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Abstract—The embedded systems are increasingly becoming

a key technological component of all kinds of complex tech-

nical systems and an exhaustive analysis of the state of the

art of all current performance with respect to architectures,

design methodologies, test and applications could be very in-

teresting. The Advanced Encryption Standard (AES), based

on the well-known algorithm Rijndael, is designed to be easily

implemented in hardware and software platforms. General

purpose computing on graphics processing unit (GPGPU) is

an alternative to reconfigurable accelerators based on FPGA

devices. This paper presents a direct comparison between

FPGA and GPU used as accelerators for the AES cipher.

The results achieved on both platforms and their analysis

has been compared to several others in order to establish

which device is best at playing the role of hardware accel-

erator by each solution showing interesting considerations

in terms of throughput, speedup factor, and resource usage.

This analysis suggests that, while hardware design on FPGA

remains the natural choice for consumer-product design,

GPUs are nowadays the preferable choice for PC based ac-

celerators, especially when the processing routines are highly

parallelizable.

Keywords—AES, accelerators, FPGA prototyping, GPGPU,

OpenCL.

1. Introduction

In the last decade the complexity of the architecture of

graphical processing units has grown exponentially, push-

ing them outside the world of the dedicated processors to

embrace the general-purpose applications field.

Recently Graphic Processing Unit (GPU) manufacturers

have focused their attention not only on typical graphical

processing tasks, equipping their products with character-

istics explicitly aimed to the general purpose computing

(IEEE-754 compliance floating point units is just an ex-

ample). Nevertheless, the massive parallel design, which

is a key feature for a GPU architecture, is an attractive

property in many number crunching applications.

With the introduction of the Nvidia Fermi architecture [1]

the interest in GPGPU has grown, because of its ambi-

tious goal: for the first time, a GPU architecture was ex-

pressly designed to allow general-purpose computations.

Even before the Fermi architecture, with the introduction

of technologies such as CUDA, Stream and OpenCL the

word GPGPU has assumed a new meaning. Before these

frameworks, the only way to access the GPU processing

power for general computing was to use shaders, by re-

sorting to a cumbersome process in which data to process

was encoded in textures pixels with many piratical limita-

tions. However, many of this proof of concept showed the

true potential of GPU devices. Subsequently GPU devices

were used as accelerators for many scientific applications,

ranging from image processing to Basic Linear Algebra

Subprograms (BLAS), with successful results.

At the same time, FPGA devices have been traditionally

used for various and different purposes, thanks to the very

high degree of customization available to the designer.

With more details this technology has been used to imple-

ment video processing [2] and [3], biometric recognition

systems [4] and [5], mathematical and/or biological copro-

cessors [6] and [7], security access management [8], [9]

and [10], and so on.

The difference in terms of overall costs, development time

and background knowledge required to target both plat-

forms justifies the interest by the scientific community in

a full comparison. To make this comparison effective, an

algorithm that can be easily implemented in both hardware

and software platforms is needed. Rijndael algorithm is

a good candidate for this purpose as it was designed keep-

ing an eye on both platforms.

In this paper, two implementations of the AES encryp-

tion cipher in counter (CTR) mode are presented: a novel

FPGA design for the Celoxica RC1000 board, developed

with Agility’s Handel-C compiler, and parallel OpenCL

software which runs on GPU. GPGPU is an alternative to

reconfigurable accelerators based on FPGA devices. The

FPGA implementation consists of four AES cores, each

of which performs a single AES encryption in 0.48 µs

with 70 MHz clock, delivering a throughput of about

1036 Mb/s. The OpenCL software is a simple port of an

ANSI C implementation of the Rijndael algorithm. The two

solutions exhibit good performance compared to a general-

purpose CPU implementation, thus are both suitable to be

used as accelerators. In addition, the architectural con-

straints, power consumption, speedup factors, overall costs

of the two projects and their analysis has been compared

to several others in order to establish which device is best

at playing the role of hardware accelerator by each solu-

tion showing interesting considerations in terms of through-

put, speedup factor, and resource usage. This analysis

suggests that, while hardware design on FPGA remains

the natural choice for consumer-product design, GPUs are

nowadays the preferable choice for PC based accelera-
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tors, especially when the processing routines are highly

parallelizable.

The paper is structured as follows. Section 2 presents a re-

view of other works available in literature in which the

two technologies are compared. In Section 3 the Rijndael

algorithm is briefly described, together with the imple-

mented CTR mode of operation. Sections 4 and 5 illustrate

the FPGA and OpenCL proposed implementations respec-

tively. Section 6 describes the testing environment while in

Section 7 the results are extensively analyzed and com-

mented. Section 8 presents an overview of similar works

with a comment on the performance achieved by the pro-

posed solutions. Finally, Section 9 contains the conclusions

of this work.

2. Related Works

There is a variety of publications in literature that compare

FPGA and GPGPU implementations and the results may

vary depending on the platforms used.

In 2005 Cope et al. [11] pointed out the limitations of

GPU based solutions compared to FPGA devices due to the

low memory bandwidth. In the same year, Mali et al. [12]

showed an implementation of AES on FPGA, using the

same platform used for this paper (the Celoxica RC1000

board). The proposed solution is c.a. 5.7 times faster run-

ning at a lower clock frequency.

Lately, in 2007 another interesting comparison was made

by Baker et al. [13]. In their work, they implemented

a matched filter on both FPGA and GPU devices, obtaining

similar throughput. Moreover, when comparing through-

put against costs, they show how GPU solutions are the

cheapest.

Costs involved in targeting FPGAs and GPUs have been

analyzed by Shuai Che et al. in [14] comparing the two

solutions in three different tasks: Gaussian elimination,

Needleman-Wunsch and DES.

However, the answer to the question “Have GPUs made

FPGAs redundant as accelerator devices?” is still open.

Contrasting results were shown depending on many factors,

including the algorithm implemented, the targeted devices

and the programming frameworks.

For example, in [15] the performance of common im-

age processing algorithm implemented in FPGA and GPU

are compared. The FPGA implementation outperforms the

GPU, especially in those algorithms were a careful mem-

ory access policy is necessary to synchronize the GPU

threads.

Different results are shown in [16] where an implementa-

tion of common SPICE routines is presented giving similar

results in both hardware and software approaches. Even if

FPGA can outperform small factor devices, when compared

to most powerful GPU they suffer for the limited resources

on board and the poor scalability.

Depending on the application, the results may be even more

different. In [17] sparse matrix vector multiplication im-

plemented on GPU outperforms the FPGA counterpart, al-

though the authors point out that their FPGA solution is

highly penalized by a very poor memory bandwidth.

Finally, in [18] a SEAL encryption implementation is pre-

sented in both FPGA and GPU. Both platforms achieve the

same overall performance. In this paper, the implemen-

tation of an encryption algorithm is also discussed, but it

is worth to note that AES is slightly more complex than

SEAL and so it better exploit the differences between the

two processing platforms.

3. The AES Standard

AES is the standard currently recommended by NIST for

symmetric block cipher encryption. The actual standard

publication [19], issued in November 2001, includes a de-

tailed description of the Rijndael algorithm, which was cho-

sen among others like MARS, RC6, Serpent and Twfish,

because of its high degree of cryptographic security and

its simplicity. The Rijndael selection process was carried

through openly and with the full support of the scientific

community. This has gained to AES the interest of many

operators in the cryptographic security field and made the

transition to the new standard very quick.

3.1. The Rijndael Algorithm

Rijndael is a symmetric block cipher algorithm, which runs

a certain number of rounds on every input block. In Fig. 1

the algorithm structure is shown. Its design, which is to-

tally different with respect to the previous standard DES,

is very far from the traditional Feistel cipher structure.

The Rijndael cipher applies Galois’s Finite Field arithmetic

to match the confusion and diffusion requirements and it

is composed of two distinct procedures for encryption and

decryption. The input blocks size is of 128 bits while the

key can be 128, 192 or 256 bit wide, depending on the

security degree required. The key size is also related to the

number or rounds of the encryption/decryption procedures

as shown in Table 1.

Table 1

Rijndael key size and rounds number

Key size Rounds

[bit] number

128 10

192 12

256 14

3.2. The AES Round Structure

Rijndael iterates the same sequence of operators, named

round, on every input block. The plaintext is split in chunks

of 16 bytes and each of these is treated as a 4× 4 matrix

called the state vector.
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Fig. 1. The Rijndael algorithm.

The four operators SubBytes, ShiftRows, MixColumns and

AddRoundKey are used in every round but the first and the

last, which are defined differently.

The SubBytes function uses a substitution box, named Sbox,

to map every byte in the state vector on a proper 8 bit

value. The mapping output is obtained with the following

affine transformation applied to the multiplicative inverse

x7x6 . . .x0 in the GF(28) of the input byte:
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The 0x00 value, whose multiplicative inverse is not defined

in GF(28), is simply mapped to the 0x63 byte. The Sbox

is usually stored in memory and accessed like a look-up

table to speed up the substitution function.

The ShiftRows function consists of a circular left shift

of 1, 2 and 3 positions for the rows 2, 3 and 4 respec-

tively of the state vector. The first row remains unchanged.

The MixColumn function consists of a linear transforma-

tion which is applied to the elements of each column:
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The c subscript is the column index. The multiplication

and the add operators used in the matrix product are those

defined in GF(28).
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Fig. 2. CTR mode encryption.

Fig. 3. CTR mode decryption.

The AddRoundKey function is the only operator, which

involves the secret key. A distinct 128 bit subkey for each

round is extracted from the key and is XOR-ed with the

state vector. The key scheduling procedure is also described

in [19].

3.2.1. Counter Mode

The design presented in this work uses the counter (CTR)

mode of operation [20] because it allows the parallel exe-

cution of the cipher on each block while ensuring a strong

degree of resistance to cryptanalysis.

Another interesting feature of the CTR mode consists in the

use of the same encryption procedure for both encryption

and decryption. This comes very useful for the AES cipher,

which would normally require two distinct implementation

for the encryption/decryption routines.

Looking at the Fig. 2 it is easy to note that the data being

codified by the cipher is a special value, named counter,

which is XOR-ed with each block, and is different for every

block (e.g. incremented by 1 for each block encryption).

The same operation has to be performed in decryption: the

reversibility of the cipher actually resides on the use of the

XOR operator (see Fig. 3).

The seed value for the counter can also be kept secret to

increase the overall degree of security of the AES cipher

with respect to brute-force attack.

4. AES Processor Design

The proposed design is an implementation of the 8 bit ori-

ented version of AES. Each round operation takes a single

clock cycle, except the SubBytes and ShiftRows operation

that were mixed together. Some of the suggestions shown

in [21] where used to reduce area occupation and maximum

delay path without compromising the throughput. This lead

to a total of 33 clock cycles required to perform a single

AES encryption. A summary of the characteristics of this

design is shown in Table 2, while the overall architecture

is shown in Fig. 4.

Table 2

Proposed AES processor summary

Core operating frequency 70 MHz

Memory operating frequency 33 MHz

Average throughput 1036 Mb/s

Occupation 18048 slices

Maximum delay path 13.92 ns

In next subsection a detailed description of the proposed

architecture is discussed. Parallel and pipelined processing

has been used to achieve high throughput performance.

4.1. Overall Architecture

A first level of parallelization is easily achieved by instan-

tiating multiple AES cores on the chip. The memory inter-

face of the Celoxica RC1000 board allows parallel access

of the 4 memory banks. So in the proposed design four

independent AES blocks are capable of running with full

parallelism, achieving an overall performance of 4 times

the single AES core, scoring a little more than 1 Gb/s.
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Fig. 4. Overall architecture implementing AES processor using Xilinx Virtex 2000-E FPGA.

Fig. 5. AES round architecture.
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4.2. AES Core Architecture

One AES core contains the circuitry required to perform

AES 128 bit encryption. Table 3 shows the performance

of the proposed AES core. Figure 5 shows the architecture

of a single round circuit. The full round operation takes

3 clock cycles. To allow full parallelism to the SubBytes

operation, 16 S-boxes have been instantiated in the ROM

memory. Allocating registers array in Handel-C is very re-

source consuming compared to the usage of ROM bits, but

obviously, the same ROM cannot be accessed simultane-

ously by multiple circuits. This led to the choice of allo-

cating multiple S-boxes. Even though this choice sacrifices

more area, the high advantage in the overall performance

is a good compromise. Each AES core is implemented in

3360 slices (c.a. 17.5% of the total available on chip).

Table 3

Proposed AES block summary

Total latency 0.48 µs

Operating frequency 70 MHz

Average throughput 259 Mb/s

Occupation 3360 slices

Maximum delay path 13.92 ns

4.3. Pipelined Design

Unfortunately, the Celoxica RC1000 has very high latency

memory, which cannot be accessed at frequencies higher

than circa 33 MHz [22], [23]. The proposed AES circuit

has a maximum delay path of 13.92 ns, so it can theo-

retically reach up to 71 MHz. To reduce the penalization

introduced by the very poor memory interface, a double

domain clock design was used. One domain clock, run-

ning at 33 MHz, contains the circuitry for data fetching

and write back, while the other, running at 70 MHz, con-

tains the 4 AES cores. The communication between the

two clock domains is ensured by eight 128 bit channels,

each of which equipped with a FIFO queue. The data-

fetching block and the write back block are running in

a parallel fashion. The synchronization between these two

blocks is guaranteed by 4 semaphores. With this solution,

memory fetches can happen while encrypting previously

fetched blocks, increasing the overall performance (see

Fig. 6. Pipelined execution.

Fig. 6). The total time required to encrypt 8 MB is nearly

the same required to simply access the data to the on

board RAM.

5. OpenCL Implementation

The GPU version has been implemented using OpenCL

rather than similar but proprietary technologies for its

portability. The results obtained by running the same im-

plementation on different platforms (the Nvidia GT520

and GT555M and the Intel Core i7 processor) are reported

in the following subsections.

5.1. The Threading Model

AES in CTR mode is perfectly suitable for parallel ap-

plications. As previously discussed in Subsection 3.2.1, in

CTR mode every block encryption is independent, and thus

there is no need to implement ad-hoc thread synchroniza-

tion polices. Therefore, the adopted threading model can

be simply summarized as follows:

• a grid is defined with only one work-group, and a sin-

gle kernel running the Rijndael algorithm;

• in the work-group, each 128 bit data block is mapped

into a single work-item. Thus, the number of work-

items will be equal to the number of 128 bit data

block in our stream;

• parallel execution of the work-items. The counter to

use in CTR mode is calculated from the thread ID,

as the threads are mapped 1:1 to the data blocks.

5.2. Targeting the GPU on a Consumer Grade PC

Special care need to be taken when working with consumer

grade computers, as most probably the GPU used as accel-

erator will be the only one available to the system, and

so it will be shared by several concurrent tasks, such as:

desktop environment running in background updating the

screen content, any application using 3D capabilities, ac-

celerated video playback, etc. Therefore, it is important to

understand that a single OpenCL program cannot lock the

GPU for an undefined time. On some platforms, this may

be a strict requirement. In the Microsoft Windows environ-

ment, for example, the video driver is automatically reset if

the GPU doesn’t respond to the OS commands within a pre-

defined timeout (usually just a couple of seconds). A bad

designed OpenCL program could never terminate correctly.

The solution used in this work is simple but effective: the

input data is divided into chunks that the GPU can pro-

cess without hogging the system. The size of the chunk is

a critical point of choice: a small size will cause an under-

utilization of the GPU processing power, while a large size

can cause system hogging. In conducted experiments, the

input chunk was set to 8 MB, as this size showed the best

compromise between the utilization of the device and the
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overall performance. Moreover, 8 MB is exactly the same

size used for the FPGA implementation, as it is the total

amount of on board RAM memory. Using the same size

increase the accuracy of our measurements as the overhead

introduced to divide the data in multiple chunks is the same

regardless of the processing platform being tested.

5.3. Practical Aspects

Another great advantage offered by OpenCL is the compati-

bility of the C99 specification [24]. With a few adjustments,

our C code developed for the CPU was ported successfully

to the GPU. In particular, only some decoration was added

to the function prototypes to correctly address the various

memory spaces available in OpenCL. A sensible increase

in performance over the standard CPU implementation re-

quired less than a person-day work. OpenCL programs

are compiled on the fly at run time, so the compatibility

with different platforms is guaranteed by the underlying

software layer. This may contrast with the possibility to

optimize the code for a particular device or architecture. In

this case, multiple versions of the same OpenCL software

can be developed and then selected at run time depending

on the running platform. As an example, consider how an

OpenCL program accesses the global memory. Since the

memory hierarchy may vary from architecture to architec-

ture, different ways of implementing global memory access

were examined. In particular, to ensure the maximum per-

formance the data alignment of the write back operation

matched the alignment of the running device.

6. Testing Environment

Each implementation was initially tested using the AES

standard test vectors recommended in [19]. A software

library named FastAESlib was then developed to create

a common interface for accessing each processing platform

(FPGAs, GPUs and CPUs) addressed in this work. It can

perform several tasks, as summarized below:

• enumerate at run-time the processing platforms avail-

able in the system (FPGAs, GPUs and CPUs),

• offload the processing task to any of the available

processing platforms,

• setup platform specific parameters (e.g. the working

frequency of the FPGA),

• report the progress of the current task,

• measure the overall execution time (using the OS

high resolution timers),

• measure the processing execution time reported from

the devices (on board timers for FPGAs and OpenCL

event timers for GPUs).

This library was then used to develop three software ap-

plications designed to test the various platforms on dif-

ferent scenarios. The first one is an image encipher/deci-

pher, which processes uncompressed image data. Figures 7

and 8 show the user interface of this application. The

user can set all the processing parameters exposed by the

FastAESlib library and obtain on screen the performance

counters measurements (both execution time and through-

put). As shown in Fig. 8, after the encryption phase the im-

age data is completely scrambled, without exposing neither

the chromatic information nor the original image structure.

This visually proves how powerful is the CTR mode com-

pared to other standard modes of operation. As a proof of

concept, another software application named FileCrypter

was developed to test implementations with large files.

This application can encipher/decipher a file with a single

password.

Fig. 7. Screenshot of the software ImageCrypt. (See color pic-

tures online at www.nit.eu/publications/ journal-jtit)

Fig. 8. Screenshot of the software ImageCrypt after encryption.

Lastly, a scripted application was developed to bench-

mark the various implementations discussed in this work.
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This software utility performs AES encryption/decryption

a specified number of times (in our tests 20 times) and cal-

culates the average execution time and throughput. More-

over, when using the FPGA based processing platform, it

can repeat the testing sequence at different clock frequen-

cies, verifying the correctness of the result at each itera-

tion. The results obtained using this tool is discussed in

Section 6.

7. Experimental Results

The presented implementations show interesting results

compared against a standard CPU. Table 4 shows the overall

performance of the target systems including memory trans-

fers time. When considering only the data rate, the fastest

solution appears to be the OpenCL based implementation.

However, it is important to consider the differences in the

following three areas:

• the memory bandwidth can have a significant impact

on the overall performance,

• the throughput should be normalized considering the

different working frequencies,

• the various devices have a very different power con-

sumption levels.

Table 4

Overall performance of the target platforms

Platform
Clock Rate Rate/clock

[MHz] [Mb/s] ratio

FPGA 70 198 2.828

Nvidia GT 520 1620 520 0.321

Nvidia GT 555M 1180 1280 1.084

Intel Pentium 4 2000 42 0.0210

Intel Core i7 2500 81 0.0324

Fig. 9. Overall performance of the target platforms.

In Table 4 and Fig. 9 the overall performance measure-

ments, but normalized with respect to the clock frequency,

are shown. It is clear that the FPGA based solution can

achieve better performance at lower clock rates, but it is

worth to note that the GPU based solution exhibit a similar

throughput/clock ratio, while the values reached by general

purpose CPUs are two orders of magnitude lower. Inter-

esting results are obtained when filtering out the time con-

sumed by memory transfers (from the central memory to

the on board memory). Table 5 and Fig. 10 show the pro-

cessing throughput. This shows how the memory latency

negatively affects the throughput of the RC1000 board,

while the GPU based solutions are only lightly affected

by the DMA operation. This is a logical consequence of

the different technologies used by the two devices. Table 6

highlights the main differences.

Table 5

Performance of the target platforms without DMA time

Platform
Clock Rate Rate/clock

[MHz] [Mb/s] ratio

FPGA 70 1036 14.8

Nvidia GT 520 1620 548 0.338

Nvidia GT 555M 1180 1440 1.22

Fig. 10. Overall performance of the target platforms without

DMA time.

Table 6

RAM memory comparison

Property FPGA GT 520 GT 555

Latency [ns] 25 10 10

Bus width [bit] 32 64 192

Clock [MHz] 33 900 900

Technology SRAM DDR3 SDDR3

The normalized throughput/clock ratio without DMA time

shows how powerful the FPGA implementation is (see

Table 5). When artificially scaling the three platforms’
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clocks to the same frequency, the FPGA is 12 times faster

of the fastest GPU based solution. Other interesting consid-

erations can be made about the power consumption. While

FPGAs are low power devices, GPUs are generally power-

demanding processors. However, compared to a general

purpose CPU, both the FPGA and the GPU platforms are

the most energy efficient. An important aspect worth to

note is the development cost. Regardless of the hardware

cost, where a substantial difference exists between FPGAs

and GPUs, another major disequilibrium can be found in

the Time To Market (TTM) parameter. Even if TTM is

low for FPGAs, designing hardware is generally a more

time consuming task when compared to software develop-

ment. Lastly, another key advantage of GPGPU technolo-

gies is the portability of the code. The same code can

be executed on different OpenCL compliant devices with-

out adjustments exploiting their potentials. FPGA designs

need careful handling when ported from one device to an-

other, making the porting operation hard and the previously

developed code less reusable.

8. Discussion and Comparison

This section is devoted to the analysis of several other AES

implementations on both GPU and FPGA devices. The

direct experience of the implementation described in the

previous sections is the starting point of our analysis, but

first comes a little digression on the parameters that will be

considered as terms of comparison. A comparison based

on throughput vs. clock rate would give no useful results

when comparing such different architectures. A targeted

approach is needed to analyze each one’s peculiarities be-

fore a direct comparison can be evaluated. FPGAs through-

put will be analyzed against resources usage while GPUs’

total number of stream processors will be considered as the

main trade-off factor. When comparing the performance of

such different devices it is important to investigate the dif-

ferent approaches available to the designers. For instance,

Table 7

Comparison of discussed FPGA implementations

Paper
Slices

Clock Throughput

(characteristic) [MHz] [Gb/s]

Rodriguez et al. [26]
5677 34.2 4.21

(pipelined)

Mali et al. [12] – 74 0.18

Kotturi et al. [27]
5408 232.6 29.77

(pipelined)

Sivakumar et al. [28]
6766 CLB 194 2.257

(AES-CTR)

Singh et al. [29] 6352 347.6 44.2

(pipelined)

Hoang et al. [25] 895 – 1.03

The proposed system
3360 70 0.25

(AES-CTR)

Table 8

Comparison of discussed GPU implementations

Paper
GPU

Clock Throughput

(characteristic) [MHz] [Gb/s]

Manavski et al. [30]
128 575 8.2

(CUDA)

Wang et al. [31]
240 1476 1.05

(OpenCL)

Wang et al. [31]
240 1476 1.2

(CUDA)

Keisuke et al. [32]
240 1476 32.5

(CUDA)

The proposed system
144 1180 1.25

(OpenCL)

AES can be implemented with or without look-up tables

(T-boxes). Moreover when targeting hardware, pipelining

is a natural choice against task parallelism, which is the

foundation of the GPGPU computing model. In what fol-

lows, different FPGAs designs for AES are analyzed first.

Next, parallel implementation of AES on GPU is exam-

ined. Table 7 shows a summary of the results of several

AES implementations on FPGAs. In [12], Mali et al. pre-

sented a AES processor design in Handel-C on the same

FPGA device used in this paper. The clock rate is slightly

different, but the maximum throughput achieved from the

solution proposed in this paper is higher. This may be

due to the Handel-C compiler, which is very sensitive to

the instruction order, and the control flow structures used.

As another example of the impact of the Handel-C design-

ing process on the result, consider that the AES processor

design proposed in this paper requires 48 clock cycles to

complete one 128-bit block encryption. Hoang et al. [25]

proposed a VHDL design that completes 128-bit block en-

cryption in 13 clock cycles requiring a lower number of

slices, and therefore can potentially achieve higher through-

put at the same clock speed. As previously mentioned,

another important point is the processor design. The high-

est throughputs reported in Table 7 are relative to fully

pipelined implementation of AES ([26], [27] and [29]). In

this case, it is interesting to notice that, while the slices us-

age is slightly varying, the throughput/clock ratio is almost

the same for each of these implementations. This obser-

vation leads to the conclusion that the performance of an

optimal AES processor design for FPGA scales almost lin-

early with the clock rate given a fixed slices usage. Table 8

shows the results achieved by several AES parallel imple-

mentations running on GPU. The OpenCL implementation

proposed in this paper was made out of an ANSI C im-

plementation of the AES encryption routine. Therefore,

no particular code optimization technique was adopted.

Several test runs on the same GPU device showed heavy

performance variations with different number of executing

threads. In general, particular care must be taken in order

to achieve optimal performance on GPU. As an example,

36



Design Exploration of AES Accelerators on FPGAs and GPUs

[31] and [32] report dramatically different throughputs on

the same GPU, but is worth to mention that Wang et al.

are relative to the XTS mode of operation of AES, which

implies that some additional operations are executed within

the Rijndael encryption procedure. Another critical param-

eter is, of course, algorithm design. Manavski [30] achieves

a significantly higher throughput on a graphics processor

equipped with less cores and a lower clock speed that the

present work. As a side note, when directly compared, the

solutions based on CUDA achieve a slightly better through-

put than OpenCL. From this analysis results that GPUs and

FPGAs achievements are comparable in terms of through-

put. However, several differences are noticeable in the way

these results are achieved on both devices. One of the

factors that make the difference in achieving high through-

put for FPGAs is the presence of high-bandwidth I/O ca-

pabilities, since clock speed is relatively small compared

to ordinary graphics processor units. On the other hand,

host-device I/O bandwidth is usually a limiting constraint

for performance achievement on GPU, but this is usually

compensated by the possibility of limiting data transfer for

devices equipped with extended on board memory and by

the high clock speed at the expense of increased power

consumption levels. In the context of hardware accelerator

design, where both FPGAs and GPUs are currently widely

used, I/O capabilities are maybe the best point to evaluate

the choice of one over the other achievement when the main

concern is high performance.

9. Conclusion

This paper presents a direct comparison between FPGA and

GPU used as accelerators for the AES cipher. The analysis

of the results achieved on both has been compared to several

others in order to establish which device is best at playing

the role of hardware accelerator. In addition, the possibil-

ity of making a direct comparison between such different

architectures have been investigated. This analysis suggests

that, while hardware design on FPGA remains the natural

choice for consumer-product design, GPUs are nowadays

the preferable choice for PC based accelerators, especially

when the processing routines are highly parallelizable. In

fact, FPGA devices are still capable of delivering very high

performance at low power consumption, but the possibil-

ity of programming GPUs with procedural paradigms, us-

ing the OpenCL or CUDA technologies, helped in making

GPGPU an alternative to the use of FPGAs in the context of

high performance computing, compensating for high power

consuming levels.
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