
Paper Using Polymatrix Extensive

Stackelberg Games in Security –

Aware Resource Allocation and Task

Scheduling in Computational Clouds

Agnieszka Jakóbik1 and Andrzej Wilczyński1,2

1 Tadeusz Kościuszko Cracow University of Technology, Cracow, Poland
2 AGH University of Science and Technology, Cracow, Poland

Abstract—In this paper, the Stackelberg game models are

used for supporting the decisions on task scheduling and re-

source utilization in computational clouds. Stackelberg games

are asymmetric games, where a specific group of players’ acts

first as leaders, and the rest of the players follow the lead-

ers’ decisions and make their decisions based on the leader’s

actions. In the proposed model, the optimal schedules are gen-

erated under the security criteria along with the generation

of the optimal virtual machines set for the scheduled batch of

tasks. The security criteria are defined as security require-

ments for mapping tasks onto virtual machines with specified

trust level. The effectiveness of the proposed method has been

verified in the realistic use cases with in the cloud environment

with OpenStack and Amazon Cloud standards.

Keywords—cloud computing, resource optimization, Stackelberg

equilibrium, Stackelberg games.

1. Introduction

The problem of optimal resource allocation and utilization

in computational clouds (CC) remains challenging research

task in today’s parallel computing. The considered com-

putational infrastructure contains a large set of virtual ma-

chines (VMs) implemented in physical resources in dis-

tributed private and public cloud clusters. In public clouds,

the customer can use any number of VMs and pay for used

resources. The cloud provider collects the tasks from the

users, analyzes the customers’ requirements and tries to

allocate the virtual and physical resources based on such

requirements. Therefore, the users’ requests for the ac-

cess to the cloud services and resources may be dynamic.

The users may change the number of VMs, which can

be utilized. Therefore, the system must ensure the proper

scheduling policies for such dynamic environment.

Task scheduling in the dynamic cloud environments is

a complex process of contains multiple stages. Tasks may

be scheduled as batch with (dependent) or without (in-

dependent) correlations among them [1]. In the schedul-

ing process, the following special security-related users’

requirements may be taken into account: selection of an

appropriate amount of resources for utilization, safety, se-

curity, and intrusion detection. It may be also assumed that

idle time for the resource should be minimal. Such con-

ditions improve the energy awareness in scheduling, tasks

execution, and building of the green cloud architectures.

The set of VMs may be selected based on the estimation of

the cost of scheduling, maximal utilization of the memory,

and bandwidth, service access, etc.

This paper proposes a new model of selection and alloca-

tion of VMs in batch scheduling. In that model we focus on

cloud services select based on the users’ requirements. The

scheduling model is based on central scheduling unit. The

polymatrix extensive Stackelberg games are used for calcu-

lation of the optimal choosing strategies for the available

cloud resources.

The model has been verified in a simple experimental anal-

ysis based on use cases specified for two sets of VMs imple-

mented in the cloud clusters in OpenStack Racspace plat-

form and Amazon Cloud.

The paper is organized as follows. In Section 2 the back-

grounds of virtualization of the cloud resources and task

scheduling in cloud systems are presented. In Section 3 se-

curity characteristics are defined, which must provide each

of cloud environment. In Sections 4 and 5 related work is

reviewed, considered problems are defined and tasks repre-

sentation and models are explained. In Section 6 we present

polymatrix extensive Stackelberg Games models. In Sec-

tions 7 and 8 the application of the Stackelberg Games as

the support of the decision processes in the optimization

of the VMs parameters are presented. In Section 9 the

results of the application of the proposed model in realis-

tic use case are shown. Finally, the paper is concluded in

Section 10.

2. VMs Optimization and Task

Scheduling in CC Systems

In CC infrastructure, VMs are the main target “resources”

available and selected for scheduling of the computational

tasks. They may be created from the images of VMs on

demand. VMs can be configured with the characteristics

specified in Tables 1 and 2. Tasks are mapped into VMs by

using various scheduling procedures. In the case of batch

71

Agnieszka Jakóbik and Andrzej Wilczyński

scheduling, the tasks are grouped into batches. For each

consecutive batch, a different workload can be calculated

based on the number of atomic numerical operations per

second estimated for each task in the batch. It can be

interpreted as task complexity measure.

Table 1

Selected Amazon Cloud VM instances

Model vCPUs
CPU credits Mem

per hour [GB]

t2.nano 1 3 0.5

t2.small 1 12 2

t2.xlarge 4 54 16

t2.2xlarge 8 81 32

m4.16xlarge 64 120 256

Table 2

Selected OpenStack cloud VM instances

Flavor vCPUs Disk [GB] RAM [GB]

General1-1 1 20 SSD 1

General1-2 2 40 SSD 2

General1-4 4 80 SSD 4

General1-8 8 160 8

In CC, the pay-as-you-go model of provisioning of the

cloud resources is used. It means that the cloud user pays

only for the utilization of those cloud resources, which are

used for the task execution. Therefore, for each batch of

tasks, different number of VMs may be employed. The total

cost of the utilization of the cloud resources must be calcu-

lated for each batch. In the case of centralized scheduling,

the characteristics of the cloud computational nodes must

be specified before the start of the scheduling process. As

major scheduling measure the makespan [2] can be used

calculated for the batch of tasks.

3. Security Demands in Task Scheduling

and Task Execution in CCs

Security remains one of the main challenges and crucial

issues in CC [3]. Strong security requirements specified by

the users may be the reason of high costs of the utilization

of the cloud services. In the case of considering secu-

rity issues as additional scheduling and resource allocation

criteria, the execution time of tasks can be longer due to

execution of some specific additional operations before or

after the task calculation. Such “additional operations” can

be defined as:

• task integrity checking,

• using cryptography algorithm for decoding the nec-

essary data, that was previously ciphered for security,

• using cryptography algorithm for coding the data to

be stored,

• additional identity checking procedures during send-

ing data from one cloud cluster to another.

Additionally, different tasks may need different security re-

quirements. In some cases, the access to data and resources

are restricted by law [4]–[6]. For instance, the confidential

medical data processing requires higher level of security

than free stock photograph processing. Therefore, in the

presented paper, an individual security level parameter is

defined for each task. The task can be sent to the resource,

which “guarantees” to keep the proper security level.

In this paper, we propose the model, in which the trust lev-

els of VMs are specified based on the Federal Information

Processing (FIPS) and ISO/IEC 19790 standards [7]:

1. trust level 1 – at least one approved algorithm or

security function shall be used;

2. trust level 2 – system equipped with role-based au-

thentication: cryptographic module authenticates the

authorization of all sides of communication;

3. trust level 3 – identity–based authentication mech-

anisms: a cryptographic module authenticates the

identity of sides of communication and verifies that

their IDs are authorized to assume a specific role and

perform a certain services. The entry or output of

every plaintext has to be processed inside a module

using a trusted path from other interfaces. Plaintext

may be entered into or sent in output from the cryp-

tographic module in encrypted form;

4. trust level 4 – the highest level of security. Pene-

tration of the cryptographic module enclosure from

any direction. Very low probability of cryptography

procedures failure. The immediate suppression of all

operations.

The example of realization of these services for OpenStack

platform may be found in [8] and [9]. The relevant services

for Amazon Cloud are given by cloud provider.

4. Related Works and Problem

Definition

Although many scheduling methods in cloud environments

have been proposed so far, only some of them are based

on the game theory. In this section, we survey the most

important developments in this area.

Ananth and Chandrasekaran [10] defined model in which

the cloud resource utilization function and profit function

for the service provider are maximized. The other con-

sidered optimization criteria are the minimization of the

deadline violation and makespan estimated for available

resources. The overall scheduling problem is defined as

multi-objective task. The proposed schedulers are based

on the game theory and genetic algorithms. The Pareto op-

timal solutions are estimated by using the non-dominated

sorting genetic algorithm.

72

Using Polymatrix Extensive Stackelberg Games in Security – Aware Resource Allocation and Task Scheduling in Computational Clouds

Geethanjali et al. in [11] defined the problem of the recog-

nition of the wrong data generated by the service and re-

source providers. The aim of each cloud service provider

is to maximize his profits. The authors assume that they

may generate and distribute the incorrect information

about the offered services. The authors show the schedul-

ing mechanism for real time tasks to gain timing con-

straint, which ensures that the information distributed by

the provider is truthful. It means that the minimal costs of

the resource utilization and service usage are guaranteed.

The authors use auction game with the Nash equilibrium

as solution. In their game only one provider – the win-

ner of the game – can receive all submitted tasks for cal-

culation.

In [12], Qiu et al. proposed mechanism to manage the con-

tact between the broker and private clouds to ensure that

benefits of both the broker and the private clouds are maxi-

mized. They proposed a model with two-stage Stackelberg

game. Leader decides and proposes pricing for renting

all type of VMs for each private cloud, and each private

cloud confirms the amount of VMs and the possibility of

their rent. The main difference between that model and

the model presented in this paper is that in [12] the authors

assume the possibility that some task may not be scheduled.

The tasks are organized in queues for distribution amount

virtual resources. In this paper, we propose central sched-

uler instead tasks queuing. There are no privileged tasks.

Tasks are treated as equally important. Additionally, all

tasks must be scheduled to the machines. In this proposal

the payoff functions may take several forms, such as en-

ergy spend on computation or minimum time for rebooting

the system.

Shie et al. [13] use the game theory in their scheduling

model for solving the resource competition game in the

federated cloud. The Nash games are used. The results

of experiments show that the cloud provider can get some

extra profits by outsourcing resources if federated cloud

has sufficient idle resources. In contrary to our proposal,

the authors consider only Nash equilibrium case. These

kinds of games do not allow making sequential decisions,

which are possible in presented model. The model devel-

oped in this paper is about activities during tasks process-

ing in the cloud system. This is the main reason of using

Stackelberg games, in which the decisions are taken with

certain succession. The cloud system is modeled by us-

ing the system of autonomous software agent (MAS) as

the main unit, the Master and the farm of virtual resources

(see Fig. 1). The ECT matrix model is used as the cen-

tral scheduler [2]. Computing capacities of the resources

must be specified for the calculation of the schedules. They

are also the main constrain in the generation of the opti-

mal schedule(-s). There are two other parameters specified.

One of them is security level that VM may provide. Second

parameter is the security requirements of the tasks that have

been specified by the user. The security levels declared by

the VMs should correspond to the security requirements

of the tasks.

Fig. 1. Cloud model and hierarchy.

We consider two rounds of the games (Fig. 2) with three

actions done automatically during each round of the game.

Such a game also reflects different or competitive interests

of game participants.

Table 3

The costs of renting of selected VM instances

Model Price per hour

Amazon Cloud

t2.nano $0.0065

t2.small $0.026

t2.xlarge $0.188

t2.2xlarge $0.376

m4.16xlarge $3.83

OpenStack

General1-1 £0.0035

General1-2 £0.007

General1-4 £0.014

General1-8 £0.028

5. Security Aware Cloud Resources and

Tasks Modeling

The centralized scheduler considered in this paper, may

be defined based on the general master-slave model (see

Fig. 1). The master unit is responsible for task scheduling

based on the resources available in the system. The sets of

VMs can be implemented in each physical resource inde-

pendently or based on the configuration of the other virtual

resources.

The proposed model is suitable for cloud environment char-

acterized as follows:

• a fully distributed environment with specified n−1

number of computational virtual resources,

• all tasks are generated by the system users and pro-

cessed in batches,

73

Agnieszka Jakóbik and Andrzej Wilczyński

Fig. 2. Main game block diagram.

• each batch is composed of T tasks,

• a variety of computing capabilities, access modes,

and response times is possible for all participating

virtual resources,

• the performance of any given task on a single VM

is neither related nor affected by the performance of

any other VM,

• the number of VMs is fixed and remains constant

during the execution of generated schedules,

• the scheduler sends the tasks one batch after another,

• there is no virtual resources without tasks – each

resource has assigned at least one task, therefore must

declare at least one VM,

• the tasks are independent,

• each task is calculated by one resource,

• all tasks in the batch have to be assigned and exe-

cuted.

The following parameters should be specified for VM con-

figuration:

• the number of units in the system: one master and

n−1 slaves, that gives n units;

• proper task description for tasks t = 1, . . . ,T ;

• security classes for tasks and virtual resources:

TASKsec = [Tsec1, . . . ,T secK] available K secu-

rity classes for the tasks and WORKsec =
[W sec1, . . . ,W secL] available L security classes for

the virtual resources. For the clarity of presentation it

is assumed, that: TASKsec =WORKsec = [1, 2, 3, 4].

• security demand vector SD ∈ {1 . . .K}T for all the

tasks in the batch. Each element of security demand

vector SDt corresponds to one class from TASKsec

vector and indicates that this task requires at least

this particular security level;

• security capabilities of each resource are repre-

sented by trust level TL vector denoted by T L =
[tl1, . . . ,tln−1] ∈ {1 . . .L}n−1. Each element of this

vector indicates one class from WORKsec. Declara-

tion of particular trust level means that the resource

may operate at that trust lever or lower. For the clar-

ity of presentation SD,TL ∈ {1, 2, 3, 4};

• security classes for tasks and resource are specified

as follows: the task t is scheduled for resource i if

and only if SDt <= tli [9];

• workload vector for all T tasks in the batch WL =
[w1, . . . ,wT], expressed in giga floating point opera-

tions per second (GFLOPS);

• the computing capacity vector for each of n−1 virtual

resources in GFLOPS CC = [cc1, . . . ,ccn−1] [2];

• available VM types: VMi the set of VM of each

available type that may be created by resource num-

ber i;

• CCVMi the set of computer capacities of VM of each

available type that may be created by i;

• proper mapping of security requirements at the mas-

ter – slave level: SD into TL and WL into CC;

• cost for particular VMS is calculated per hour of

working and formulates the cost vector: costVMi =
[costVMi(1), . . . ,costVMi(Mi)], see Table 3.

6. Polymatrix Extensive Stackelberg

Games Modeling

The n-player normal game Γn can be defined as [14]:

Γn =
(

N,{Si}i∈N ,{Qi}i∈N

)

, (1)

where:

• N = {1, . . . ,n} is the set of players,

74

Using Polymatrix Extensive Stackelberg Games in Security – Aware Resource Allocation and Task Scheduling in Computational Clouds

• {S1, . . . ,Sn} (cardSi ≥ 2; i = 1, . . . ,n) is the set of

strategies for the players,

• {H1, . . . ,Hn};Hi : S1×·· ·×Sn →R; ∀i=1,...,n is the set

of payoff functions of the players.

The strategy of the player in the game is a plan of actions

to make the game beneficial for him.

Stackelberg games are non-symmetric games, where one

player (leader) or specified group of players (leaders) have

the privileged position and plays first, and the rest of the

players follow the leader and make their decisions based

on the leader’s actions [15]. Polymatrix game is the game

where players’ strategies form finite sets. The payoff of

the player i is defined by the following multi–dimensional

matrix [16]:

Hi = Hi(j1, . . . , jn), i ∈ N . (2)

The class of mixed strategies of the player number i is

denoted by

xi = (xi
1, . . . ,x

i
pi
) , (3)

where xi
j is the probability that player i chooses the strategy

j ∈ {1, , pi}. Based on the strategy profile x = (x1, ,xn), the

expected payoff of player i is calculated as:

Hi(x1, ,xn) =
p1

∑
j1=1

. . .
pn

∑
jn=1

Hi(j1, , jn)x
1
j1
· . . . · xn

jn
, i ∈ N. (4)

Extensive-form n-player games are games where the above

values may be changed when the next round begins.

7. Stackelberg Games in Cloud Systems

7.1. The Game Theory Approach for Scheduler and

Virtual Resources

The schedule is calculated for each batch separately accord-

ing to the tasks and computing capacities of the virtual re-

sources. The master unit priority is to calculate the batch

as soon as possible. The virtual resources unit is designed

to find the set of VMs that fulfills declared computing ca-

pacity and minimize the computation cost. Therefore, the

functionality may be considered as the Stackelberg game:

virtual resources are behaving as the leaders playing com-

puter capacity as the strategy and master unit is the follower

responding the tasks splitting. Because tasks batches and

their security demands may consume very much time, this

is extensive game. The leader strategy is a finite type –

there are finite VM types in the system to be chosen from.

The follower strategy is also finite: there is finite number

of possibilities for splitting given tasks for certain num-

ber of virtual resources. This is why the situation may be

modeled as the polymatrix game.

Resource is charged for his services using pay-as-you-go

cloud model. It means that the more tasks it gets the higher

the payment will be. The payoff in the game is the highest if

the cost of the VMs set is minimized keeping the computing

capacity constant [15]. The computational cost of security

operations (bias) may cause the offer less attractive for the

follower. This is because the cost of computation is high,

but it may be lowered.

Let us assume, that the set of players n is equal the number

of virtual resources plus master. Then virtual resources

may be numbered i = 1, 2, . . . ,n−1, the master unit is the

player number n. The game is played according to the

following rules, see Figs. 1–2:

• the leader is a set of virtual resources (the slaves),

• the follower is the central scheduling unit (the

master),

• the leader proposing the computing capacity and de-

cides first,

• the follower choosing the schedule and decides sec-

ond,

• main game is ruling the capacity declaration and task

scheduling,

• sub-game for virtual resources is also performed

which allows finding the optimal resources for de-

clared computing capacity and knowing task set con-

sidering the schedule.

Therefore, the following 5 steps have to be executed in each

round of the game:

1. Batch of tasks is loaded to the master unit.

2. For all virtual resources i trust level tli is declared

and computing capacities cci are calculated using the

polymatrix game.

3. The follower calculates the schedule for all virtual

resources. The schedule splits the given batch into

virtual resources. The follower calculates also his

strategy Sn and finds his payoff Hn. Then, the tasks

are sent to virtual resources.

4. Each virtual resource is performing the sub-game:

the follower computes his security bias b and strategy

for choosing available VMs. Then, after setting the

appropriate VMs set, tasks are computed.

5. return to step 1.

7.2. The Leader’s Behavior

Let the

VMi = [VMi(1), . . . ,VMi(Mi)] (5)

be the number of VM of each available type that is

created by resource number i = 1,2, . . . ,n − 1. For in-

stance, it can be read from Table 1. VM2 = [VM2(1),
V M2(2), VM2(3), VM2(4), VM2(5)] = [3, 2, 0, 1, 4] that

the second resource has 5 VM types, and the profile is

3 · t2.nano VMs, 2 · t2.small, 0 · t2.large, 1 · t2.2 · large,

75

Agnieszka Jakóbik and Andrzej Wilczyński

4 ·m416large; M1 = 4 [15]. Let us assume that the number

of available machines lies in range of

VMi(1) ∈ [1,mi(1)], . . . ,V Mi(Mi) ∈ [1,mi(Mi)] . (6)

Let the

CCVMi = [CCV Mi(1), . . . , [CCVMi(Mi)] (7)

be the set of computer capacities of VM of each avail-

able type that may be created by resource number i =
1, 2, . . . , n−1. If VMs are working in the parallel mode

then

cci =VMi(1)CCVMi(1)+ · · ·+VMi(Mi)CCV Mi(Mi). (8)

We denote by CCV Mmin
i the smallest possible computing

capacity available per resource i. Then computing capacity

may be declared from the range:

[

1 ·CCVMmin
i , mi(1) CCVMi(1)+ . . .

+mi(Mi) CCVMi(Mi)
]

=
[

ccmin
i , cci

max
]

.
(9)

We consider the possible computing capacities in ascending

order. Then resource i may declare one of pi possible

values:

cc1
i , cc2

i , . . . ,cc
pi
i . (10)

The security capability of each resource i is represented by

trust level tli and it is constant in time. It does not change

during the game round.

7.3. The Follower Behavior for Obtaining the Schedule

We used the Expected Time to Compute (ETC) matrix

model for calculation of the schedules [17]:

ETC[t][i] =
wt

cci

, (11)

that results to

ETC =

[

wt

cci

]t=1,2, ...,T

i=1,2, ...,n−1

(12)

for each of i-th resource and t-th task. Scheduling objective

as far as the performance of the task calculating is the

makespan that equals the time when the latest task is done:

makespan = min
S∈Schedules

{

max
j∈Tasks

C j

}

, (13)

where C j is the time when task j is finalized, Tasks are

all tasks submitted to system and Schedules is the set of all

possible schedules. In addition, security demand SD vector

that describes security demands for each task indicates if

the task may be assigned to machine represented by trust

level T L vector.

If we have n−1 virtual resources and T tasks in the batch,

the number of all possible schedules is much higher than

considering security demands and trust levels.

7.4. Main Game Model

During main stage of the Stackelberg game, the user of

the virtual resources have to decide about their computing

capacities. Then the master calculates the schedule. After

the tasks are sent to the virtual resources, each of resource

is optimizing his set of VMs, see Fig. 2.

The possible mixed strategy for the player defined by see

Eq. (3) is the probability that he chooses certain computing

capacity defined by Eq. (10). The player i = n (the follower)

chooses certain schedule from all pn = s possible schedules

using pure strategy model, that is xn ∈ {0,1}.

The payoff matrices from Eqs. (2) and (4) are defined in

the form of:

• the makespan for known declared computing capac-

ities and chosen schedule is:

Hn(j1, , jn) = makespan(j1, , jn) , (14)

• the schedule independent utility function reflects the

situation when each certain resource strategy influ-

ence the payoff of the other virtual resources:

Hi(j1, , jn) = ui(j1, , jn−1), i = 1, 2, . . . , n−1 , (15)

• the schedule independent utility function when vir-

tual resources payoffs are independent from other vir-

tual resources decisions:

Hi(j1, , jn) = ui(ji), i = 1, 2 . . . , n−1 . (16)

These payoff functions may be time dependent, round de-

pendent or history dependent. Additional designations were

omitted for clarity of presentation.

The solution of the Stackelberg game is called Stackelberg

equilibrium [14]. In such a case, each follower observes the

leader’s strategy x and responds with strategy f (x) : x → y

that is optimal with respect to his expected payoff. We can

define two types of Stackelberg equilibrium points: Strong

Stackelberg Equilibrium (SSE) and Weak Stackelberg Equi-

librium (WSE). SSE assumes that the follower breaks ties in

favor of the defender. It means that he chooses his optimal

strategy, which is also optimal from the leader’s perspec-

tive. WSE assumes that the follower chooses the worst

strategy from the leader’s perspective [18].

Let x = (x1, x2, . . . , xn−1) be the leader strategy and f (x) =
xn be the follower response. Then the game is as follows:

• for fixed leader strategy x the follower solves the lin-

ear problem to find his optimal response:

min
xn

p1

∑
j1=1

. . .
s

∑
jn=1

makespan(j1, , jn)x
1
j1
· . . . · xn

jn
, (17)

with constraints that means that every pure strategy

is possible:
jn=s, jn>=0

∑
jn=1

xn
jn

= 1; (18)

76

Using Polymatrix Extensive Stackelberg Games in Security – Aware Resource Allocation and Task Scheduling in Computational Clouds

• the leader finds the strategy x that maximizes his

utility, under the assumption that the follower used

optimal response xn:

1. in cooperation mode:

max
x

p1

∑
j1=1

. . .
s

∑
jn=1

Hi(j1, , jn)x
1
j1
· . . . · xn

jn
=

= max
x

p1

∑
j1=1

. . .
pn−1

∑
jn−1=1

ui(j1, , jn−1)x
1
j1
· . . . · xn−1

jn−1
,

(19)

with assumption that each mixed strategy is

possible:

j1=p1

∑
j1=1

x1
j1

= 1,x1
j1
∈ [0,1] ,

j2=p1

∑
j2=1

x2
j2

= 1,x2
j2
∈ [0,1] ,

. . .

jn−1=pn−1

∑
jn−1=1

xn−1
jn−1

= 1,xn−1
jn−1

∈ [0,1] ; (20)

2. in non-cooperation mode:

max
x

p1

∑
j1=1

. . .
s

∑
jn=1

Hi(j1, , jn)x
1
j1
· . . . · xn

jn
=

= max
x

pi

∑
ji=1

ui(ji)x
i
ji
,

(21)

with assumption that each mixed strategy is

possible:

ji=pi

∑
ji=1

xi
ji

= 1,xi
ji
∈ [0,1] . (22)

The optimal strategy, denoted by [x1
1, x1

2, . . . , x1
p1

] = [1
24

,
1
6
, 1

12
, . . . , 1

3
], means that user of the resource number 1

should declare the lowest possible computing capacity with

probability 1
4
, next consecutive computing capacity with

probability 1
6
, and so on, and maximum computing capac-

ity with probability 1
3
.

7.5. Sub-game Model

When computing capacities were chosen and the schedule

is known, the set of VM may be set. The strategy of VMs

capacities declaring is given by the Eq. (5) with constraints

defined by Eqs. (6) and (8). The economical cost of the all

created VMs is calculated per hour:

costVMi = [costVMi(1), . . . , costVMi(Mi)] . (23)

Therefore, for each resource i, one hour of working (for the

set of VMs having declared computing capacity) costs:

cost(i)=VMi(1)costVMi(1)+ . . .

. . . +VMi(Mi) = Costi(Mi) .
(24)

Let the W (i) be the workload of all Ti tasks scheduled for

resource i. Each resource needs to meet the time deadline

given by ETC matrix, see Eq. (12). It result to

time(i) =
W (i)

cci

(25)

seconds for computing given tasks. The cost of computing

given tasks is:

time(i) =
cost(i)

3600
. (26)

The aim of the sub-game is to find the VM configuration

what cost the least. To do it, we have to to solve to problem:

argmin[VMi(1),...,VMi(Mi) . . . (27)

W (i)

cci

·
VMi(1)costVMi(1)

3600
+ . . .

. . .+
V Mi(Mi)costVMi(Mi)

3600
(28)

with constraints (6) and (8).

8. Search for Strategies and Equilibrium

The following conditions have to be satisfied to find Strong

Stackelberg Equilibrium (SSE) [15]:

• the leader plays his best-response strategy,

• the follower plays his best-response strategy,

• the follower breaks ties in favor of the leader.

Game equilibrium may be estimated when all players are

choosing the best responses. The best response is pos-

sible to find when the relevant optimization problem has

the solution. Therefore, it depends on the payoff functions

shapes and form. From practical point of view, the numer-

ical methods are used to calculate proper strategies. Not

for every game the exact solution may be found.

Calculating leader strategy means finding optimal comput-

ing capacities. It is possible if there exists the solution of

problem (18) over the convex set [0,1]n−1.

Follower strategy is calculated by solving problem (17)

and (18). Finding optimal schedule is very time consum-

ing process, therefore the suboptimal schedules are used.

In this paper we used genetic algorithm for solving this

problem. The detailed solution may be found in [9].

Solving sub-game is much simpler. There is not many types

of VMs. Resource may choose finite number from a finite

amount of VM types. This is why the solution always

exists. It may be calculated using brute-force methods.

77

Agnieszka Jakóbik and Andrzej Wilczyński

9. Numerical Example

To illustrate the presented idea, we consider the example

Amazon Cloud and OpenStack VMs. The set VM is pre-

sented in Tables 1 and 2. The prices for instances are

listed in Table 3. The available number of VM of each

type and their computing capacities are presented in Ta-

ble 4. The batch of tasks consists of 8 tasks, see Table 5.

The assumed trust level offered by the virtual resources is

tl1 = 1, tl2 = 3.

Table 4

The tested VM instances

Model Max no. Strategy Capacity [GFLOPS]

t2.nano m1(1) = 2 MV1(1) CCVM1(1) = 3

t2.small m1(2) = 3 MV1(2) CCVM1(2) = 3

t2.xl m1(3) = 2 MV1(3) CCVM1(3) = 12

t2.2xl m1(4) = 3 MV1(4) CCVM1(4) = 24

m4.16xl m1(5) = 2 MV1(5) CCVM1(5) = 147

Gen1-1 m2(1) = 3 MV1(1) CCVM2(1) = 3

Genl1-2 m2(2) = 3 MV1(2) CCVM2(2) = 5

Gen1-4 m2(3) = 2 MV1(3) CCVM2(3) = 10

Genl1-8 m2(4) = 2 MV1(4) CCVM2(4) = 21

Table 5

The tested batch of 8 tasks

Workload Security demand

w1 = 18 sd1 = 1

w = 922 sd2 = 1

w3 = 54 sd3 = 1

w4 = 62 sd4 = 2

w5 = 68 sd5 = 2

w6 = 41 sd6 = 1

w7 = 67 sd7 = 2

w8 = 85 sd8 = 1

The maximal and minimal capacities are:

ccmin
1 = 3 ,

ccmax
1

=2 ·3 + 3 ·3 +2 ·12+3 ·24+2 ·147=405 , (29)

ccmin
2

= 3

ccmax
2

= 3 ·3 + 3 ·5 +10 ·2 +21 ·2 = 86 . (30)

Considering configurations given by (6) and (7) the possible

computing capacity vector may be calculated as:

For a=0 . . .2, b=0 . . .3, c=0 . . .2, d =0 . . .3, e=0 . . .2

capacity(a,b,c,d,e) =

CCV Mi(1)a +CCVMi(1)b +CCVMi(1)c +

+CCVMi(1)d +CCVMi(1)e ; (31)

[cc1
i ,cc2

i . . . ,cc
pi
i] = sort

(

unique
(

capacity(a,b,c,d,e)
)

)

,

(32)

where sort is sorting procedure. It places the given set of

values in the increasing order without repetitions.

For i = 1,2

pi = length
(

sort
(

unique(capacity(a,b,c,d,e))
)

)

, (33)

where sort is sorting the vector in descending order, unique

is erasing repetitive values.

The user of resource one chooses for p1 = 114 computing

capacities. The user of resource two chooses one of p2 = 72

computing capacity, see Table 6.

Table 6

Possible computing capacities

ccmin
1

. ccmax
1

3 6 9 . . . 177 180 . . . 399 402 405

ccmin
2 ccmax

2

3 5 6 . . . 47 48 . . . 81 83 86

The assumed payoff functions are defined as [19]:

ui(ji) = 400 + 40cc1(j1)−
(

cc1(j1)
)2

, (34)

for i = 1, j1 = 1,2, . . . ,114, and

ui(ji) = 200 + 70cc1(j1)−
(

cc1(j1)
)2

, (35)

for i = 2, j2 = 1,2, . . . ,72.

The optimization problem to solve for user of resource 1

is:

max
x

114

∑
j1=1

(

400 + 40cc1(j1)− (cc1(j1)
)2

)

· x1
j1

, (36)

with assumption that each mixed strategy is possible:

j1=114

∑
j1=1

x1
j1

= 1,x1
j1
∈ [0,1] . (37)

This means that resource 1 tries to find computing capacity

that results in maximum CPU credits per CPU unit.

The optimization problem to solve for user of resource 2 is

assumed as:

max
x

72

∑
j2=1

(

200 + 70cc1(j1)−
(

cc1(j1)
)2

)

· x2
j2

(38)

with assumption that each mixed strategy is possible:

j2=72

∑
j2=1

x2
j2

= 1,x2
j2
∈ [0,1] . (39)

78

Using Polymatrix Extensive Stackelberg Games in Security – Aware Resource Allocation and Task Scheduling in Computational Clouds

The objective of resource 2 is to find such computing ca-

pacity so that the VMs have the best memory usage per

CPU unit.

Matlab linprog solver [20] was used for solving both above

simple linear programs defined by linear equality con-

straints. Resource 1 declared capacity cc1 = 405 and re-

source 2 declared cc2 = 48.

The number of possible schedules without security de-

mands is big. If we consider security demands, then tasks

1, 2, 3, 6 and 8 may be assigned to the resource 1. In

such a case, resource 2 may calculate all the given tasks.

The number of possible schedules with security demands

is only 5. The ETC matrix takes the form:

ETC =
[

1/405 0

0 1/48

]

·

[

18 92 54 62 68 41 67 85

18 92 54 62 68 41 67 85

]

. (40)

Considering security constraints:

ETC =
[

0.044 0.22 0.13 ∞ ∞ 0.10 ∞ 0.20

0.37 1.91 1.12 1.29 1.41 0.85 1.39 1.77

]

. (41)

where ∞ time indicates that scheduling particular task on

the chosen resource is impossible.

The possible secure schedules and their makespans are the

following:

1. [t1,t2,t3,t6], [t4,t5,t7,t8],
makespan=max{0.044+0.22+0.13+0.10+0.20,

1.29+1.41+1.39+1.77}= max{0.694,5.86}= 5.86,

2. [t1,t2,t3,t8], [t4,t5,t7,t6],
makespan=max{0.044+0.22+0.13+0.2,

1.29+1.41+0.85+1.39 }= max{0.59,4.94}= 4.94,

3. [t8,t2,t3,t6], [t4,t5,t7,t1],
makespan=max{0.2+0.22+0.13+0.1,

1.29+1.41+1.39+0.37}= max{0.65,4.46}= 4.46,

4. [t8,t1,t3,t6], [t4,t5,t7,t2],
makespan=max{0.2+0.044+0.13+0.10,

1.29+1.41+1.39+1.91}= max{0.47,6}= 6,

5. [t8,t1,t2,t6], [t4,t5,t7,t3],
makespan=max{0.2+0.044+0.22+0.1,

1.29+1.41+1.39+1.12}= max{0.56,5.21}= 5.21.

The optimal schedule is schedule no. 3. For this is schedule

the workload for resource 1 is

W (1) = w8 + w2 + w3 + w6 = 85 + 92 + 54 +41 = 272

and for resource 2 is

W (2) = w4 + w5 + w7 + w1 = 62 + 68 + 67 +18= 215 .

After solving problem (32), (33) considering prices from

Table 3 and Tab 4, for resource 1:

argmin[VM1(1),...,VM1(5)] (42)

272

405
·
VM1(1)0.0065 + . . .+VM1(5)3.83

3600
(43)

and resource 2:

argmin[VM2(1),...,V M2(4)] (44)

215

72
·
VM2(1)0.0035 + . . .+VM2(4)0.028

3600
, (45)

with constraints (6) and (8), we obtain the optimum set

of VMs:

V M1=[VM1(1),V M1(2),V M1(3),VM1(4),VM1(5)]=

= [2,3,2,3,2] (46)

and

VM2 = [VM2(1),VM2(2),VM2(3),VM2(4)] =

= [0,2,2,2] . (47)

The next round of the game may be based on different

assumed payoff functions. The payoffs may depend on the

existing VMs, therefore they be the time dependent. Other

possibility is that the payoff function of resource 1 may

depend on the last VMs set of resource 2. In such a case,

the future strategy of resource 1 is influenced by the former

strategy of resource 2.

For example, if resource 1 tries to find computing capacity

that results in maximum CPU credits per CPU unit. Then,

optimization problem to solve for resource 1 is:

max
x

114

∑
j1=1

CPUCredits

vCPU(j1) ·hour(j1)
x1

j1
, (48)

with assumption that each mixed strategy is possible. When

the objective of resource 2 is to find such computing capac-

ity so that the VMs have the very best memory per CPU

unit:

max
x

72

∑
j2=1

RAM(j2)

vCPU(j2)
x2

j2
, (49)

under assumption that each mixed strategy is possible.

10. Conclusions and Future Work

The Stackelberg game model can be used for supporting

the user of the CC decisions during renting VMs. Proposed

game stages are related to the information flow process in

cloud. The proposed model enables the usage of on demand

recourse provisioning to minimize the computational cost.

In the proposed games, the users of virtual resources de-

cide first, so they have special privileges, furthermore, they

choose computing capacities. The scheduling unit follows

the leaders and decide based on the leader’s actions. Third

step is the sub-game for virtual resources.

The following elements have been optimized: VMs com-

puting capacities due to virtual resources objectives, sched-

79

Agnieszka Jakóbik and Andrzej Wilczyński

ule for the given task batch, optimum set for that sched-

ule. Additionally, security aspects in the form of mapping

tasks security requirements into VMs declared trust level

are considered. In presented example for Amazon Cloud

and OpenStack VMs we considered the instances provided

by the largest cloud services providers. The number of vir-

tual resources and their characteristics can be varied over

time. The optimal strategy is calculated for each round of

the game.

Different form of payoff function was used. Proposed

model allows considering wide variety of virtual resources

behavior. One virtual resource payoff may not depend on

other virtual resources strategies, or they may be influen-

tial. The central scheduler that was used is based on ETC

matrix approach and assumes fare share of number of tasks

among virtual resources. However, the model may be used

with any central scheduler.

The future work will focus on optimizing the trust level of

the virtual resources. In this paper trust levels was assumed

constant. The more elastic approach should be used.

References

[1] A. Ananth and K. Chandra Sekaran, “Game theoretic approaches

for job scheduling in cloud computing: A survey”, in Proc. 5th Int.

Conf. on Comp. & Commun. Technol. ICCCT 2014, Allahabad,

India, 2014 (doi: 10.1109/ICCCT.2014.7001473).

[2] A. Jakóbik, D. Grzonka, J. Kołodziej, and H. Gonzalez-Velez, “To-

wards secure non-deterministic meta-scheduling for clouds”, in Proc.

30th Eur. Conf. on Modell. and Simul. ECMS 2016, Regensburg,
Germany, 2016, pp. 596–602 (doi: 10.7148/2016-0596).

[3] K. Xiong, Resource Optimization and Security for Cloud Services.

Wiley, 2014.

[4] “Security and Privacy Controls for Federal Information Systems and

Organizations”, SP 800-53 Rev. 4, National Institute of Standards &

Technology, 2013 (doi: 10.6028/NIST.SP.800-53r4).

[5] “NIST Cloud Computing Security Reference Architecture”, SP 500-

299, National Institute of Standards & Technology, 2013.

[6] ISO/IEC 19790:2012 “Security requirements for cryptographic mod-

ules”, International Organization for Standardization, 2012.

[7] ISO/IEC 19790:2012 “Information technology, Security techniques,
Security requirements for cryptographic modules”, ISO Council,

Switzerland, Geneva.

[8] A. Jakóbik, “A cloud-aided group RSA scheme in Java 8 environ-

ment and OpenStack software”, J. Telecommun. and Inform. Tech-

nol., no. 2 pp. 53–59, 2016.

[9] A. Jakóbik, D. Grzonka, and F. Palmieri, “Non-deterministic security

driven meta scheduler for distributed cloud organizations”, Simul.

Modell. Practice & Theory, 2016 [Online]. Available:

http://dx.doi.org/10.1016/j.simpat.2016.10.011.

[10] A. Ananth and K. Chandrasekaran, “Cooperative game theoretic ap-
proach for job scheduling in cloud computing”, in Proc. Int. Conf.

on Comput. and Netw. Commun. CoCoNet’15, Trivandrum, India,

2015 (doi: 10.1109/CoCoNet.2015.7411180).

[11] M. Geethanjali, J. Sujana, and T. Revathi, “Ensuring truthfulness for
scheduling multi-objective real time tasks in multi cloud environ-
ments”, in Proc. Int. Conf. on Recent Trends in Inform. Technology

ICRTIT 2014, Chennai, India, 2014
(doi: 10.1109/ICRTIT.2014.6996183).

[12] X. Qiu, C. Wu, H. Li, Z. Li, and F. C. M. Lau, “Federated private
clouds via broker’s marketplace: A Stackelberg-game perspective”,
in Proc. 7th IEEE Int. Conf. on Cloud Comput. CLOUD 2014, An-
chorage, Alaska, USA, 2014 (doi: 10.1109/CLOUD.2014.48).

[13] M. Shie, C. Liu, Y. Lee, Y. Lin, and K. Lai, “Distributed scheduling
approach based on game theory in the federated cloud”, in Proc. Int.

Conf. on Inform. Science & Appl. ICISA 2014, Seoul, South Korea,
2014 (doi: 10.1109/ICISA.2014.6847388)

[14] S. Tadelis, Game Theory: An Introduction. Princeton University
Press, 2013.

[15] A. Wilczyński, A. Jakóbik, and J. Kołodziej, “Stackelberg security
games: Models, applications and computational aspects”, J. Telecom-

mun. and Inform. Technol., no. 3, pp. 70–79, 2016.

[16] V. Mazalov, Mathematical Game Theory and Applications. Wiley,
2014.

[17] J. Kołodziej, Evolutionary Hierarchical Multi-Criteria Metaheuris-

tics for Scheduling in Large-Scale Grid Systems. Springer, 2012.

[18] J. Gan and B. An, “Minimum support size of the defender’s strong
Stackelberg equilibrium strategies in security games”, in AAAI

Spring Symp. on Applied Computat. Game Theory, Stanford, CA,
USA, 2014 [Online]. Available:

http://www.ntu.edu.sg/home/boan/papers/AAAISS14b.pdf

[19] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic

Theory. Oxford University Press, 1995.

[20] MathWorks, Documentation [Online]. Available:
https://www.mathworks.com/help/optim/ug/linprog.html

Andrzej Wilczyński is an

Assistant Professor at Cracow

University of Technology and

Ph.D. student at AGH Univer-

sity of Science and Technology.

The topics of his research are

multiagent systems and cloud

computing.

E-mail: and.wilczynski@gmail.com

AGH University of Science and Technology

Mickiewicza st 30

30-059 Cracow, Poland

Tadeusz Kościuszko Cracow University of Technology

Warszawska st 24

31-155 Cracow, Poland

Agnieszka Jakóbik (Krok) – for biography, see this issue,

p. 64.

80

