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Abstract—Stackelberg games are non-symmetric games where

one player or specified group of players have the privilege po-

sition and make decision before the other players. Such games

are used in telecommunication and computational systems

for supporting administrative decisions. Recently Stackleberg

games became useful also in the systems where security issues

are the crucial decision criteria. In this paper authors briefly

survey the most popular Stackelberg security game models

and provide the analysis of the model properties illustrated in

the realistic use cases.
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1. Introduction

Game theory is the formal, mathematical methodology for

analyzing interactions between intelligent players: people,

corporations, software agents, or making decisions robots.

The theory is useful for solving problems in many disci-

plines, from economics, business, and law, public policy

to telecommunication. Game theory provides the tools for

determining optimal behavior in competitive environments.

Formally, a game refers to all the situations involving two or

more intelligent individuals making rational decisions [1].

The players are making decisions consistently to obtain the

assumed target. The player is considered intelligent, if he

knows the game rules and can make decisions based on his

knowledge.

The basic examples of game theoretical modeling include

the simulations of the competitive processes in economics,

political science, psychology, or biology. The players are

interest groups, politicians, or competing animal species.

Computer science uses game theory during modeling multi-

agent systems, online algorithms or processes in computer

networks [2].

Game theory is also useful in the cases where security is

important: in everyday life and security of the large-scale

IT systems such as computational grids and clouds. The

airport police behavior as one side of the conflict playing

against thieves or terrorists was modeled. Randomizing

schedules for patrolling, checking, or monitoring is typical

outcome of the models [3].

In this paper, authors focus on Stackelberg security mod-

els, where one or group of players are the privilege in the

game. They play first, and the rest of the players follow the

leader(s) and make their decisions based on the leader’s

actions. Such games can be a good proposal for supporting

the decisions in the cloud systems, where security remains

a challenging research and engineering task. The existing

Stackelberg models related to the security aspects in high

performance computing telecommunication and transporta-

tion systems are surveyed and the models properties from

the implementation perspective are analyzed. The effec-

tiveness of the models has been justified in realistic use

cases.

The paper is organized as follows. In Section 2 the basic

definitions and backgrounds of the game-theoretical mod-

els are explained together with the definition of the generic

Stackelberg game. In Sections 3 and 4 the secure Stack-

elberg game is defined and the most popular Stackelberg

security models are reviewed. The computational and im-

plementation aspects of the analyzed Stackelberg models

are discussed in Section 5. In Section 6 the realistic use

cases for Stackelberg security games are presented. Sec-

tion 7 concludes the paper.

2. Game Theory – Backgrounds

and Game Models

Game theoretical models are very useful in the formal

analysis of task, data and information management and

decision-like processes in highly distributed large-scale

computational environments mainly because of the strict

mathematical formalism. Although, there are many types

of games and also many formal models of such games, the

most commonly used and known is the normal-form game

model introduced by Tadelis et al. [4] as follows:

Normal-form game consists of three sets: players, strategies

and payoff functions specified for each player in order to

define the solution of the game for each combination of the

players’ actions.

Formally, the n-player normal game Γn can be defined by

the following rule:

Γn = (N,{Si}i∈N ,{Qi}i∈N) , (1)
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where:

• N = {1, . . . ,n} is the set of players,

• {S1, . . . ,Sn} (card Si ≥ 2; i = 1, . . . ,n) is the set of

strategies for the players,

• {H1, . . . ,Hn};Hi : S1×·· ·×Sn→R;∀i=1,...,n is the set

of payoff functions of the players.

The strategy of the player in the game can be defined as

a plan of actions of that player to make the game beneficial

for him. Two classes of strategies are defined, namely pure

strategies and mixed strategies [4].

Definition 1. Pure strategy of the player i is the deter-

ministic plan of player’s actions during the game. The

set of all pure strategies specified for player i is denoted

by Si. A profile of pure strategies in the n-players game Γn

is defined by the following vector of the players’ strategies:

s = [s1,s2, . . . ,sn] ,si ∈ Si;(i = 1,2, . . . ,n). (2)

Such strategy profile can be defined for any combination of

the players’ pure strategies in the game Γ.

Definition 2. Let us denote by Si = si1,si2, . . . ,sim the finite

set of m pure strategies of the player i. Let us also denote

by ∆Si the simplex over Si. ∆Si is the set of all probability

distributions over Si.

The mixed strategy of player i is denoted by σi ∈ Si ⊂ ∆Si

and is defined as follows [4]:

σi = {σi(si1),σi(si2), ...,σi(sim)}, (3)

where σi(si) is the probability that the player i plays ac-

cording to the strategy si.

One can conclude from the above definition that σi(si)≥ 0

for all i = 1, . . .N and

σi(si1)+ σi(si2)+ . . .+ σi(sim) = 1 . (4)

It can be also observed that the mixed strategy becomes

pure if σi(si j
) = 1 for some j σi(sik ) = 0 for all k 6= j.

In the mixed strategy model, the decisions of each player

are randomized according to the probability distribu-

tion σi(si). In such a case, the payoffs are also non-

deterministic.

Definition 3. Tadelis et al. [4] the expected payoff of

player i in 2-players game is defined as:

Hi(si,σ−i) := ∑
s−i∈S−i

σ−i(s−i)Hi(si,s−i) , (5)

where Hi(si,s−i) is the payoff function calculated for the

player i. It is assumed in that game, that player i chooses

the pure strategy si ∈ Si and his opponents plays the mixed

strategy σ−i ∈ ∆S−i.

Similarly:

Definition 4. The expected payoff of player i when he

chooses the mixed strategy σi ∈∆Si and his opponents plays

the mixed strategy σ−i ∈ ∆S−i is defined in the following

way:

Hi(σi,σ−i) = ∑
si∈Si

σi(si)Hi(si,σ−i) =

= ∑
si∈Si

(

∑
s−i∈S−i

σi(si)σ−i(s−i)Hi(si,s−i)
)

. (6)

The main aim of each player during the game it to maximize

his expected payoff by defining the optimal strategy. The

most commonly encountered concept of the game solution

is an equilibrium point defined as follows:

Definition 5. An n-dimensional vector (s̄1, . . . , s̄n) of strate-

gies is called an equilibrium point or Nash equilibrium, if:

Hi(s̄1, . . . , s̄n)= maxsi∈Si
Hi(s̄1, . . . , s̄i−1,si, s̄i+1, . . . , s̄n)

for all i = 1, . . . ,n . (7)

The Nash equilibrium [5] can be interpreted as a steady

state of the play of a strategic game, in which each player

holds correct expectations concerning the other players’

behaviors. If the strategies chosen by all players are

Nash equilibrium, no player is interested in changing his

strategy.

An n-vector H̄ =
(

H1(s̄1, . . . , s̄n), . . . ,Hn(s̄1, . . . , s̄n)
)

is

called a value of the game. The strategies (s̄1, . . . , s̄n)
are the pure strategies (see Def. 1). It means that they are

never changed during the game.

Some equilibrium points cannot be accepted as solutions

of the game. It is usually required that the solution should

not satisfy the following condition:

Definition 6. An n-dimensional vector of strategies

(ŝ1, . . . , ŝn) is Pareto non-optimal, if there exists another n-

vector (š1, . . . , šn), for which the following two conditions

hold:

∀i∈{1,...,n} Hi(ŝ1, . . . , ŝn)≤ Hi(š1, . . . , šn) , (8)

∃i∈{1,...,n} Hi(ŝ1, . . . , ŝn) < ui(š1, . . . , šn) . (9)

One can say that the n-vector (š1, . . . , šn) dominates

(ŝ1, . . . , ŝn).
It can be observed, that vector (s1, . . . ,sn) cannot be ac-

cepted as the solution of the game, if it is Pareto non-

optimal (even if it is the Nash equilibrium).

2.1. Minimization of the Game Multi-loss Function

The problem of detecting the Nash equilibrium of a finite

strategic non-cooperative game can be also formulated as

a global optimization problem with loss instead of payoff

functions.

Let us define a set of loss (cost) functions for the players:

{Q1, . . . ,Qn};Qi : S1×·· ·×Sn→R;∀i=1,...,n . (10)

Each player tends to the minimization of his loss function

in the game, which is equivalent with the maximization of
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the payoff function. Let us define a set of players’ response

functions {ri}i=1,...,n; ri : S1×·· ·×Sn→R where:

ri(ŝi) = argmin
si∈Si

{Qi(s1, . . . ,sn)}, (11)

where ŝi = (s1, . . . ,si−1,si+1, . . . ,sn). The response function

defines an optimal strategy for the player.

We can define now a multi-loss function Q : S1×·· ·×SN→
R for the game by the formula:

Q(s1, . . . ,sn)=
n

∑
i=1

[

Qi(s1, . . . ,sn)−min
si∈Si

Qi(s1, . . . ,sn)
]

. (12)

Note that the multi-loss function has non-negative values.

In such a case, the Nash equilibrium is the result of the

global minimization of the function Q. The players’ strate-

gies are called the decision variables and the players’ loss

functions are called players’ objective functions.

It follows from the definition of the function Q that is

needed to minimize first the loss functions of the players

and then to compute the values of the multi-loss function.

Thus the detection procedure of the Nash equilibrium is

a parallel algorithm composed of two cooperated units:

• main unit – which solves the problem of global mini-

mization of the function Q,

• subordinate unit – which solves the problems of

minimization of the players’ loss functions Qi.

The subordinate unit could be a parallel algorithm designed

for the numerical optimization of the real functions of

several variables.

2.2. Stackelberg Games

In all game scenarios considered in the Section 2, it was

assumed that the games are symmetric. It means that all

players have the same privileges and knowledge about the

game conditions and the other players’ strategies and ac-

tions. However, that assumption may never occur in the

real situations, where usually there is a player (or group of

players) with the deeper knowledge of the game conditions.

Cloud administrators and local cloud service providers

can be good examples of the realistic potential players in

non-symmetric resource allocation decision making game

model. In grid and cloud computing, Stackelberg games

are the most popular non-symmetric game models used for

supporting the decisions of various system users.

In Stackelberg game [6], one user acts as a leader and the

rest are his followers. The leader may keep his strategy

fixed while the followers react independently subject to the

leader’s strategy. Formally, the N-players Stackelberg game

can be defined as two-level game model, where the players

act sequentially as follows: (i) the leader is the only player

active at the first level, he chooses his best-response strat-

egy; (ii) at the second level, the followers react rationally to

the leader’s action. It means that they try to minimize their

game cost functions subject to the leader’s choice. Finally,

the leader updates his strategy to minimize the total game

cost.

The solution of the Stackelberg game is called Stackelberg

equilibrium. In such a case, each follower observes the

leader’s strategy x and responds with strategy f (x) : x→ y

that is optimal with respect to his expected payoff. Two

types of Stackelberg equilibrium points can be defined,

namely Strong Stackelberg Equilibrium (SSE) and Weak

Stackelberg Equilibrium (WSE). SSE assumes that the fol-

lower breaks ties in favor of the defender. It means that

he chooses his optimal strategy, which is also optimal from

the leader’s perspective. WSE assumes that the follower

chooses the worst strategy from the leader’s perspective [7].

Formally, both scenarios can be defined in the following

way:

Definition 7. A pair of strategies
(

x, f (x)
)

is defined as

Strong Stackelberg Equilibrium if the following conditions

are satisfied [7]:

1. The leader plays his best-response strategy:

Hl

(

x, f (x)
)

≥ Hl

(

x′, f (x′)
)

, (13)

for all leader’s strategies x′.

2. The follower plays his best-response strategy:

H f

(

x, f (x)
)

≥ H f (x,y
′) , (14)

for all follower’s strategies y′.

3. The follower breaks ties in favor of the leader:

Hl

(

x, f (x)
)

≥ Hl(x,y
′) , (15)

for all optimal follower’s strategies y′.

2.3. Bayesian Stackelberg Games

In Bayesian Stackelberg Game, the type of player must be

specified for each of N players. In two players game, there

is only one leader type, although there are multiple follower

types, denoted by l ∈ L. Authors define the probability pl

that a follower of type l will appear in the game. The

leader does not know the follower’s type. For each player

type (leader or follower) n, there is a set of strategies σn

and a utility function of the game Qn : L×σ1×σ2→ R,

which is usually defined as the game cost function of the

given player n [8].

Bayesian game can be transformed into a normal-form

game using Harsanyi transformation. Let us assume there

are two follower types 1 and 2. Type 1 will be active with

probability α , and follower type 2 will be active with proba-

Table 1

Payoff tables for a Bayesian Stackelberg game

with 2 follower types

c d c′ d′

a 2.1 4.0 1.1 2.0

b 1.0 3.2 0.1 3.2
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Table 2

Harsanyi transformed payoff table

cc′ cd′ dc′ dd′

a 2α +(1−α),1 2,α 4α +(1−α),(1−α) 4α + 2(1−α),0

b α,(1−α) α + 3(1−α),2(1−α) 3α,2α +(1−α) 3,2

bility 1−α . A chance node must be specified for Harsanyi

transformation. That node is required for the specification

of the follower’s type. It transforms the leader’s incom-

plete information regarding the follower into an imperfect

information game. In the transformed game, the leader

still has two strategies while there is a single follower type

with four (2 · 2) strategies [8]. That scenario is illustrated

in Tables 1 and 2.

3. Security Stackelberg Games

Decision processes of users, administrators and resource

owners in high performance computational systems are very

complex especially in the case, where security and data

protection are the important decision criteria. Game models

and Stackelberg games in particular, can be very useful in

supporting such difficult decisions. The game models used

in security applications are called security games.

Security game is a game between defender and attacker.

The attacker may pick any target from the target set:

Targets = {t1, . . . ,tn} . (16)

The defender may cover targets by available resources from

the set of resources:

Resources = {r1, . . . ,rK} . (17)

Tambe et el. [9] defined the compact security game model.

In this model, all resources are identical and may be as-

signed to any target and payoffs depend only on the identity

of the attacked target and whether or not it is covered by

the defender.

Any security game represented in this compact form can

also be represented in normal form. The attack vector A

maps directly to the attacker’s pure strategies, with one

strategy per target. For the defender, each possible allo-

cation of resources corresponds to a pure strategy in the

normal form. A resource allocation maps each available

resource to a target, so there are n Choose m ways to allo-

cate m resources to n targets [9].

Let us denote the defender utility if ti is attacked when it

is covered by Uc
d (ti), and defender utility if ti is attacked

when it is uncovered by Uu
d (ti), and attacker utility Uc

a (ti)
and Uc

a (ti), respectively. Then, during the game, it is as-

sumed that adding the resource to cover targets benefits the

defender and operates to the detriment of attacker:

Uc
d (ti)−Uu

d (ti) > 0,Uu
a (ti)−Uc

a(ti) > 0 . (18)

For each resource ri there is a subset Si of of the schedules

S that ri can cover. The example of such a situation is

marshal’s fly tours. In security game, the defender may play

best-response strategy, however, it depends on the attacker’s

behavior.

In normal representation of security game, the attacker’s

pure strategy is specified as a set of targets. The at-

tacker’s mixed strategy is defined by the following vec-

tor a = [a1, . . . ,an] representing the probability of attacking

the targets. The defender’s pure strategy is defined by the

coverage vector d ∈ {0,1}n , where di represents if target ti
is covered or not. Let us denote by D ∈ {0,1}n the set of

possible coverage vectors, and by c the vector of coverage

probabilities. The defender’s mixed strategy C is defined

as the vector of probabilities of playing each d ∈ D. For

strategy C, the defenders utility is defined as:

Ud(C,a) =
n

∑
i=1

ai

(

ciU
c
d (ti)+ (1− ci)U

u
d (ti)

)

, (19)

and attacker’s utility is defined in the following way:

Ua(C,a) =
n

∑
i=1

ai

(

ciU
c
a (ti)+ (1− ci)U

u
a (ti)

)

. (20)

In symmetric security games, the Nash equilibrium can be

also estimated. In such a case, the defender plays his best-

response strategy C, such that for any other strategy C′, his

utility is the most beneficial:

Ud(C,a) > Ud(C
′,a) . (21)

The attacker plays also his best-response strategy a, such

that for any other strategy a′, his utility is the most benefi-

cial:

Ua(C,a) > Ua(C,a′) . (22)

The game model, in which the defender makes his decision

first and attacker chooses his strategy based on the results of

the defender’s action, is called security Stackelberg game.

In that game, g(C) = a is the attacker response function.

Strong Stackelberg Equilibrium (SSE) can be found by:

• the defender plays the best-response strategy C, such

that Ud(C,g(C)) >= Ud(C
′,g(C′)) for all C′,

• the attacker plays the best-response strategy C, such

that Ua(C,g(C)) >= Ua(C,g′(C)) for all g′,C,

• the attacker breaks ties optimally for the leader:

Ud(C,g(C)) >= Ud(C,τ(C)) for all C, where τ(C)
is the set of followers best responses to C.

The basic version of the game assumes that utility func-

tions are common knowledge. In SSE (see Def. 7), the
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attacker must know the defender’s utility, in order to com-

pute his own strategy. In Nash equilibrium, the attacker

does not follow the defender’s actions. In real life applica-

tions, defender does not know the attacker’s utility function

and the game may be defined by using the Bayesian model.

The assumption that attacker responds optimally (selects

the best-response strategy) may not happen either (imper-

fect follower case) [10].

4. Secure Stackelberg Game-based

Models

In this section, the most popular Stackelberg security game

models are surveyed. Presented models were selected due

to the increasing limitations on resources and growing at-

tackers’ number, incorporating uncertainty about the opti-

mal behavior of attackers, uncertainty about the observation

possibility.

4.1. DOBSS Model

Paruchuri et al. in [11] considered the Bayesian Stackel-

berg security game for one leader, multiple independent fol-

lowers and the situation when the leader does not know the

follower type. For leader strategy vector x = [x1, . . . ,xn] ∈
[0,1] represents the proportion of times when pure strategy

i = 1, . . . ,n was chosen. The authors proposed the algo-

rithm for finding the optimal mixed strategy for the leader,

under the assumption that the follower (attacker) knows this

mixed strategy choosing his own. The authors defined the

following two utility matrices for the leader U
i, j
d = Ri, j and

attacker U
i, j
a =Ci, j . It is assumed that the leader plays pure

strategy i and attacker plays pure strategy j.

Let us denote by q = [q1, . . . ,qn] ∈ {0,1} the mixed strat-

egy for the follower, X – leader pure strategies index set,

and by Q – the pure follower’s strategy indexes. The algo-

rithm is implemented in the following steps (one follower

is considered):

• for fixed leader strategy X the follower solves the

linear problem to find his optimal response:

max
q

∑
j∈Q

∑
i∈X

Ci, jxiq j , (23)

with constraints that means that every pure strategy

is possible:
q j>=0

∑
j∈Q

q j = 1; (24)

• the leader finds the strategy x that maximizes his

utility, under the assumption that the follower used

optimal response a(x):

maxq ∑
i∈X

∑
j∈Q

Ri, jq(x)xi , (25)

with assumption that each pure strategy is possible:

xi∈[0,1]

∑
i∈X

xi = 1 . (26)

The authors proposed also the model for multiple followers,

with specified recognition probability of the follower’s type.

Let us denote by U
i, j,l
d = Rl

i, j and U
i, j,l
a = Cl

i, j the utility

matrices of the leader’s respectively. Leader plays pure

strategy i and attacker plays pure strategy j, and the follower

type is l. Let us also denote by pl the probabilities of

playing with the follower of type l. The solution of such

a game can be defined as quadratic programming problem

(specified for the leader) with the following distribution

over the follower type pl:

max
x,q,a

∑
i∈X

∑
l∈L

∑
j∈Q

plRl
i, jq

l
jxi , (27)

with the following leader’s and follower’s strategies:

xi∈[0,1]

∑
i∈X

xi = 1,

ql
j∈[0,1]

∑
j∈Q

ql
j = 1 . (28)

It can be observed that ql
j = 1 only for a strategy that is

optimal for follower l:

0 =<
(

al−∑
i∈X

Ci, jxi <= (1−ql
j)M

)

, (29)

where M is the fixed large positive number, and a ∈ R.

In the above models, the players are completely rational

(they play according to the concrete calculated strategy) and

followers can follow the leader’s strategy. The quadratic

problem given by Eqs. (27)–(29) may be linearized by

defining the new variables zl
i, j := xiq

l
j.

4.2. BRASS, BOSS and MAXMIN Models

Pita et al. in [12] proposed three mixed-linear program al-

gorithms for solving the Bayesian Stackelberg games. They

considered the following two game scenarios:

• bounded rationality of the followers scenario – the

leader cannot be sure that he will play the game

according to the calculated strategy with the selec-

tion ε-optimal response strategy – the follower may

choose any response,

• uncertainty scenario – the recognition of the leader’s

strategy by the follower can be incorrect.

In the first case, the problem of solving the game was de-

fined as the following BRASS linear programming prob-

lem:

max
x,q,h,a,γ

∑
l∈L

plγ l , (30)

where the leader’s and follower’s strategies can be specified

as:
xi∈[0,1]

∑
i∈X

xi = 1 , (31)

allowing to select more than one policy per follower type

∑
j∈Q

ql
j >= 1, ∑

j∈Q

hl
j = 1 , (32)
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and the condition that ensure that ql
j = 1 only for a strategy

that is optimal for follower l:

0 =<
(

al−∑
i∈X

Ci, jxi <= (1−hl
j

)

M , (33)

ε(1−ql
j) =< al−∑

i∈X

Cl
i, jxi <= ε +

(

1−ql
j

)

M , (34)

(1−ql
j)M + ∑

i∈X

Rl
i, jxi >= γl , (35)

where hl
j =< ql

j, hl
j,q

l
j ∈ {0,1}, for the fixed large positive

number M and a ∈R.

In the uncertainty scenario model (BOSS), developed by

Jain et al. [12], the follower may not change the optimal

calculated strategy, but deviate from it. Instead of xi, the

follower plays xi + δi.

The authors proposed also the third MAXMIN model,

which is a simple combination of BRASS and BOSS mod-

els. The main aim in this model is to maximize the minimal

reword γ irrespective of the followers’ action:

max
γ

∑
l∈L

plγ l , (36)

where the leader’s and follower’s are defined in the follow-

ing way:
xi∈[0,1]

∑
i∈X

xi = 1 , (37)

xi∈[0,1]

∑
i∈X

Rl
i, jxi >= γ l . (38)

4.3. COBRA Models

Pita et al. in [12] defined following three game mod-

els: (i) COBRA(0, ε) model (bounded rationality),

(ii) COBRA(α , 0) model (observational uncertainty), and

(iii) COBRA(α,ε) model as the combination of (i) and

(ii). Parameters α and ε are two main parameters of the

games. For the real leader’s strategy x and follower’s strat-

egy x′, the problem of solving the game is defined as the

linear problem x′i = α(1/|X |)+ (1α)xi. The value of α=1

indicates the player’s behavior in the situation of no knowl-

edge about the other strategies – any strategy is uniformly

probable. For α = 0 (full information available), x′i = xi

is the optimal strategy played by the follower. For α = 1,

x′i = (1/|X |) is the probability of playing the strategy x′i.

Using that model, the following problem as the game solu-

tion was formulated:

max
x,q,h,a,γ

∑
l∈L

plγ l , (39)

under the following constrains:

xi∈[0,1]

∑
i∈X

x′i = 1, ∑
j∈Q

ql
j >= 1, ∑

j∈Q

hl
j >= 1 , (40)

0 =< (al−∑
i∈X

Ci, jx
′
i <= (1−hl

j)M , (41)

ε(1−ql
j) =< al−∑

i∈X

Cl
i, jxi <= ε ,+(1−ql

j)M , (42)

(1−ql
j)M + ∑

i∈X

Rl
i, jxi >= γl , (43)

where x′i = α(1/|X |)+(1α)xi, hl
j =< ql

j, hl
j,q

l
j ∈ {0,1}, for

M being the large positive number, and a ∈ R.

4.4. ORIGAMI Model

Kiekintveld et al. in [13] defined the model in which the

attack set can be computed directly for the attacker in order

to cover target benefits of defender and for the detriment

of attacker. Let us denote by C the coverage vector for

the defender selected the optimal strategy, and by ct the

probabilities that t-th target is covered. It is assumed, that

including any additional target to the attack set cannot in-

crease the players’ payoffs in the equilibrium states of the

game. Using indifference equation if Ua(C) = x then:

ct >=
x−Uu

a (ti)

Uc
a (ti)Uu

a (ti)
, (44)

for each target ti, such that

Uu
a (ti) > x . (45)

In the algorithm defined for solving the ORIGAMI game

models, the target has maximal Uu
a (ti), and the attack set is

updated in each algorithm iteration for decreasing Uu
a (ti).

After each update of the attack set, the coverage of each

target is updated to reach the indifference of attacker payoffs

in the attack set.

4.5. SU-BRQR Model

Nguyen et al. in [14] modified the standard Stackelberg se-

curity model by introducing the following subjective utility

function:

ai = w1ci + w2Uu
a (ti)+ w3Uc

a (ti) , (46)

where w, w2, w3. The optimal strategy is calculated as fol-

lows:

max
c

n

∑
i=1

e(w1ci+w2Uu
a (ti)+w3Uc

a (ti))

∑n
j′=1 e(w1c j+w2Uu

a (t j)+w3Uc
a (t j))

· . . . (47)

. . . ·
(

c jU
c
a(t j)+ (1− c j)U

u
a (t j)

)

,

where
n

∑
i=1

ct <= K, 0 =< ct <= 1 .

In this model, the adversary has his own preferences ac-

cording to the importance of the rewords, penalties, and

probabilities. The authors recommended the maximum like-
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hood estimation method for estimating the game parame-

ters w1, w2, w3.

4.6. Eraser-C Model

Tsai et al. in [15] tried to simplify the standard security

Stackelberg game model. In their model, the payoffs de-

pend on the structure of the coverage set (the attacked target

can be its element or not). In this model the actions of the

players are defined by the targets instead of coverage sets.

4.7. ASPEN Model

Jain et al. in [16] considered large, arbitrary schedules

in the Stackelberg security game. The main idea of their

model is to represent strategy space for defender using col-

umn generation, subcompositions into smaller problems,

and a technique for searching the space of attacker strate-

gies. The solution is dedicated for large number of defend-

ers of different types.

4.8. GUARDS Model

Bo An et al. in [17] defined the model for massive scale

games with hundreds of heterogeneous security activities,

reasoning over different kind of potential threats. They

considered the situation when the defender has the possi-

bility of protecting targets by different heterogeneous se-

curity activities for each potential target, and an adversary

can execute heterogeneous attacks on a target. In addition,

the defender is able to allocate more than one resource for

covering a given target. Moreover, the authors defined the

defender’s uncertainty regarding the payoff values of the at-

tacker, and uncertainty in the attackers’ observation of the

defender’s strategy. Pita et al. proposed model for heteroge-

neous security activities for each target and heterogeneous

threats for each target.

4.9. Multiple SSE Case

Tambe et al. in [18] defined the game scenario, where the

attacker deviates from optimal strategy, with unknown ca-

pability constraints that may restrict the attack set. Authors

introduced equilibrium refinement algorithm. In the case

of multiple SSE states, the developed algorithm is able to

choose the robust equilibrium for the most efficient utiliza-

tion of the available resources. The idea is based on the

fact that if the vector of coverage c = [c1, . . . ,cn] generates

the SSE, then it is possible to find another SSE by reduc-

ing coverage of targets outside the attack set. The authors

defined the maximum attack set (MSSE) as:

M = {t ∈ Target s : Uu
a (t) >= Ua(c,a)} . (48)

They proved that any security game could not have two

maximum attack sets with different attack sets. The authors

sorted target set using the values of utility function Uu
a (t)

in the following way:

Target ssorted = {t1, . . . ,tn} . (49)

The authors also developed the concrete algorithm for

computing the unique maximum attack set. It starts with

M = t1 and generates new targets in each iterated loop

(Algorithm 1).

Algorithm 1: Computing the unique maximum attack set

i← 0,M←,Target ssorted

while i <= n do

if M = Target ssorted then return M

j← i+ 1, M′←M∪{t j}, Target ssorted

while j > n and Uu
a (t j+1 = Uu

a (t j)) do

M′←M′∪{t j+1}, j ++

end do

if Condition C1 is true or C2 is violated for attack set M′

then return M

M←M′, i← j

end do

The following conditions were defined for the above model:

• C1 – ∑
t∈M

ct <= m ,

• C2 – ct <= 1 for each t ∈M .

4.10. Multi-step Attack MILP Model

Vorobeychik et al. in [19] considered the game scenario

when each attack may be realized in many steps and to be

completed it requires an arbitrary number (h) of such steps.

Mixed integer linear programming (MILP) formulation for

defender was proposed by discretizing the time unit interval

defender probabilities was spited into L intervals. Authors

proposed di, j,l as the binary variables such equals 1 indi-

cates a particular discrete probability choice pl ∈ [0,1] for

l = 1 . . . ,L−1 with p0 = 0 and PL = 1, such that only one

chose is possible, that is ∑l di, j,l = 1. Based on this idea,

new set of variables wi, j,l = di, j,lv j was introduced, where

v j is the expected attacker value of starting in state j. The

model includes the probability that a target j is visited in

exactly t steps, starting from i and the probability that j is

visited in 1 . . .h steps.

5. Computational Aspects

All secure Stackelberg game models surveyed in the pre-

vious section can be solved by the global optimization of

the game utilization function (loss or game payoff) in the

same way it was defined in Section 2 for the generic game

models. Such global optimization problems for Stackel-

berg security games can be defined usually as special cases

of mixed-integer linear problems (MILP) or mixed-integer-

quadratic programming problems (MIQP). Depending on

the type of the game, such problems are of different com-

putational complexity (Table 3). Such complexity can be

expressed by the number of control variables (strategies),

the number of leaders and followers and the number of

76



Stackelberg Security Games: Models, Applications and Computational Aspects

uncertainty parameters in the game, which are estimated

by using the likelihood methods.

Table 3

The characteristics of surveyed Stackelberg models

Reference Size Value examined

[17] 5 / 20 Runtime, memory usage

[12] 50 / 200 Runtime, memory usage

[13] 3 / 8 Defender expected utility

[14] 9 / 24 Defenders expected utility

[20] 3 / 3 Pure strategies behavior

[12] 3 / 10 Runtime, expected rewards

[14] 3 / 10 Runtime

[11] 2 / 14 Runtime, speed up

The following theorem was proof according to the compu-

tational complexity of the problem [5]. In 2-player normal-

form games, an optimal mixed strategy to commit to can

be found in polynomial time using linear programming,

in 3-player normal-form games, finding an optimal mixed

strategy to commit to is NP-hard. Moreover, finding an

optimal mixed strategy to commit to in 2-player Bayesian

games is NP-hard, even when the leader has only a single

type and the follower has only two actions.

5.1. Equilibrium Points

SSE and NE equilibrium states (defined in Section 2) are

the typical solutions for Stackelberg and non-cooperative

symmetric games. In Stackelberg security game, there is

however, the third type of equilibrium state, which can be

the most beneficial solution of such game in many practical

applications.

Let us denote by ΩNE := a set of strategies played for

reaching the Nash equilibrium, and by ΩSSE := a set of

strategies for reaching strong Stackelberg equilibrium.

Definition 8. For a defender’s mixed strategy C and at-

tacker’s best response strategy E(C)=maxn
i=1 Ua(c,ti), a set

of defender’s minimax strategies is defined as:

ΩM := {C : E(C) = E∗}, (50)

where E∗ = minC E(C) is the minimum of attacker’s best

response utilities over all defender’s strategies.

The following relations among these three types of equilib-

rium states can be specified:

• in a security game the set of defenders minimax

strategies is equal to the set of defenders NE strate-

gies, that is ΩM = ΩNE ,

• if C is the SSE strategy in a security game that sat-

isfies the property that for any recourse and any sub-

set of a schedule is also a possible schedule then

ΩSSE ⊂ΩM = ΩNE .

Solving MILP and MIQP problems may be done by

one of traditional methods: simplex method, interior-point

methods, Conic linear programming, descent methods, con-

jugate direction methods or Quasi-Newton methods [21].

In addition a lot of new methods were developed re-

cently, from among them: relaxation method [22], Dantzig-

Wolfe decomposition [23], primal nested-decomposition

method [24].

5.2. Time of Solution Finding

All the Stackelberg security game models presented in Sec-

tion 3 cannot be compared to each other in the straightfor-

ward way, because they differ according to the assumptions.

A simple summative analysis have been performed with

runtime, memory usage expected utility values, strategies

behavior and speed up as the main criteria. The results of

such analysis are presented in Table 4. The time that is

necessary for computing proper strategies depends on the

characteristics of the machine that was used for computa-

tion.

We can conclude from conducted simple analysis of the

surveyed Stackelberg game models that the strategy space

may exponentially increase with the number of security

activities, attacks, resources, and the time necessary for

finding the game solution.

Table 4

The time a for finding solution to the maximum problem

Reference/model Time [min] Size [targets]

[17] 8.2 250

[12] 116 200

[13] DOBSS 4.5 20

[13] ERASER 10.5 3000

[13] ORIGAMI 10.2 3500

[12] COBRA 7.5 8 followers

[12] DOBSS 11 8 followers

[14] BOSS 16.5 200

[11] 16.5 4

6. Use Cases

Stackelberg security games have been successfully imple-

mented in realistic large-scale IT systems for supporting

the system management and users and administrators de-

cisions. In this section the most interesting use cases for

such game models are reported.

The most spectacular implementation of the security

Stackelberg game model is the security system at the Los

Angeles International Airport. Randomizing schedules in

such systems for monitoring the system performance is

a critical issue. The main reason for that is the impor-

tance of the knowledge about the possible patrolling that

may cause terrorist attacks. This use case was realized as

a software-assistant multi-agent system called ARMOR

(Assistant for Randomized Monitoring over Routes). This

model supports the administrators and users decisions
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about the location of the checkpoints in the physical en-

vironment or canine patrol routes. The decision model is

based on the Bayesian Stackelberg games, in which the op-

timal mixed strategy is generated for the leader (patrol) and

the follower (terrorist) may know this mixed strategy when

choosing his own strategy in the game [9].

The next example of the practical Stackelberg game is the

strategic security allocation system in transportation net-

works (IRIS) used by Federal Air Marshal Service (FAMS).

In transportation networks with hundreds thousands of ve-

hicles, police has to create patrolling schedules in order to

ensure safety. Aggressors can observe the law-enforcement

patterns and try to exploit generated schedule. IRIS sys-

tems use the fastest known solver for this class of security

games, namely ERASER-C [9].

Another Stackelberg use case is the United States Trans-

portation Security Administration system (TSA). The trans-

portation systems are very large and protecting them re-

quires many personnel and security activities. System sup-

ported the decisions how properly divide resources between

layers of security activities. In this type of game, TSA

acts as a defender who has a set of targets to protect,

a number of security activities and a limited number of re-

sources. The name of dedicated software system is Game-

theoretic Unpredictable and Randomly Deployed Security

(GUARDS) [9].

There are many applications of game theory in communica-

tions and networking. Using a variety of tools from game

theory, there was possible to find new solutions in areas

related to cellular and broadband networks such as uplink

power control in CDMA networks, resource allocation in

OFDMA networks, deployment of femtocell access points,

IEEE 802.16 broadband wireless access, and vertical han-

dover in heterogeneous wireless networks [25].

7. Conclusions

Security Stackelberg games presented in this paper are very

promising tools for modeling the data and user manage-

ments, as well as supporting complex decision processes

in competitive computational environments with possible

conflicts of interests of the users and system administrators

and service and resource providers. All surveyed models

were based on the realistic characteristics of the systems,

namely existing limitations in access to the resources, un-

certainty about follower types, non-optimal behavior of the

players or limited knowledge of the opponents’ actions and

strategies. Increasing the efficiency of the game model is

strictly connected with the increase of the calculated num-

ber of parameters in the game and equations to solve in the

game optimization models, which makes of course the all

implementation of such models more complex.

Although, all optimization problems related to solving the

presented Stackelberg security games are NP-hard, the

practical use cases reported in this paper show the high

potential practical benefits of using the presented games

in transportation systems in USA. It makes such models

a potential efficient tool for supporting the complex deci-

sions in large-scale cloud environments, which will be the

next step of authors’ research on security aspects in cloud

computing.
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lutions to Stackelberg games: Addressing bounded rationality and

limited observations in human cognition, Artif. Intell., vol. 174,

no. 15, pp. 1142–1171, 2010, (doi.org/10.1016/j.artint.2010.07.002).

[13] R. Yang, C. Kiekintveld, F. Ordoñez, M. Tambe, and R. John,
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