
Paper A Queue Monitoring System

in OpenFlow Software Defined

Networks
Shiva Rowshanrad, Sahar Namvarasl, and Manijeh Keshtgari

Computer Engineering and IT Department, Shiraz University of Technology, Shiraz, Iran

Abstract—Real-time traffic characteristic is different and it is

very sensitive to delay. To meet traffic specifications in real

time, monitoring systems are used as an important part of

networking. Many monitoring systems are deployed to have

an update view of the network QoS parameters and perfor-

mance. Most of these systems are implemented to measure

QoS parameters in links. Here, in this paper, a system for

monitoring queues in each link by means of Software De-

fined Networks is proposed. The monitoring system is imple-

mented by extending Floodlight controller, which uses Open-

Flow as southbound protocol. The controller has a central-

ized view of the network. By the help of OpenFlow it also

can provide flow level statistics. Using these advantages, the

proposed system can monitor delay and available bandwidth

of a queue on a link or path. Despite of monitoring sys-

tems in traditional networks, the proposed monitoring sys-

tem makes a low overhead in network thanks to OpenFlow

protocol messages. It is also integrated into the network con-

troller, which enables QoS and traffic engineering applications

to use the system’s reports for automatic traffic management

and QoS setup. The experimental results show a 99% accu-

racy of the proposed system for monitoring of both bandwidth

and delay.

Keywords—Floodlight, OpenFlow, queue monitoring, Software

Defined Networks.

1. Introduction

In today’s networks, there are many kinds of traffic, such

as video streaming, video conferencing, VoIP, FTP, etc.

Each of these traffics has different QoS requirements. VoIP

and video conferencing need less than a 150 ms delay

and less than 1% packet loss [1]. Therefore, these data

types need different traffic engineering (TE) to transmit effi-

ciently. Queuing disciplines are common examples of TEs.

However, in order to have a complete traffic management

a queuing monitoring system is required, which can provide

a real-time report about QoS parameters of each queue on

a requested path or link.

Many monitoring systems have been proposed in traditional

networks, but usually they consume too many resources

such as bandwidth and computational power, they may need

additional hardware and are not very accurate nor flexible.

Also some of these methods may not work properly on

heavy load [2], [3].

Recently many have taking advantage of Software Defined

Networks (SDNs) and OpenFlow protocol to create mon-

itoring systems. In SDN, control plane is separated from

data plane and placed into a centralized server named con-

troller. The controller communicates with network for-

warders using an open interface such as OpenFlow [4].

Each forwarder keeps track of counters related to packets

and flows. The controller can be aware of these counters

by polling forwarders using OpenFlow statistic messages.

The counters are per table, per flow, per port, per queue, in-

cluding received packet/byte, transmitted packet/bytes, their

duration, number of received/transmitted drops, etc. [5].

In this paper a system for monitoring delay and available

bandwidth of queues, is proposed. It provides TE for QoS

management.

The remainder of this paper is organized as follows. In

Section 2, related works in SDNs and traditional networks

are described. Section 3 introduces different parts of the

proposed monitoring system. In Section 4, the experimental

tests and their results are presented. Finally, Section 5

concludes the paper.

2. Related Works

One of the earliest tools for network monitoring is Simple

Network Management Protocol (SNMP). It uses port coun-

ters across every switch to estimate links load. Although

SNMP is widely used in many monitoring devices in tradi-

tional networks, it has some drawbacks. First, it may result

high CPU overhead. Moreover, SNMP is unable to collect

flow-level statistics and measuring metrics such as loss and

delay. It also requires additional infrastructure [6], [7].

The sFlow [8] and NetFlow [9] are two flow-based moni-

toring systems, which use packet sampling. They both use

agents at switches and routers to sample packets and collect

statistics. sFlow agents can push the information to a cen-

tralized collector, while NetFlow agents would be polled

by the collector.

Recently many monitoring/measurement systems for SDNs

are proposed. IBM had leveraged sFlow sampling and

implemented OpenSample over Floodlight controller [10].

Using packet sampling from flows, which have sequence

numbers (e.g. TCP), by centralized collector, OpenSample

can have a fast detection of elephant flows and link utiliza-

39



Shiva Rowshanrad, Sahar Namvarasl, and Manijeh Keshtgari

Table 1

Monitoring systems comparison

Monitoring
Network Parameters Method Implementation Strengths and weaknesses

system

SNMP

Traditional
Bandwidth/link

Poll port counters

SNMP manager
• single parameter,

utilization

which gather

and agents
• high CPU utilization,

information
• needs additional infrastructure

about packets

sFlow

Packet sampling

sFlow agents

• single parameter,

agents push

and collector

• can be used in SDN but not

information appropriate,

to a centralized • flow-based measurement,

collector • needs additional infrastructure

NetFlow
Polling packet NetFlow agents

• single parameter,

sampling agents and collector

• can be used in SDN but not

appropriate,

• high CPU usage,

• Flow-based measurement,

• needs additional infrastructure

OpenSample

SDN

Flow/link

Pocket sampling

Floodlight

• single parameter,

utilization

agents push infor-

controller

• without end device modification,

mation to a cen- • high accuracy,

tralized collector • low latency

PayLess
Bandwidth/link

Polling

Flodlight

• single parameter,

utilization

OpenFlow (OF)

controller

• trade-off between accuracy and

statistics from overhead in different polling

switches intervals

FlowSense
Per flow link

Push based

• single parameter,

utilization
Not described • high accuracy,

• low overhead

Phemius
Link latency

Polling OF
Floodlight

• single parameter,

et al. [2]
messages, use

controller
• high accuracy,

of probe packets • low overhead

OpenTM
Bandwidth/link

Polling based • single parameter,

utilization
(5 different NOX controller • high accuracy,

methods) • high overhead on edge switches

OpenNetMon

Per flow packet Polling OF
• trade-off between accuracy and

loss, delay and messages, use POX controller
overhead

throughput of probe packets

tion. The throughput of OpenSample can be up to 150%

over sFlow in some cases.

In [11] a monitoring system named PayLess is imple-

mented over Floodlight [12]. PayLess collects statistics

from switches by polling them. The applications on top of

the controller can request the desired QoS metrics, which

can be extracted from these statistics, using RESTful API.

As a use case, PayLess was evaluated for link utilization in-

formation. The results show that PayLess can collect more

accurate statistics than FlowSence [13], which estimates

link utilization by analyzing control messages sent from

switches to the controller instead of polling switches. In

addition, PayLess messaging overhead is 50% of overhead

in an equivalent method using polling statistics.

In [2] a link latency monitor over Floodlight controller is

proposed. The method for measuring latency is based on

sending an Ethernet frame, with an unknown Ethernet-type

value, over the link from the controller and measuring the

time until the packet comes back. The difference of this

time from half of the Round Trip Time (RTT) of statistic

messages between edge switches of the link and controller

would be the latency value of that link. The overhead of

this method is 81% less than ping utility while its accuracy

is 99.25% comparing to ping.

In [14] OpenTM is presented. OpenTM is a traffic ma-

trix estimator, implemented using NOX controller [15]. It

presents the traffic load between each pair of switches in

an OpenFlow network by polling statistics. Due to packet

40



A Queue Monitoring System in OpenFlow Software Defined Networks

loss, the statistics of different switches in path would have

different results. For this reason, five design methods were

compared to each other: polling the last switch, polling

switches uniformly at random, round robin querying, none

uniform random polling, polling the least loaded switch.

The evaluation results show that polling the last switch

gives the most accurate values. However, it makes a high

load on edge switches.

OpenNetMon [3] is another SDN monitoring system. It

is implemented over POX controller and monitors per-flow

metrics such as throughput, delay and packet loss. The flow

throughput is measured using statistics related to amount of

bytes sent in a flow and its duration. The required statis-

tics are achieved by polling the last switch, while in case

of packet loss measurement. The statistics are polled from

the first and last switch of the path. The packet loss value

is calculated from subtract of switches packet counters. An

equivalent method as in [2] is used for delay monitoring

by means of probe packets. The results of evaluation show

that the proposed method for monitoring throughput is quite

accurate, while methods for packet loss and delay mea-

surements are not. These inaccuracies caused by lack of

synchronization between measurement setups and software

fluctuations. Table 1 shows the comparison between men-

tioned monitoring systems.

3. Proposed Monitoring System

All the systems, which have been proposed in SDNs were

for monitoring links. Here, in this paper a monitoring sys-

tem, which can monitor queues in each link or path in terms

of delay and available bandwidth is proposed. The authors

extended Floodlight controller, which uses OpenFlow pro-

tocol, for implementing this system.

The key parameter of QoS is bandwidth. If the band-

width were insufficient for transmitting traffics, loss and

delay would be also unfavorable. For measuring the used

bandwidth of each queue on each link, there is a need to

poll the “transmitted bytes” counter of the queue from the

switch at the head of the link. It is required to keep track

of the last polling time and counter to calculate the used

bandwidth of queue. Then the bandwidth would be calcu-

lated as:

BWq =

TBn−TBn−1

tn − tn−1
, (1)

where BWq stands for used bandwidth of the desired queue,

TB is the transmitted bytes and t is the polling time in

seconds. The free capacity can be calculated by subtracting

BWq from the base bandwidth of the queue.

Delay is another important QoS parameter, which also can

have a huge effect on packet loss. Different applications

have different delay requirement, so it is important to de-

termine, which queue can best satisfy which application at

the moment.

The delay of each link can be calculated by sending a packet

with arbitrary Ethernet-type value from the controller to

the switch located at the head of the link. Then the switch

sends this packet to the next switch at the other side of

the link. As there is no entry in the flow table, matching

this Ethernet-type value, the second switch sends the packet

back to the controller. So the controller knows the times

of sending and receiving the packet, hence it knows the

duration.

For measuring delay of a queue, the packet should be

queued. It means beside the output action, an enqueue

action must be set for the packet. In this case, the time be-

tween sending and receiving the packet consists of queuing

delay and propagation delay. Multi-arbitrary Ethernet-type

values can be used to determine between the probe packets

related to each queue.

For having the exact delay of queue on a link between

two switches, it is necessary to subtract the measured time

from half of RTT’s between the switches and the controller.

This RTT can be measured using Statistics Request and

Statistics Reply messages. Equation (2) shows the delay of

a queue on a specific link:

Delayq = Tc −
RTTs1

2
−

RTTs2

2
, (2)

where Tc is the duration of sending and receiving the probe

packet by controller.

4. Experimental Results and

Performance Evaluation

The monitoring module was implemented by extending

Floodlight controller. OpenFlow was used as the south-

bound protocol and OpenVswitch [16] was installed on

Ubuntu 14.04 for creating OpenFlow switches. A linear

topology with three switches and four hosts running on In-

tel Core i5/i7 CPUs PC with Windows 8/Ubuntu 14.04 (as

shown in Fig. 1) was used.

Fig. 1. Performance evaluation topology.

For testing the proposed monitoring system, two queues

with maximum bandwidth of 30 Mb/s were created on

41



Shiva Rowshanrad, Sahar Namvarasl, and Manijeh Keshtgari

each link, and then special TCP and UDP flows such as

video streaming, video conferencing, etc., were allocated to

each, by means of floodlight RESTful API. We also tried

to generate different TCP/UDP flows using traffic genera-

tors in every host, flowing to the opposite one. The flows

were increased in time to fulfill the queues’ bandwidth

in about 15 s. The switches polling interval of proposed

system is set to 1 s. The bandwidth was also checked

in every second by JPERF tool. Some special flows were

monitored by Wireshark to be analyzed for delay. As the

proposed system can measure the latency of queues in

links between switches, Wireshark application also set to

monitor the packets on edge switches to have accurate

measurements.

Fig. 2. Comparing monitored bandwidth by JPERF and proposed

monitoring method. (See color pictures online at www.nit.eu/

publications/journal-jtit)

Figure 2 shows the monitored bandwidth in first 10 s of

the test. According to analysis in Table 2, the proposed

method results are as the same as JPERF results because

the 95% confidence interval of system averages includes

zero. From the averages, we can say that the proposed

system accuracy compared to JPERF is 99%. One of

the advantages of proposed system over JPERF is that the

system can monitor bandwidth even if the queue is full.

JPERF may face difficulties in high-load networks from

when there is a little bandwidth left, and crashed in last

seconds of test.

Table 2

Monitored bandwidth analysis

JPERF average Monitored average 95% confidence

bandwidth bandwidth interval of averages

[Mb/s] [Mb/s] difference

7.01 7.07 (–0.03, 0.33)

For delay measurement performance evaluation, the delays

of both queues were monitored with monitoring module.

Also the average delay of some special flow was calculated

from the monitored results of Wireshark.

The q0 is the lowest priority queue while the q1 has

higher priority. Figure 3 shows the monitored delay in

Fig. 3. Comparing monitored delay of queues.

Table 3

Delay analysis of monitored queues

Average of Average of 95% confi-
Delay monitoring manual dence interval
in 15 s module measure- measure- of averages

ment in 15 s ment in 15 s difference

q0 87.21 87.73 (0.28, 0.78)

q1 77.30 77.57 (0.13, 0.41)

each second for these queues. Although the calculated

delay values, monitored delay values and their averages

are close to each other, the confidence intervals in Ta-

ble 3 do not include zero. This means that the systems

do not have the exactly the same results. This difference

can be due to the difference between delays of each two

different flows in the queue. The delay values of flows

in a queue differ in a short range because of their differ-

ence in packet size, processing time, etc. Therefore, the

monitored delay can be considered as an estimated de-

lay of desired queue in desired path with a high accuracy

about 99%.

5. Conclusion

In this paper, a monitoring system for measuring queue

QoS parameters such as available bandwidth and delay is

proposed. The proposed monitoring system is the first sys-

tem for monitoring queue parameters for SDNs. It is im-

plemented over Floodlight controller and uses OpenFlow

statistic messages and probe packets to measure the men-

tioned parameters. Use of OpenFlow protocol messages

gives the advantage of monitoring network with low net-

work overhead. Integrating the system as a software module

makes it independent of using network devices’ resources.

It also is a cheaper system comparing to traditional moni-

toring systems, as it doesn’t need extra infrastructure. The

performance evaluation of the system shows an accuracy

of 99% for measuring both available bandwidth and delay

of a queue in a desired path or link. The next step is to

use this monitoring system for networks, which uses queu-

ing as their TE method, for optimizing network’s perfor-

mance automatically.

42



A Queue Monitoring System in OpenFlow Software Defined Networks

References

[1] T. Szigeti and C. Hattingh, Quality of Service Design Overview. San

Jose, CA: Cisco Press, 2004, pp. 15–16.

[2] K. Phemius and M. Bouet,“ Monitoring latency with OpenFlow”,

in Proc. 9th Int. Conf. on Netw. and Service Manag. CNSM 2013,

Zürich, Switzerland, 2013, pp. 122–125

(doi:10.1109/CNSM.2013.6727820).

[3] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:

Network monitoring in OpenFlow software-defined networks”, in

Proc. IEEE/IFIP Network Operations and Management Symp. NOMS

2014, Kraków, Poland, 2014, pp. 1–8

(doi:10.1109/NOMS.2014.6838228).

[4] S. Rowshanrad, S. Namvarasl, A. Abdi, M. Hajizadeh, and M. Kesht-

gary, “A survey on SDN, the future of networking”, J. of Adv. Comp.

Sci. & Technol., vol. 3, no. 2, pp. 232-248, 2014

(doi:10.14419/jacst.v3i2.3754).

[5] OpenFlow Switch Consortium, OpenFlow Switch Specification Ver-

sion 1.0.0., 2009 [Online]. Available: http://archive.openflow.org/

documents/openflow-spec-v1.0.0.pdf

[6] W. Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2.

Boston: Addison-Wesley Longman Publ. Co., 1998.

[7] J. Case, M. Fedor, M. Schoffstall, and C. Davin, “A simple net-

work management protocol (SNMP)”, RFC 1098, Network Infor-

mation Center, SRI International, Menlo Park, CA, USA, 1989 [On-

line]. Available: http://archive.openflow.org/documents/openflow-

spec-v1.0.0.pdf

[8] P. Phaal, “sFlow Specification Version 5”, July 2004 [Online]. Avail-

able: http://sflow.org/sflow version 5.txt

(accessed: 25 May 2015).

[9] B. Claise, “Cisco systems NetFlow services export version 9”,

2004 [Online]. Available: http://tools.ietf.org/html/rfc3954.html (ac-

cessed: 25 May 2015).

[10] J. Suh, T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample:

A low-latency, sampling-based measurement platform for SDN”, in

Proc. IEEE 34th Int. Conf. Distrib. Comput. Syst. ICDCS 2014,

Madrid, Spain, 2014, pp. 228–237 (doi:10.1109/ICDCS.2014.31).

[11] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess:

A low cost network monitoring framework for software defined net-

works”, in Proc. IEEE/IFIP Netw. Operat. and Manag. Symp. NOMS

2014, Kraków, Poland, 2014 (doi:10.1109/NOMS.2014.6838227).

[12] Floodlight OpenFlow Controller [Online]. Available:

http://www.projectfloodlight.org/floodlight/ (accessed:

25 May 2015).

[13] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Mad-

hyastha, “FlowSense: Monitoring network utilization with zero

measurement cost” in Proc. 14th Int. Conf. on Passive and Ac-

tive Measurement PAM’13, Hong Kong, China, 2013, pp. 31-41

(doi:10.1007/978-3-642-36516-4 4).

[14] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic

matrix estimator for OpenFlow networks”, in Proc. 11th Int. Conf.

on Passive and Active Measurement PAM’10, Zurich, Switzerland,

2010, pp. 201–210 (doi:10.1007/978-3-642-12334-4 21).

[15] NOX [Online]. Available: http://www.noxrepo.org/nox/about-nox/

(accessed: 25 May 2015).

[16] OpenVSwitch [Online]. Available: http://openvswitch.org (accessed:

25 May 2015).

Shiva Rowshanrad received

her M.Sc. degree in Informa-

tion Technology Engineering

(Computer networks field)

from Shiraz University of

Technology (SUTECH), Shi-

raz, Iran. Her main research

interest is Software Defined

Networking. Her other research

interests are Named Data

Networking, Wireless Sensor

Networks and multimedia.

E-mail: shiva.rrad@gmail.com

Computer Engineering and IT Department

Shiraz University of Technology

Shiraz, Iran

Sahar Namvarasl received her

B.Sc. in Information Technol-

ogy from Shiraz University of

technology (SUTECH), Shiraz,

Iran. She is currently work-

ing toward M.Sc. degree at

SUTECH, majoring in com-

puter networks. Her research

interests are in the area of Soft-

ware Defined Networks, virtu-

alization and cloud computing.

E-mail: sahar.namvarasl@gmail.com

Computer Engineering and IT Department

Shiraz University of Technology

Shiraz, Iran

Manijeh Keshtgari is a fac-

ulty member of Department of

Computer Engineering and IT,

Shiraz University of Technol-

ogy, Shiraz, Iran. She received

her M.Sc. degree in Electri-

cal and Computer Engineering

from Colorado State University,

CSU, Fort Collins, USA in 1993

and her Ph.D. degree in Com-

puter Engineering from Sharif

University of Technology in 2005. Her research interests

include MANET, Wireless Sensor Networks and GSM se-

curity issues.

E-mail: keshtgari@sutech.ac.ir

Computer Engineering and IT Department

Shiraz University of Technology

Shiraz, Iran

43


