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Abstract—Network dimensioning is a specific kind of the re-
source allocation problem. One of the tasks in the network
optimization is to maximize the total flow on given pairs of
nodes (so-called demands or paths between source and tar-
get). The task can be more complicated when different rev-
enue/profit gained from each unit of traffic stream allocated
on each demand is taken into account. When the total rev-
enue is maximized the problem of starvation of less attractive
paths can appear. Therefore, it is important to include some
fairness criteria to preserve connections between all the de-
mands on a given degree of quality, also for the least attrac-
tive paths. In this paper, a new bicriteria ratio optimization
method which takes into account both, the revenue and the
fairness is proposed. Mathematical model is built in a form
of linear programming. The solutions are analyzed with some
statistical measures to evaluate their quality, with respect to
fairness and efficiency. In particular, the Gini’s coefficient is
used for this purpose.

Keywords—allocation problem, decision problems, dimension-
ing networks, fair optimization, linear programming, maximiza-
tion, multi-criteria.

1. Introduction

A problem of fair allocation of some finite set of resources
appears in various contexts, such as transport or other
branches of economy. In general, network dimensioning
could also be compared with the group of allocation prob-
lems. Let us consider the set of resources and set of possi-
ble allocations of them. Each allocation of the resource is
more or less profitable. The main goal in fairness optimiza-
tion is to treat equal each of these locations in some degree.
Such a decision problems appear in society while distribut-
ing the public goods or allocation of public services. Inter-
esting approach was proposed by Rawls [1] to treat justice
as fairness in social problems and political decisions. The
problem of equity is a complex idea encountered in society
and many times it requires dedicated model of optimiza-
tion [2]. While dimensioning the telecommunication wired
networks, it is required to remember about a lot of restric-
tions. First of all, it is needed to obtain the highest possible
value of total revenue, which is related to profit from each
unit of allocated load on given demand. Demand can be
called also as a path between source and target. There are
resources such as bandwidth or traffic flow, which have to
be allocated on given paths [3]. The main assumption in
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this kind of problems is to describe the path character and
next to limit each connection with the value of capacity.
Paths could be formulated in two ways. One is to define
a set of single paths as chain of nodes or links. This ap-
proach does not allow for bifurcation of a path and requires
some work to predefine the set of them. It is the so-called
link-path approach. Another, the node-link approach does
not need setting the path before the optimization process.
It is based on maintaining the flow on source, target and
transitive nodes. In this way the path is allowed to split up.
The model choice is determined by established assump-
tions on traffic flow in the network. No matter which for-
mulation has been chosen, there could appear a problem of
blocking some of demands. When some path shares at least
one link and has different unit revenue the solution max-
imizing the efficiency of the network will allocate whole
bandwidth to more profitable paths. When the decision-
maker is interested in keeping the same degree of quality
on each demand, it is necessary to include the fairness cri-
terion into the optimization problem [4]. There have been
done a lot of work in area of fairness optimization. For
example, it could be the Max-Min [5] or Lexicographic
Max-Min [6], [7] concepts. These methods have high fair-
ness index but in many cases they return not satisfying and
sometimes even dominated solutions. Another concepts to
gain a fair and more efficient solution are methods such
as Proportional-Fairness (PF) [8], Reference Point Method
(RPM) [9], Ordered Weighted Averages (OWA) [10], [11].
The latter methods ensure efficient solutions and, in gen-
eral, allows to control the fairness degree by appropriate
parameters.

In the paper a new method of fair optimization is proposed.
The method is based on so-called ratio model. It allows
to obtain the most satisfying solution with respect to two
different and inversely proportional criteria. The model
formulation guarantees to obtain the solution of maximum
additional revenue from allocated traffic flow with minimal
acceptable fairness. Considering the mean value of revenue
obtained from allocated load on all demands as z, mean
value of some percent of the most discriminated paths as
Zo and result of the solution which should be improved (for
example Max-Min method) as 7 the new ratio model of
maximization could be written as follows:

max{u}. (1)
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In the rest of the paper the model is described in details
and the results of an example of intput data are shown.
For verification there have been chosen the basic statistics
and the Gini coefficient. Consider set D as set of given
allocations (demands), h; as value of allocated resource
on d-th allocation and vector of revenues per unit gained
from allocated resource p,; associated with d-th location.
Typical function that is used to describe efficiency criterion
in the easiest form is the total revenue gained from obtained
solution:

T(y)= Y ha-parha >0. ()
deD

Just mentioned formulation of efficiency criterion, when D
denotes the cardinality of set D, could be also written as
the mean (average) outcome:

hi-
p(y) = ZADELPd 3)

Linear formulation maximizes one of mentioned objective
functions (2), (3), always returning the most profitable so-
lution but in the most cases it leads to unfair solution. The
main reason of that is in using the rational model of prefer-
ence like in the standard Pareto-optimal solution concept.
The rational relation of strict preference is denoted with >,
weak preference >, indifference with = [12]. It could be
described using the vector inequalities denoted by <, <
and =. In this notation the rational relation of preference
is defined by the following formulas:

y=y'eyzy eyizyl, “4)
Y-y oy >y e (y2y] and not y;<y/), (5)

where y; is the i-th vector value. Additionally it meets the
base assumptions of rational preference:

e reversible

yzvy, (6)
e transitivity
¥ =yING' =y =6 =y"), D
e strict monotonicity
y+ee>-ye>0,i=12,...d, )

where ¢; is the i-th objective function unit vector on
decision area Y.

Many times it can appear a problem of starvation some
less attractive paths (with respect to revenue/profit). It is
often not acceptable by the decision-maker and in this
case Pareto-optimal solution is not good enough. One way
to preserve the fairness is to add constraints, which en-
force the model to treat impartially (anonymously) all the
demands. Such a model of preferences is well-defined
when for each vector of allocated resources is fulfilled

16

(he(1), he2)s - - s he(a)) = (B, ha, .. hg), for various permu-
tation T of set D =1,2,...,d. Fulfillment of the above as-
sumptions allows us to obtain so-called anonymous rational
relation of preferences. Additionally, fulfillment of another
axiom, the Pigou-Dalton principle of transfers (9), leads to
equitable relation of preferences.

yi >y =y —€eyteep =y, 0<Elyyr—yp. (9)

Every optimal solution of anonymous and equitable aggre-
gation of multiple criteria problem leads to a fairly efficient
solution (or simply fair solution) [13]. The fairly efficient
solution is also Pareto-optimal but not vice-versa.

To quantify the fairness of the system there are a lot of
equality (or inequality) measures. According to work has
been done by Lan and Chiang [14] in area of fairness op-
timization it should be noticed that there exist five funda-
mental axioms, which should not be omitted by fairness
measure. Those axioms are:

e continuity,
e homogeneity,

saturation,

partition,
e starvation.

Over the years many of measures which meet those axioms
have been proposed [15]-[18], [20], [21]. For example,
there are:

e maximum absolute difference or the mean absolute
difference,

e maximum absolute deviation or the mean absolute
deviation

standard deviation or the variance,

the mean (downside), the standard (downside) or the
maximum semi deviation,

k-largest semi deviations,
e Gini coefficient,
e Jain’s index.

The inequality measures take the value of O for perfectly
equal outcomes and the higher positive values for more
unequal solutions. The most frequently used is the Gini
coeflicient. It is formulated as relative mean difference and
is given by the formula:

Y Y hi—hy|

i€D jeD

D) "

Gld) =
Standard bicriteria mean-equity model takes into account
both the efficiency with optimization of the mean outcome
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u(y) and the equity with minimization of an inequality
measure (or maximization of the equality measure) p(y).
Each measure has its own characteristic features, unfor-
tunately, sometimes not able to use it effectively in opti-
mization process directly. However, for several inequality
measures, the reward-inequality ratio optimization

max {%,deQ}, (11)

guarantees fairness of the solutions. This applies, in par-
ticular, to the worst conditional semi deviation.

2. Mathematical Optimization
Model

The optimization task refers to allocation the load (traffic
flow) on the set of given demands D, and d € {1,...,D}.
Each demand is associated with vector of revenues per
unit py. As example, the Polish backbone network is
adopted. Each link existed in graph is included in the set L
and is marked by [ € {1,...,L}. Similarly, the set N con-
tains all nodes and each node is marked as n € {1,...,N}.
Traffic flow could come into each node and get out from
it in the same value exact source and target nodes. The
node-link approach was chosen for make the possibility
of paths bifurcation. This requires additional parameters
which values are included in the matrices of incidences
between nodes and links. Parameter a,; is an element of
outcome links matrix and if /-th link comes out from n-th
node takes value of 1 and O otherwise. The similar schema
is in income links matrix case. Its parameter b,; takes the
value of 1 when [-th link comes into the n-th node and
0 otherwise. Such notation is frequently uses in directed
graphs, like the model described in the paper. In undi-
rected graph case the values of those matrices would be
the same. In typical network dimensioning the goal is to
maximize the total flow (traffic stream, volume of band-
width allocation, etc.). This variable is described as Ay
and refers to the volume of flow allocated on d-th demand.
Ratio optimization mathematical model is formulated as
follows:

maxZ_T, (12)
20
Y ka
deD
— — —70,k; > 1
z u+ﬁ'D 20,ka >0, (13)
kqa+hg -pa>u, (14)
1
t=5 ) ha pa, (15)
deD

hd if n==sy

Y aw-xia—=Y buxig=14 0 it n#sqta , (16)
ieL =2 —hy if n=14

Y xu<e,VieL. (17)
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In the ratio model Eqs. (13) and (14) ensure the order-
ing of considered objective functions. They contain the
non-negative k; and unbounded u variables, which guar-
antee a best solution in refer to some fair degree. More
precisely it guaranties a special treat of the least values
of allocated traffic flow. In optimization process, when
Zo variable is tending to possibly minimal value, the u
variable is in inversely proportional. Moreover, when the
u parameter is getting greater values, the Eq. (14) maxi-
mizes some part of k; variables, which could be treated
as the most discriminated demands. In each iteration, as
the given percentage of the most discriminated demands,
a zo parameter is chosen. This percentage refers to one of
the control parameter 3 [22]. Further, there are the mean
of all of objective functions needed to improve, labeled
as 7. It should be noted that T in example included in ar-
ticle has been calculated using the Max-Min method but it
is not necessary to do. Depending on the given 8 degree,
T could accept greater values then Tyz,min but never greater
then maximal achievable mean value, which is obtained for
the simple maximization of total system efficiency (Tyax).
In other words decision maker could substitute as T each
value included in just mentioned interval. However, if
the greater the T parameter is, the less fair solution will
be. To ensure the node-link model assumptions is formu-
lated as (16) constraint. It is formulated for three cases of
node types:

e source,
e target,
e and connection node.

It is also important to remember about maximum capacity
of each link (¢;) in the network (17) — see Table 1.

Fig. 1. An illustration of analyzed network.
(See color pictures online at www.nit.eu/publications/journal-jtit)
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Table 1
Arc’s characteristic
Arc ID Start node Target node Capacity (¢;)

1 Kotobrzeg Szczecin 150
2 Gdarisk Kotobrzeg 100
3 Biatystok Gdarisk 100
4 Rzeszow Bialystok 150
5 Rzeszéw Krakéw 100
6 Katowice Krakéw 80
7 Katowice Wroctaw 100
8 Wroctaw Poznan 150
9 Poznan Szczecin 150
10 Bydgoszcz Kotobrzeg 30
11 Warszawa Gdarisk 80
12 Biatystok Warszawa 100
13 Warszawa Krakéw 100
14 Katowice Lodz 80
15 1.6dz Wroctaw 80
16 Poznan Bydgoszcz 90
17 Warszawa Bydgoszcz 200
18 Lo6dz Warszawa 120
21 Szczecin Kotobrzeg 150
22 Kotobrzeg Gdansk 100
23 Gdarisk Bialystok 100
24 Biatystok Rzeszéw 150
25 Krakéw Rzeszéw 100
26 Krakéw Katowice 80
27 Wroctaw Katowice 100
28 Poznan Wroctaw 150
29 Szczecin Poznan 150
30 Kotobrzeg Bydgoszcz 30
31 Gdarisk Warszawa 80
32 Warszawa Biatystok 100
33 Krakéw Warszawa 100
34 L.odz Katowice 80
35 Wroctaw Lo6dz 80
36 Bydgoszcz Poznan 90
37 Bydgoszcz Warszawa 90
38 Warszawa Lodz 120

Model described above, unfortunately, cannot be used in the
most of linear programming packages. It is caused by non-
linear dependencies in the main objective function (12). To
face the problem variables v = z/z9 and vy = 1/z9 have
been introduced. Next, all the constraints were divined by
hq

zo and the following submissions have been made: h; = o

I;:i = I;—(‘f U=, Xid = )% After that the ratio optimization
model is written as the following linear program:

max v—7T-vg, (18)
1 ~
v=5 ) hapa; (19)
deD
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Z’:d

~  deD
_— — :1 2
v u—&-B. , (20)

kq+hg-pg>ii, VdeD, 1)

h~d if n=sy

Yoau-Xia=Y bu-xa={ 0 if n#sata , (22)
leL leL —hy if n=1
Y xu<civo, VIEL. (23)

deD

The experiments are performed for example of Polish back-
bone network [23]. Arrangement of given demands is pre-
sented in Fig. 1.

3. Results

In computations the CPLEX package was used as opti-
mization environment. In the paper the results have been
obtained for several configurations of control parameters
(such as B and 7) and are presented in the Table 4. Con-
sidering the algorithm of described dimensioning problem
optimization, there has been done several iterations as it
is shown in Fig. 2. First, the solution of ratio model has
been obtained T = MAXMIN(H). Next the value of 7, were
taking greater values, obtained from previous solutions of
ratio model optimization — RM(H). The steps were re-
peated until the receive of maximal value of 7 related to
simple maximization concept solution — MAX(H).

1

MAXMIN optimization
process

1

=MAXMIN(H)
i=it1

1

Optimization process |- T:RM(H)
i=it+1
Fairness RM(H) j
conditions - >
satisfied? MAX(H)

A

i=i-1

" 7-finest solution

End

Fig. 2. An algorithm of decision process.
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Table 2

Values of Gini coefficient for chosen control parameters

T | B=01|B=02]=03|B=05| =08
3667 0.10 0.10 0.10 0.10 0.10
3950 0.11 0.11 0.11 0.09 0.11
4000 0.56 0.45 0.51 0.63 0.51
4100 0.56 0.48 0.43 0.54 0.43
4200 0.66 0.50 0.53 0.49 0.53
4300 0.62 0.63 0.52 0.53 0.52
5000 0.49 0.53 0.59 0.60 0.59
6500 0.66 0.51 0.62 0.64 0.62
7800 0.56 0.51 0.62 0.62 0.62

Table 3

Values of the mean traffic flow of obtained solutions

t | B=01|p=02|B=03|B=05|p=08
3667 4258 4258 4258 4400 4400
3950 4288 4288 4288 5040 5040
4000 6269 6269 6269 5040 5040
4100 6269 6269 6269 5040 5040
4200 7900 7900 6823 7505 6840
4300 7900 7900 7900 7660 7560
5000 7900 7900 7900 7660 7560
6500 7900 7900 7900 7660 7640
7800 7900 7900 7900 7900 7900

Considering the algorithm of described dimensioning prob-
lem optimization, there has been done several iterations.
First, the solution of ratio model has been obtained T =
MAXMIN(H). Next the value of 7 is taking greater values,
obtained from previous solutions of ratio model optimiza-
tion. The steps are repeated until the receive of maximal
value of 7 related to simple maximization concept solution
MAX(H). Values presented in Tables 2 and 3 are in refer-
ence to several control parameters configurations. 3 param-

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
3667 3950 4000 4100 4200 4300 5000 6500 7800
——B=03 ===B=06

Fig. 3. A plot illustrating the course of Gini coefficient.

8500 4000
8000 3500
7000 2500
6500 2000
6000

5500 1500
5000 1000
4500 500
4000 0

3667 3950 4000 4100 4200 4300 5000 6500 7800
Left axis
Right axis -MD(0.3)

Fig. 4. A plot illustrating the course of mean value.

eter is related to percent of the most discriminated demands
and it affects the dynamic of the mean value changes. Dif-
ferent situation is for the values of the Gini coeflicient.
The changes of 3 parameter have not impact for this in-
equality measure. Ratio model gives a capability of obtain
some set of solutions in reference to chosen 7 values and
shows a spectrum of it, from more to less fair. The goal
of each iteration of optimization process is to return the

Table 4
Detail table of solution obtained for f = 0.3 and given values of T

d | pg | T=3667 | T=3950 | T=4000 | T=4100 | T=4200 | T=4300 | T=5000 | T=6500 | T="7800
1 | 200 | 3666.67 | 3647.06 | 2461.54 | 9076.92 16000 20000 12000 32000 16000
2 | 50 | 3666.67 | 3647.06 | 1846.15 1846.15 0 0 0 0 0

3 | 150 | 3666.67 | 3647.06 | 1846.15 1846.15 | 1846.15 12000 9000 9000 9000
4 | 100 | 6166.67 6000 11000 10692.3 | 7923.08 12000 8000 6000 6000
5| 60 | 3666.67 | 3647.06 | 1846.15 1846.15 | 1846.15 0 0 0 0

6 | 200 | 3666.67 4000 24000 18000 24000 18000 34000 18000 34000
7 | 50 | 3666.67 | 3647.06 | 1846.15 1846.15 | 1846.15 0 0 0 0

8 | 150 5750 6000 6000 6000 6000 6000 9000 9000 9000
9 | 100 5000 5000 10000 9692.31 | 6923.08 11000 7000 5000 5000
10 | 60 | 3666.67 | 3647.06 | 1846.15 1846.15 | 1846.15 0 0 0 0
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highest possible grow of efficiency of the system with the
lowest possible loss of fairness. Figures 3 and 4 presents
a graphs of changes of just mentioned values according to
value of 7. Additional in Fig. 4 are added bars to visu-
alize the changes of most discriminated value for value of
B =0.3 MD(0.3). Just mentioned degrees are suitable for
the assessment of obtained solution but it not include the
information about assigned O values to given demands. In
some cases the situation such that (where at least one of
objective function vector value gets 0) provides the non-
acceptable judgment in the terms of justice. Considering
solutions obtained for § = 0.3 the most visible growth of
the mean value and the Gini index, according to increase of
7T, is for the third iteration. Table 4 presents the solutions
for this value of B in details. The outcome vectors which
contains all non-zero values were assigned for the four first
iterations of considered values of 7. It is necessary to de-
cide if the solution which takes a O for at least one value
of objective functions is automatically not fair. If such an
assumption is made, according to Table 4 the solutions ob-
tained for T > 4200 should be rejected in terms of fairness
criterion. In calculations, the algorithm was stopped when
T parameter reached the value equal to simple maximiza-
tion solution. Considering Figs. 3 and 4, the algorithm
should be stopped some steps earlier. However, in the pa-
per there was presented approach of finding the spectrum
of solutions more or less fair, to demonstrate the range of
options from the most fair to the most efficient. Next step
belongs to the decision-maker who has his own preferences
and may decide about the fairness degree of the selected
solution.
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