L

delxld = hd , ∀d ∈ D,e = ed , (6)

∑
l∈L

bnlxld−∑
l∈L

dnlxld = 0, ∀d ∈ D,n ∈ Nr{sd ,ed}, (7)

∑
d∈D

xld ≤ cl , ∀l ∈ L . (8)

Equations above describe a basic node-link network model

of the dimensioning problem. The main objective func-

tion (4) has been written for simple maximization problem

of the total revenue. Next Eqs. (5) and (6) enforce equality

of input and output throughout at each node. Limit of the

maximum capacity of link is ensured by Eq. (8).

Cumulative model of the ordered weighted averages allows

us to formulate the OWA optimization problem in a sim-

ple form of linear programming thus guaranteeing efficient

computations. The method generates the equitable efficient

solutions. Control parameters of the method are weights

assigned to several achievement function values, which in

each subsequent step of the optimization algorithm are or-

dered non-decreasing. Weights must be set among the input

parameters methods in non-increasing order. Their number

must be equal to the number of individual functions, which

in this case refers to the amount of revenue from the allo-

cation of a specific load value on the demand. Weighting

the first significantly larger than any other impact on max-

imizing the value of the least attractive criterion function

has been achieved. Assigning equal weights values deter-

mines solution comparable to the simple maximization of

the total revenue, regardless of fairness. Taking advantages

of Eq. (2), the OWA model can be written as the following

linear program (LP):

max
(

∑
i=1,...,m

ωkηk

)

, (9)

where:

ηk = ktk −
m

∑
i=1

dik , (10)

tk −dik ≤ fi(x) , (11)

dik ≥ 0 , (12)

for i,k = 1, . . . ,m .

The OWA method maximizes the sum of all ordered k-th

lowest objective values with assigned weights (9).

The second analyzed method (RPM) uses the fuzzy inter-

vals. The model takes into account in its design ranges of

functions achievements that are most desired by the deci-
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Table 1

Unit revenues for 11 data sets

d ex1 ex2 ex3 ex4 ex5 ex6 ex7 ex8 ex9 ex10 ex11

1 200 200 80 50 110 70 200 120 60 50 100

2 50 50 110 120 70 80 70 70 140 120 140

3 150 150 110 140 130 60 10 130 100 130 100

4 100 50 70 140 110 110 80 110 60 50 70

5 60 60 120 50 70 200 140 50 60 200 200

6 200 200 120 90 60 120 50 80 100 120 140

7 50 200 50 80 200 110 100 120 200 100 70

8 150 70 50 200 100 90 90 200 100 70 70

9 100 100 120 50 50 50 300 100 70 130 100

10 60 60 140 50 100 200 50 120 50 80 200

sion maker, defined by their limits. The aspiration and the

reservation levels (ai and ri). Using the features of fuzzy

intervals allows assigning function values that do not nec-

essarily belong to the predefined interval. It is solved by

introducing additional factors responsible for the decrease

(γ) “sorrow” and additional growth (β ) “satisfaction” the

decision-maker with the achieved value of the function,

where 0 < β < 1 < γ , see Eqs. (15), (16), and (17). Aspi-

ration and reservation levels are the control parameters for

this optimization method. In certain cases, these parame-

ters can be given as the worst possible value and the best

possible value, respectively. However, in most cases those

control parameters are determined empirically on the basis

of (or during) the problem analysis. The RPM model can

be written as linear programming (LP) formulation:

max
(

z+ ε ∑
i=1,...,m

zi

)

, (13)

subject to:

z ≤ zi , (14)

zi ≤ β
yi −ai

ai − ri
+1 , (15)

zi ≤
yi −ai

ai − ri
, (16)

zi ≤ γ
yi −ai

ai − ri
, (17)

for i = 1 . . . ,m .

Value ε , used in Eq. (13), should be positive and less than 1.

It defines how important for the decision-maker is addi-

tional improvement of the total revenue. Equation (14)

allows variable z to get the minimum value from zi for

each i = 1, . . . ,m. This procedure uses in some part the

max-min concept and guarantees the special treatment of

the least attractive value in case of total system efficiency.

It means how important for decision-maker is additional

improvement of the solution.

3. Results

For implementations of the optimization models linear pro-

gramming in the AMPL standard were used. The results

were obtained using the GLPSOL solver and the GLPK

as optimization package. The results are shown for eleven

sets of income data, more precisely of given vector of rev-

enues P. For each data set has been considered several

cases of different control parameters, which affect problem

solution from the equitable methods. The values of profit

units were generated randomly for 10 demands for allo-

cation of load between given pairs of vertices. They are

presented in Table 1. It is expected that the most discrim-

inated demand against the method of optimizing the total

profit will be those for which the gain value assigned the

least and share at least one arc to another demand. For

example, given the first set of input data to the unequal

treatment may occur for demand d = 2, 7, 5 and 10. Each

of the eleven sets of input data were examined using three

methods of optimization.

In the OWA method the values of weights are arranged

in non-increasing order to guarantee the fairness proper-

ties. Each given weight refers to the successive value of

the achievement function starting from the most “discrim-

Table 2

The OWA method control parameters (ω)

d OWA(1) OWA(2) OWA(3) OWA(4) OWA(5)

1 10 10 10 10 10

2 10 1 10 10 9

3 10 1 10 10 8

4 10 1 10 10 7

5 10 1 10 1 6

6 9 1 10 1 5

7 1 1 10 1 4

8 10 1 10 1 3

9 10 1 10 1 2

10 9 1 10 1 1
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Table 3

The RPM method control parameters (a, r)

RPM(1) RPM(2) RPM(3) RPM(4)
d

a r a r a r a r

1 6500 6000 11000 10000 11000 10000 6000 4000

2 6500 6000 11000 6000 11000 10000 6000 4000

3 6500 6000 11000 10000 11000 10000 6000 4000

4 6500 6000 11000 6000 11000 6000 6000 4000

5 6500 6000 11000 6000 11000 10000 6000 4000

6 6500 6000 11000 10000 11000 10000 6000 4000

7 6500 6000 11000 10000 11000 10000 6000 4000

8 6500 6000 11000 6000 11000 6000 6000 4000

9 6500 6000 11000 6000 11000 6000 6000 4000

10 6500 6000 11000 10000 11000 10000 6000 4000

Table 4

Solutions for the first group of input parameters

d OWA(1) OWA(2) OWA(4) OWA(5) RPM(1) RPM(2) RPM(3) RPM(4)

1 6400 5400 6600 20000 5400 9000 5400 5400

2 5050 5350 3700 1400 5350 550 5350 5350

3 6750 12600 6600 19950 9000 10050 10050 12600

4 12800 17600 15100 13500 15200 20000 15900 17600

5 6420 5340 6600 7140 6000 780 6360 5340

6 6400 5400 6600 20000 5400 9000 5400 5400

7 6400 5350 6300 1400 6000 10000 5350 5350

8 19800 12600 16350 18750 16200 9000 15150 12600

9 26800 27300 26700 20000 27300 25400 27300 27300

10 5100 5340 6600 1320 5340 8940 5340 5340

x̄ 10192 10228 10115 12346 10119 10272 10160 10228

inated”. Table 2 summarizes considered OWA weighting

schemes. For the RPM method such parameters are the

limits of the range of values desired by the decision maker.

Extremes of this range are the highest possible value and

the worst possible values to achieve. Analyzed values of

the control parameters are given in Table 3. For the first

set of income parameters and input data the solutions are

shown in details (Table 4 and Fig. 4). For the others con-

figurations only basic statistics are presented.

As expected, methods maximizing the revenue unfairly, ig-

nore demands, which are less attractive in case of this cri-

terion. Those methods have returned solutions, which are

unacceptable by the decision-maker taking into account the

fairness criterion. Following Table 4, one can determine

the values of loads of individual demands by dividing the

objective functions by unit income from the given demand.

Note that the values are relatively aligned with each other

but the degree of fairness is fundamentally different. As

mentioned, the results of Table 4 are also presented in the

diagram (Fig. 4). On the horizontal axis mapped several

solutions for the test methods. During the search for a so-

lution one should be guided by the criterion of uniformity

while simultaneously maximize the value of the total or

average objective function. For some parameters, the OWA

method returns a solution that assigns exactly the same load

values as the RPM method. This is the case of situation

where the value of the first weight stands out in relation

to the remaining weights in the OWA method. Similar so-

lution would be achieved when decision-maker has deter-

mined the appropriate low value of the bounds in the RPM

algorithm as control parameters. These values are aiming

to solve the max-min model, whose priority is to maximize

the smallest value at first and then increase a total value of

decision variables as much as possible. For non-zero value

for the first weight and zero values for weights remaining,

the OWA method returns a solution comparable to max-

min solution. The OWA result in the fourth and fifth case

can be considered as fair in some degree. This result is

achieved for the distribution of weights where the first four

are significantly larger while at the same time remaining

values are lower – OWA(4). Slightly more efficient and

fair solution is for linear decreasing weights – OWA(5).
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Fig. 4. Comparison of fair-optimization methods for the first set of income parameters. (See color pictures online at www.nit.eu/

publications/journal-jtit)

Table 5

Calculated statistics for solutions obtained with several methods

Measure MAX OWA(1) OWA(2) OWA(3) OWA(4) OWA(5) RPM(1) RPM(2) RPM(3) RPM(4)

POF 0 0.2 0.19 0 0.22 0.18 0.24 0.28 0.27 0.23

h̄d 13758 10906 11032 13758 10643 11202 10362 9791 9921 10511

K 1.054 4.060 3.318 1.054 4.5053 2.431 3.4184 2.1772 4.552 3.874

σ 18730 9695 10333 18730 8580 8008 9014 7946 7606 9633

φ 0 20025 21690 0 12574 10854 23189 4079 21061 23343

The first index of quality of the analyzed methods is the

price of fairness. Calculations were determined for the

mean revenue value of each of eleven designing cases and

described methods. Factor POF may, however, be inter-

preted in an ambiguous way. It does not include the value

of their information on the degree of fairness of investigated

method. For example, the best values of POF corresponds

to MAX and OWA(3) cases which are completely unfair.

It is difficult to say whether the method having the lower

POF ratio is also less fair. Of course, the goal in designing

efficient and fair method is to obtain the smallest possi-

ble values of POF. This index is inversely proportional to

fairness and does not give any information about equity of

objective functions values.

Another considered statistic is kurtosis. This measure is

built on the fourth standardized moment of probability dis-

tribution and it takes a greater value, when more of the

observations are placed around the mean value. This mea-

sure takes value 0 for the normal distribution. In addition,

values of kurtosis close to 0 indicate the normal distribu-

tion of data sample. It follows that the decision-maker is

interested in greater values of kurtosis. The analysis shows

that for solutions of the pure maximizing model, kurtosis

takes negative values. This affects the negative judgment in

terms of fairness because it means that values of allocated

loads are not uniform in high degree.

The basic statistic should also be a standard deviation which

values have been calculated. This measure also determines

the degree of distribution concentration, but it is less sen-

sitive to the value of more deviating from the mean. This

is because it is built on the second standardized central

moment of probability distribution.

The above-mentioned basic statistics relating to the result

set does not contain, however, the base fairness property. It

is the assumption that the result of taking a value of 0 for at

least one of the requirements should be defined as unfair.

To challenge this own rate was introduced to determine

the level of solutions fairness (19). It is the square root

of the product of the minimum value, and the kurtosis of

the sample. The higher the value, the method has higher

qualities of fairness.

φ = min
d∈D

√

hd ·K (18)

Table 5 presents the mean values of described statistics

gained from all the considered methods and each set of

given control parameters from Table 1. In summary, the

analysis of two selected fairness optimization methods can-

not clearly point out which method is better. The OWA

method is more intuitive and does not require knowledge

of the achievements of the expected objective function. For

properly selected weights, the decision-maker can get a so-

lution with varying degrees of fairness. The value of the

new-designed coefficient established to determine the de-

gree of fairness of methods, which is averaged over 11 con-

sidered cases, speaks in favor of the reference point method.

On the other hand, the POF index is clearly lower for the

OWA method. Moreover, the OWA method allows the
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decision-maker to obtain the suitable solution by assign-

ing the control parameters – weights. In comparison to

the reference point method, the OWA method can be con-

trolled in a more friendly and intuitive way. For positive

and decreasing weights, the OWA method allows to achieve

result meeting high requirements for the criterion of fair-

ness, and maximizing the load accumulated on paths. For

equal weights in the OWA method, there is obtained solu-

tion identical to the simple maximization method. It can

be simple used to determine the POF, which is one way to

define quality of obtained solutions.
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