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Abstract—In this paper, the possibility of using a multiple-

ring circular array as an antenna array for Ground-Pene-

trating Radar systems is investigated. The theory behind the

proposed idea is presented. The preliminary numerical re-

sults that are obtained suggest that the proposed configura-

tion is promising. It allows achieving a wide frequency band

and low dynamic range ratio of excitations, thus simplifying

the feeding network. Further interesting requirements may

be satisfied by exploiting a combination of deterministic and

stochastic synthesis techniques to design the array.

Keywords—antenna array, ultra-wideband, Ground-Penetrating

Radar.

1. Introduction

Antennas are a critical hardware component of a radar

system, dictating its performance in terms of capabil-

ity to detect targets. Nevertheless, most research efforts

in the Ground-Penetrating Radar (GPR) field are focused

on the applications of the technique and on the devel-

opment of modeling, inversion and data-processing ap-

proaches [1], [2]. Only a limited number of studies deal

with technological issues related to the design of novel

systems [3]–[7], including the synthesis, optimization and

characterization of new antennas [8], [9]. Even fewer are

the research projects where innovative antenna arrays are

developed [10].

Requirements that GPR antennas have to satisfy are some-

how unique and very different than in conventional radar

antennas, as GPR antennas operate in a strongly demanding

environment, in close proximity to or at a limited distance

from the natural or manmade investigated structure [11].

The same applies to GPR antenna arrays.

The first requirement is an ultra-wide frequency band:

the radar has to transmit and receive short-duration time-

domain waveforms, in the order of a few nanoseconds, the

time-duration of the emitted pulses being a trade-off be-

tween the desired radar resolution and penetration depth.

Additionally, GPR antennas shall have a linear phase char-

acteristic over the whole operational frequency range, as

well as predictable polarization and gain. Due to the fact

that a subsurface imaging system is essentially a short-range

radar, the coupling between transmitting and receiving an-

tennas has to be low and short in time. Moreover, GPR

antennas shall have quick ring-down characteristics, in or-

der to prevent masking of targets and guarantee a good

resolution. The radiation pattern shall ensure minimal in-

terference with unwanted objects, usually present in the

complex operational environment. To this aim, antennas

have to provide high directivity and concentrate the elec-

tromagnetic energy into a narrow solid angle. As GPR

antennas work very close to the matter or even in contact

with it, changes in electrical properties of the matter should

not affect strongly the antenna performance, so that a wide

applicability of the radar system can be achieved. Further-

more, antennas should provide stable performance at dif-

ferent elevation levels. For an efficient coupling of electro-

magnetic waves into the ground/investigated structure, good

impedance matching is necessary at the antenna/matter in-

terface. Another important requirement regards the weight

and size of the antennas: for ease of utilization and to al-

low a wide applicability, GPR antennas shall be light and

compact.

Array of antennas can be used in GPR systems to enable

a faster data collection by increasing the extension of in-

vestigated area per time unit. This can be a significant

advantage in archaeological prospection, road and bridge

inspection, mine detection, as well as in several other civil

engineering and geoscience applications where the collec-

tion of data requires the execution of a large number of pro-

files. Moreover, antenna arrays allow collecting multi-offset

measurements simultaneously, thereby providing additional

information for a more effective imaging and characteriza-

tion of the scenario under test.

Two approaches are possible to GPR array design. The sim-

plest and most common is to conceive the array as a multi-

channel radar system composed of single-channel radars.

Much more can be achieved, if array-design techniques are

employed to synthesize the whole system. This second ap-

proach is just starting in the GPR field and is definitely

promising, as it gives the possibility to fully exploit the

potentiality of arrays: they can provide a high directivity

by using simple elements and the capability of a steerable

beam, as in smart antennas.
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Another important issue, to be considered when using

multi-antenna GPR systems on irregular surfaces, is that

the position of array elements has to be recorded during the

surveys, by using high-precision positioning systems [12].

In this paper, which resumes and further extends the con-

tribution presented in [13], we investigate the possibility

of using a multiple-ring circular array as an antenna array

for GPR systems. This configuration seems promising for

achieving a wide frequency band and low dynamic range

ratio of excitations, thus simplifying the feeding network.

Further interesting requirements might be satisfied by ex-

ploiting a combination of deterministic and stochastic syn-

thesis techniques to design the array.

2. Theory of Multiple-ring

Circular Array

The concept of pattern multiplication is well known. If

all antennas of an array are identical and have the same

physical orientation, then the radiation (or reception) pat-

tern of the array is given by the radiation pattern of the

single antenna element multiplied by the array factor. With

reference to Fig. 1, the array factor F is a function of the

direction of observation, specified by the unit vector r̂. It

also depends on the positions of the N antennas in the ar-

ray, rn, and on the complex weights used to feed them,

an (n = 1 , . . . , N):

F =
N

∑
n=1

ane jkrn·r̂ (1)

where k = 2π
λ is the wave number, being λ the wavelength.

Fig. 1. Antenna array of N elements in arbitrary positions.

By tailoring the geometry and feeding network of an ar-

ray, its performance may be optimized to achieve desirable

properties. For instance, the array pattern can be steered

(i.e., the direction of maximum radiation or reception can

be changed) by modifying the weights.

In a GPR antenna array, the single element will be an ultra-

wideband antenna (see Fig. 2). It is desirable that the over-

all radiation pattern of the array be “independent” of the

frequency, not only the radiation pattern of the single an-

tenna. Therefore, the array factor has to be “independent”

of the frequency as well. A possible solution is a multiple

Fig. 2. Most frequently used GPR antennas.

ring circular array, schematized in Fig. 3. This is consti-

tuted by M concentric rings of radii Rm, where each ring

includes Lm equispaced antennas (m = 1, . . . ,M). The total

number of antennas is:

N =
M

∑
m=1

Lm . (2)

In a customary spherical coordinate system (r, θ , φ ) with

origin in the center of the radiating rings, the array factor of

radiating rings with a continuous excitation am (being am
the excitation density on the m-th ring) has the following

expression:

F =
M

∑
m=1

amRm

∫ 2π

0
e jRmk sinθ cosφ ′

dφ ′ . (3)

Recalling the integral properties of the Bessel functions, it

results:

F = 2π
M

∑
m=1

amRmJ0(Rmk sinθ ) . (4)

In the structure that we are considering, instead, the ex-

citation is discrete. The `-th element on the ring m (` =
1, . . . ,Lm) is located at the angular position

φ`m =
2π(`−1)

Lm
+δm ,
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Fig. 3. Multiple ring circular array.

where δm is the angular position of the first element. Let

us call a`m the excitation of the `-th element on the ring m

and let us also assume that uniform excitation is adopted

in each ring, i.e.:

a`m =
2πRmam

Lm
∀` .

Then, by using Eq. (1) and after some manipulations, the

array factor is given by:

F =
M

∑
m=1

2πRm

Lm
am

Lm

∑̀
=1

e jRmk sinθ cos(φ−φ`m) . (5)

Such array factor is weakly affected by a change of the

frequency, as will be illustrated in Section 3 via a numerical

example.

3. Results

In this Section, we present a simple example of array-factor

synthesis for the multiple-ring circular array. The aim of

this example is to illustrate the frequency-dispersion prop-

erties of the array factor. In the example, we set δm = 0.

As a desired pattern, we choose Fd(u) = |sinc(c1u)|c2 ,

where u = k sinθ , and c1, c2 are given real numbers. This

pattern has a maximum in θ = 0. By exploiting Eq. (4), we

want to find the coefficients am that minimize the squared

distance:

ρ2 =
∥

∥

∥
Fd(u)−2π

M

∑
m=1

amRmJ0(Rmu)
∥

∥

∥

2
, (6)

where ‖ f‖ =
∫ 2π

0 | f (γ)|2dγ . By manipulating (6) and set-

ting
∂ρ
∂ap

= 0 , p = 1, . . . ,M ,

we obtain a system of M linear equations in the M (real)

unknowns am:

M

∑
m=1

Tpmam = Up (p = 1, . . . ,M) , (7)

where Tpm = 2πRm < J0(Rmu), J0(Rpu) > and Up =< Fd,

J0(Rpu) >, being < f1, f2 > =
∫ 2π

0 f1(γ) f2(γ)dγ a scalar

product between the real functions f1 and f2. The sys-

tem (7) can be solved by standard techniques and the solu-

tions am minimize ρ2 in Eq. (6).

The same coefficients am can be used in (5) as well, to

calculate the array factor of the array with Lm elements on

the m-th ring.

Fig. 4. Desired (thick line) and synthesized (thin line) patterns

for the multiple-ring circular array with M = 8 rings described in

the text, when φ = 0 and at the nominal frequency f0.

Fig. 5. Same as in Fig. 4, when the frequency is f1 = 0.707 f0.

In Fig. 4, the desired and synthesized patterns are plotted as

a function of θ when φ = 0, for a multiple-ring circular ar-

ray with M= 8 rings. Different cuts of the radiation pattern

give similar results. The number of elements and radius of

the m-th ring are: Lm = 5m, Rm = 0.8mλ (m = 1, . . . ,M).

Moreover, c1 = 5 and c2 = 3. The dynamic range ratio,

which is the ratio between the maximum and minimum ex-

citation amplitudes of the array elements, is DRR = 1.375.

Note that a limited dynamic range ratio allows the practi-

cal realization of noncomplex feeding networks, where the

number of power dividers may be kept low or the design

of the feeding lines may be simplified.

Now, for the same geometry and keeping the same excita-

tions, we modify the frequency and study how a change of

frequency affects the radiation pattern.

In Fig. 5, the same as in Fig. 4 is shown, when the fre-

quency is f1 = f0√
2

= 0.707 f0. In Fig. 6, the same as in

Fig. 4 is shown, when the frequency is f2 = 1.1 f0. Finally,
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Fig. 6. Same as in Fig. 4, when the frequency is f2 = 1.1 f0.

Fig. 7. Same as in Fig. 4, when the frequency is f3 = 1.5 f0.

in Fig. 7, the same as in Fig. 4 is shown, when the frequency

is f3 = 1.5 f0. Note that, in the latter case, f3− f0 = 0.5 f0.

It is apparent that the radiation properties of the array are

not significantly affected by the frequency change.

4. Conclusions and Future Work

Usually, a multi-antenna Ground-Penetrating Radar (GPR)

is simply conceived as a multi-channel radar system com-

posed of single-channel independent systems. Much more

can be achieved, if array-design techniques are employed

to synthesize the overall set of antennas. Such approach is

slowly starting in the GPR field and is definitely promis-

ing, as it gives the possibility to fully exploit the poten-

tiality of arrays.

In this paper, we have suggested and investigated the mul-

tiple circular-ring array, as a possible solution for a GPR an-

tenna array. The preliminary results that we have obtained

show that our idea is promising. The proposed structure

yields the possibility of a wide frequency band with a low

dynamic range ratio. Moreover, the synthesis can be eas-

ily performed at a single frequency within the range of

interest.

The natural continuation of this work is the design of a re-

alistic GPR array and the testing of its performance in a re-

alistic scenario.

For the design of the GPR array, two deterministic methods

may be used, i.e. the techniques presented in [14] and [15].

The former is based on an alternate projections approach

and requires a given array geometry. The latter allows an

optimization of the radii of the circular rings. The method

determines the array geometry starting from a dense grid

of fictitious elements and reducing their number iteratively.

This allows to optimize the array geometry and to meet

constraints on the copolar and crosspolar patterns, on the

dynamic range ratio, on the near field properties and on the

pattern reconfigurability.

For testing the array performance in a realistic scenario, the

open-source electromagnetic simulator gprMax [16] may

be employed, implementing the Finite-Difference Time-

Domain method.
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