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Abstract—This article shows how to use fast Fp2Fp2Fp2 arithmetic

and twisted Hessian curves to obtain faster point scalar mul-

tiplication on elliptic curve ESWESWESW in short Weierstrass form

over FpFpFp. It is assumed that p and #ESW (Fp)ESW (Fp)ESW (Fp) are different large

primes, #E(Fq)E(Fq)E(Fq) denotes number of points on curve EEE over

field FqFqFq and #Et
SW (Fp)Et
SW (Fp)Et
SW (Fp), where EtEtEt is twist of E, is divisible by 3.

For example this method is suitable for two NIST curves over

FpFpFp: NIST P-224 and NIST P-256. The presented solution

may be much faster than classic approach. Presented solution

should also be resistant for side channel attacks and informa-

tion about Y coordinate should not be lost (using for example

Brier-Joye ladder such information may be lost). If coefficient

A in equation of curve ESW : y2 = x3 +Ax+BESW : y2 = x3 +Ax+BESW : y2 = x3 +Ax+B in short Weier-

strass curve is not of special form, presented solution is up

to 30% faster than classic approach. If A = −3A = −3A = −3, proposed

method may be up to 24% faster.

Keywords—elliptic curve cryptography, hardware implementa-

tions, twisted Hessian curves.

1. Introduction

The point scalar multiplication is used in many crypto-

graphic applications, which are based on elliptic curve dis-

crete logarithm problem (ECDLP). In this article a faster

arithmetic on elliptic curves in short Weierstrass form ESW

over Fp is considered, where p is large prime and #ESW

is also prime. If twist of such a curve Et
SW has its order

#Et
SW divisible by 3, then twisted Hessian curves arithmetic

over Fp2 may be used to speed up point scalar multipli-

cation on ESW (Fp). It is possible because #ESW (Fp2) =
#ESW (Fp) ·#Et

SW (Fp). If 3|#Et
SW then 3|#ESW (Fp2). Hence,

it is possible to find twisted Hessian curve ET H(Fp2)
isomorphic to ESW (Fp2). If it is needed to make point

scalar multiplication by k ∈ {2, . . . ,#ESW (Fp)−2} of point

P ∈ ESW (Fp), to get in result point Q ∈ ESW (Fp) where

Q = [k]P, it is not necessary to use short Weierstrass

curve arithmetic. If φ is isomorphism from ESW (Fp2) to

ETH(Fp2), so: φ : ESW (Fp2) → ETH(Fp2) then for every

point P ∈ ESW (Fp) (then of course also P ∈ ESW (Fp2)) may

be found P′ ∈ ET H(Fp2) for which P′ = φ(P). To com-

pute Q may be used formula Q = φ−1
(

[k]φ(P)
)

. One can

see that [k]φ(P) = [k]P′ = Q′ and finally φ−1 (Q′) = Q. In

hardware implementation Fp2 arithmetic, if is properly im-

plemented, may be almost as fast as Fp arithmetic. Because

twisted Hessian curves arithmetic for Fp2 fields (where

p 6= 2,3) is complete (point addition, doubling, addition

of neutral and addition of opposite point are computed us-

ing the same formulas), it is possible to gain faster solution,

resistant for side channel attacks in hardware implementa-

tions (especially in FPGA chips). Due to the fact that any

information about value of Y coordinate should not be lost,

Brier-Joye ladder for point scalar multiplication [1] is not

considered in this article.

2. Arithmetic in Fp2

The field Fp2 is generated by irreducible polynomial of de-

gree 2 with coefficients from Fp. The main goal of this

article is to get fast arithmetic in Fp2 . Only an irreducible

polynomials of form f (t) = t2 ± c are considered, where c

is small positive integer.

Every element A ∈ Fp2 may be written as A = a1t + a0,

where a0,a1 ∈ Fp.

Let’s assume A, B ∈ Fp2 , where A = a1t + a0 and B =
b1t +b0. Then A±B = (a1t +a0)±(b1t +b0)= (a1±b1)t +
(a0 ±b0). Addition and subtraction are not complex opera-

tions and may be computed in only one processor machine

cycle. Although fast Fp2 arithmetic is presented in [2] to

speed-up pairing, in this article is showed its different ap-

plication. It is also showed how to fast compute inversion

of element in Fp2 , based on idea presented in [3].

2.1. Multiplication

Multiplication is crucial operation in elliptic curve arith-

metic. However, it is not the most time-consuming op-

eration (it is inversion), during point scalar multiplication

many times it is needed to compute multiplication in field

over which elliptic curve is defined. Inversion is computed

only once, at the end of all computations.

Let A,B ∈ Fp2 , where A = a1t + a0 and B = b1t + b0. Let

f (t) = t2 ± c. Then using Karatsuba algorithm, element C

is computed as:

C = A ·B = (a1b0 + a0b1)t + a0b0 ∓ ca1b1 = Rt ∓Mc + N ,
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where:

L = (a1 + a0)(b1 + b0),

M = a1b1,

N = a0b0,

R = L−M−N = a1b0 + a0b1.

One can notice that:

c1 = R and c2 = ∓Mc + N .

Multiplication in Fp2 requires 3 multiplications in Fp, 5 ad-

ditions/subtractions in Fp and 1 multiplication in Fp by

small constant.

Although in software applications the multiplication in Fp2

is still more complex than multiplication in Fp, using par-

allelism in hardware it is possible to compute it in almost

the same time.

The total number of processor cycles required to make mul-

tiplication in Fp2 is MAX{TM + 2,TM + ⌈log2 c⌉+ 1}. One

can see that the smaller c is chosen, the less operations are

required to compute the result.

In the case when p ≡ 3(mod 4), an irreducible poly-

nomial of form f (t) = t2 + 1 may be chosen and then

the cost of multiplication equals MAX{TM + 2,TM +
⌊log2 1⌋ + 1} = TM + 2 processor cycles. In the case

p ≡ 5(mod 8), the irreducible polynomial of form f (t) =
t2 − 2 may be chosen and then the complexity of

multiplication reach MAX{TM + 2,TM + ⌈log2 2⌉+ 1} =
TM + 2 processor cycles.
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x + y mod p

x + y mod p

x – y mod p

x – y mod p

x + y mod p

x · y mod p

c · x mod p

x · y mod p

x · y mod p

Fig. 1. Scheme of parallel multiplication in Fp2 .

2.2. Inversion

It is possible for every A ∈ Fp2 to get its inversion A−1 by

computing only one inversion of element from Fp. Hence,

the method for irreducible polynomial of form f (t) = t2±c

is shown base on idea presented in [3]:

A =

[

a1

a0

]

and A−1 =

[

b1

b0

]

.

If

M =

[

a0 a1

∓a1c a0

]

,

then

M ·
[

b1

b0

]

=

[

a0 a1

∓a1c a0

]

·
[

b1

b0

]

=

[

0

1

]

.

The coefficients in matrix M may be taken from general

form of element C = A ·B.

Then transformation should be made:

[

b1

b0

]

=

[

a0 a1

∓a1c a0

]−1

·
[

0

1

]

= M−1 ·
[

0

1

]

.

Now the determinant of matrix M is equal to:

det(M) = a2
0 ±a2

1c ,

then

M−1 =
1

det(M)

[

a0 −a1

±a1c a0

]

and

[

b1

b0

]

=
1

det(M)

[

a0 −a1

±a1c a0

]

·
[

0

1

]

=
1

det(M)

[

−a1

a0

]

.

The computations may be done in the following 6 steps:

1. D = a2
0,

2. E = a2
1c,

3. H = E + D = det(M),

4. H = H−1,

5. b1 = −a1H,

6. b0 = a0H.

The inversion in Fp2 requires 1 inversion in Fp, 4 multi-

plications in Fp, 1 multiplication by small constant c in Fp

and 1 addition in Fp.

3. Elliptic Curves

An elliptic curve may be defined over every field K. Be-

cause in cryptographic applications only finite fields are

used and in this article only fields with big characteris-

tic p 6= 2,3 are considered, then all definitions below are

proper for such fields but may not be proper for fields with

characteristic 2 or 3.

3.1. Short Weierstrass Elliptic Curve

Every elliptic curve E over Fq with char(Fq) 6= 2,3 may be

given in short Weierstrass form ESW : y2 = x3 + Ax + B,

where −16
(

4A3 −27B2
)

6= 0. The arithmetic on short

Weierstrass curve is in general not complete (there is such

a method described in [4] but it is not efficient) so dif-

ferent formulas for point addition, doubling, addition of

neutral element and addition of opposite element are used.

The short Weierstrass curve arithmetic is the fastest for
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A = −3. In this case, points addition requires 14 multi-

plications and 7 additions in Fq. Mixed addition requires

11 multiplications and 7 additions in Fq. Point doubling

requires 10 multiplications and 11 additions in Fq. If A is

not of special form, then points addition requires 14 mul-

tiplications and 7 additions in Fq. Mixed addition requires

11 multiplications and 7 additions in Fq. Point doubling

requires 12 multiplications and 12 additions in Fq. It is as-

sumed that squaring, multiplication by vary elements and

multiplication by big constant require the same time. All

necessary formulas may be found in [5].

3.2. Twisted Hessian Curves

The twisted Hessian curve [6] over field Fq is given by:

ET H : ax3 + y3 + 1 = dxy

with neutral point (0,−1) in affine coordinates or by:

ETH : aX3 +Y 3 + Z3 = dXYZ

in projective coordinates with neutral point (0,−1,1). Ele-

ments a,d ∈ Fq and a(27a−d3) 6= 0.

If a = 1 then ET H,a,d : x3 + y3 + 1 = dxy is Hessian curve.

On twisted Hessian curves faster arithmetic than for short

Weierstrass curves may be used. Moreover, on twisted Hes-

sian curve over Fq, if q ≡ 1(mod 3) and a is not cube in

Fq, complete arithmetic may be used.

Arithmetic on twisted Hessian curves is described with all

details in [6].

The best complete addition formula requires 12 multiplica-

tions, i.e. 11 multiplications of vary elements and 1 multi-

plication by constant and 16 additions/subtractions.

3.3. Isomorphism between Twisted Hessian Curves

and Elliptic Curves in Short Weierstrass Form

over Finite Fields

Let us consider computation of Q = [k]P on elliptic curve

ESW (Fq) : y2 = x3 + Ax + B, where Ord(P) is prime. If

3|#ESW (Fq) (it means that curve ESW has 3-torsion point)

and q≡ 1(mod 3) then for curve ESW may be found isomor-

phic twisted Hessian curve ETH with complete arithmetic

(when a is not cube in Fq). Note there is not any ellip-

tic curve over Fp having isomorphic twisted Hessian curve

over Fp if #ESW (Fp) is prime.

One can see that for some elliptic curves over Fp for which

#ESW (Fp) is prime, there is some possibility that #Et
SW is

divisible by 3.

Let us see, that if #ESW (Fp) = p + 1 − t over Fp then

#Et
SW = p+1+ t and #ESW (Fp2) = #ESW (Fp) ·#Et

SW (Fp) =

(p + 1)2 − t2 over Fp2 . So if 3|#Et
SW then 3|#ESW (Fp2).

Because p2 ≡ 1(mod 3) for all primes p 6= 3, therefore

a twisted Hessian curve such as ETH(Fp2) : ax3 + y3 + 1 =
dxy isomorphic to ESW (Fp2) exists and if a is not cube in

Fp2 , then complete arithmetic on ET H(Fp2) may be used.

Finally, point Q ∈ ESW may be computed using twisted

Hessian curve over Fp2 instead of using short Weierstrass

curve over Fp.

This rule was checked for NIST elliptic curves over Fp.

For two curves, NIST P-224 and NIST P-256, may be used

arithmetic on twisted Hessian curve over Fp2 isomorphic to

ESW (Fp2).
The next important problem is how to find such twisted

Hessian curve.

First, suppose that triangular elliptic curve is given by:

ETR : y2 = dxy + ay = x3 over Fp2 ,

where a,d ∈ Fp.

Then the transformations can be made:

(

y + dx+a
2

)2

=

(

x+ d2

12

)3

+

+

(

da
2
− d4

48

)(

x+ d2

12

)

− d2

12

(

da
2
− d4

48

)

+ a2 .

If

ESW : y2 = x3 + Ax + B

then:

x = x+
d2

12
,

y = y +
dx + a

2
,

A =
da

2
− d4

48
,

B = −d2

12
A + a2 .

For elliptic curves over Fp it is possible to extend field from

Fp to Fp2 . Then the coefficients of such a curve over field

extension still belong to Fp. If coefficients A,B∈ Fp of such

a curve are known, to find coefficients of twisted Hessian

curve a,d ∈ Fp2 it is necessary to compute d as one of the

roots of polynomial J(s) = −1
6912

s8− 1
24

As4−Bs2 +A2. Note

that if d is computed, then a = (A+ d4

48
) 2

d
, and in projective

coordinates ETR : VW (V + dU + aW) = U3.

Then for triangular curve ET R it is easy to find isomorphic

twisted Hessian curve given by equation:

E
TH,

(

d3−27a
)

,3d
: (d3 −27a)X3 +Y 3 + Z3 = 3dXYZ

and

X = U ,

Y = ω(V + dU + aW)−ω2V −aW ,

Z = ω2
(

V + dU + aW
)

−ωV −aW ,

where ω is not trivial cubic root from 1 and X ,Y,Z,ω ∈Fp2 .

Now the complete arithmetic (because presented solution

must resistant for side channel attacks) may be used to com-

pute Q′ ∈ ET H,(d3−27a),3d by Q′ = [k]P′, where P′ = φ(P).
φ : ESW → ET H,(d3−27a),3d is isomorphism from ESW to

ET H,(d3−27a),3d. When Q′ is known, it is necessary to find Q.

It may be computed using φ−1 : ET H,(d3−27a),3d → ESW , be-

cause φ−1(Q′) = Q. However, Q′ ∈ ETH,(d3−27a),3d(Fp2)
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and Q′ /∈ ETH,(d3−27a),3d(Fp), but Q ∈ ESW (Fp2) and Q ∈
ESW (Fp). Note that to find Q having Q′ = (XQ,YQ,ZQ),
some more transformations are necessary.

Firstly, there a point on triangular curve

Q′′ = (UQ,VQ,WQ),

must be found, where:

UQ = XQ ,

VQ = −dXQ + ωYQ + ω2ZQ

3
,

WQ = −dXQ +YQ + ZQ

3a
.

Finally from the formulas

xQ =
UQ

WQ

+
d2

12
,

yQ =
VQ

WQ

+
d

UQ

WQ
+ a

2

the result Q = (xQ,yQ) = [k]P can be found.

4. Speed-up for NIST Curves

Using presented ideas it is possible to speed-up point scalar

multiplication on two NIST curves over Fp: NIST P-224

and NIST P-256. For both of these curves isomorphic

twisted Hessian curves ET H over Fp2 have coefficient a

which is not cube in Fp2 , so it is impossible to use Hessian

curves arithmetic [7], [8]. For others NIST curves over

large prime fields the smallest field extensions, for which

isomorphic twisted Hessian curves exist are:

• 8 for NIST P-192 and NIST P-384,

• 4 for NIST P-521.

One can see that the bigger the degree of field extension is,

the more resources are required to implement Fpn arithmetic

in hardware. Hence, the most suitable are ellipitc curves

for which Fp2 arithmetic may be used.

For NIST P-224 it is possible to find twisted Hessian curve

over Fp2 which is isomorphic to NIST P-224 over Fp2 .

The irreducible polynomial of form f (t) = t2 +11 for arith-

metic in Fp2 may be used in this case. Multiplication using

such a polynomial requires then TM +⌈log2 11⌉+1 = TM +5

processor cycles, where TM is number of processor cycles

required for multiplication in Fp.

For NIST P-224 it is possible to find twisted Hessian curve

over Fp2 which is isomorphic to NIST P-256 over Fp2 .

The irreducible polynomial of form f (t) = t2 +1 for arith-

metic in Fp2 may be used in this case. Multiplication using

such a polynomial requires then TM + 2 processor cycles,

where TM is number of processor cycles required for mul-

tiplication in Fp.

5. Comparison with Other Methods

of Point Scalar Multiplication

Arithmetic on twisted Hessian curves may be very interest-

ing, because:

• it is faster method than classic arithmetic on NIST

curves in short Weierstrass form over Fp in hardware,

• it allows to use complete formula.

On the Figs. 2 and 3 the comparison between number of

processor cycles required to compute point scalar multipli-

cation is shown. It is assumed that on short Weierstrass

curve over Fp in every step one doubling and one addition

must be computed (then such solution is resistant for side

channel attacks) and any information about value of Y is

not lost. The Brier-Joye ladder may be used only for XZ

coordinates, so information about Y may be lost.

Fig. 2. Values of TT H

TSW,−3
for different number of processor cycles

of TM and different number of additions NA required for multipli-

cation in Fpn .

Fig. 3. Values of TT H

TSW
for different number of processor cycles

of TM and different number of additions NA required for multipli-

cation in Fpn .

The results strongly depend on the number of processor

cycles TM required for multiplication in Fp and number

of additions NA required for making multiplication in Fp2 .

NA depends on form of irreducible polynomial f (t), for

example NA = 2 for f (t) = t2 + 1 and NA = 5 for f (t) =
t2 + 11. Let’s see that in average case k in binary form

has the same number of 0 and 1. If l is length in bits of
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Ord(P) for which [k]P is computed, then complete formula

requires about l point doublings and l
2

points additions.

So computing point scalar multiplication of point P′ = φ(P)
on twisted Hessian curve over Fp2 requires:

TT H = l ·
(

12(TM+NA)+16
)

+ l
2
·
(

12(TM + NA)+16
)

=

= 3
2
l ·

(

12(TM + NA)+ 16
)

processor cycles.

For short Weierstrass curve over Fp computing point scalar

multiplication of point P requires about:

1. If A = −3:

TSW,−3 = l · (10TM + 11)+ l · (14TM + 7) =

= l · (24TM + 18) .

Hence,

TT H

TSW,−3

=
18(TM + NA)+ 24

24TM + 18
.

2. If A is not of special form:

TSW = l · (12TM + 12)+ l · (14TM + 7) =

= l · (26TM + 19)

and
TT H

TSW,−3

=
18(TM + NA)+ 24

26TM + 19
.

The longer is TM , the better results solution presented in

this article gives. The more additions are required for mul-

tiplication in Fp2 , the worse results proposed solution gives.

In real applications multiplication in Fp requires often as

many processor cycles as binary length of field is. For

example for NIST P-256 curve TM may take even 256 pro-

cessor cycles, without cycles required for initialization and

then presented solution may give better results than stan-

dard methods.

6. Conclusion

Using Fp2 a reasonable speed-up in hardware implementa-

tion of point scalar multiplication on elliptic curves can be

achieved. The article shows how to find for some elliptic

curves with cofactor 1 isomorphic twisted Hessian curves

in fields extension. For two NIST curves over large prime

fields: NIST P-224 and NIST P-256 the degree of such ex-

tension is 2, so it is possible to use twisted Hessian curve

arithmetic over Fp2 . Such a solution is faster than classic

approach up to 30%, if solution resistant for side channel

attacks is necessary and coefficient A of short Weierstrass

curve is not of special form. For A = −3, the presented

solution may be up to 24% faster than classic approach.

Because implementation of parallel Fp2 arithmetic requires

in hardware implementation much more resources than im-

plementation of Fp arithmetic, the presented solution should

be used only in some situations. For example, if necessary

is to have arithmetic on two elliptic curves, which ensure

different level of security. The first curve may use GLS

method [9], because is very fast and on curve suitable for

this method it is possible to use fast arithmetic in Fp2 and

such a curve gives the security about p. Therefore, arith-

metic on the second curve (which curve should give smaller

security, for example about
√

p) may be implemented us-

ing the same Fp2 arithmetic, which is used for the first one.

Then it is possible to use method presented in this article

and such implementation is then faster than the classic one.
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