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Abstract—Ground Penetrating Radar (GPR) systems are
nowadays standard inspection tools in several application ar-
eas, such as subsurface prospecting, civil engineering and cul-
tural heritage monitoring. Usually, the raw output of GPR is
provided as a B-scan, which has to be further processed in
order to extract the needed information about the inspected
scene. In this framework, inverse-scattering-based approaches
are gaining an ever-increasing interest, thanks to their capabil-
ities of directly providing images of the physical and dielectric
properties of the investigated areas. In this paper, some ad-
vances in the development of such inversion techniques in the
GPR field are revised and discussed.
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1. Introduction

Ground Penetrating Radar (GPR) imaging has attracted
a lot of interest in the last years. Nowadays, GPR sys-
tems are used in a great variety of research and ap-
plication areas, including civil engineering [1]-[3], ar-
chaeological and geophysical prospecting [4], and cultural
heritage monitoring [5]. Besides these classical areas, novel
applications, such as through-wall imaging [6], contam-
inant detection [7], [8], tunnel and underground facility
detection [9], and planet exploration [10], are attracting
an ever-increasing attention.

In order to obtain accurate GPR images, it is necessary
to carefully design the different parts of the system, rang-
ing from the acquisition hardware to the signal process-
ing algorithms needed to interpret the data. Moreover,
there are usually several requirements, such as portability
of the imaging systems, ultra-wide-band behavior, and lim-
ited coupling between transmitting and receiving antennas,
which must be suitably considered in the GPR design and
realization.

Concerning the data interpretation, there is also the need
for performing some preparatory steps. In fact, usually
scattered field extraction procedures must be employed in
order to isolate the scattering contribution in the measured
electromagnetic field data and to suppress the effects of
clutter [11]. Moreover, it is needed to obtain a satisfac-
tory estimate of the dielectric properties of the background
medium [12] and to develop appropriate forward scattering
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models [13], [14]. Antennas also represent key elements
in the development of effective imaging systems. In fact,
since they are located in close proximity with the ground
(or more generally, with the host medium) accurate antenna
characterizations are needed [15], [16].

Although GPR is now a standard inspection tool, there are
still open issues that must be faced in order to further en-
hance the imaging capabilities. In particular, GPRs usu-
ally provide the output images in the form of B-scans,
i.e. two-dimensional representations of the amplitude of
the acquired scattered field data versus position and time.
Such images can be quite difficult to interpret, especially
when dealing with complex embedding media. Significant
improvements can be obtained by reformulating the im-
age formation process as an electromagnetic inverse scat-
tering problem, where the main parameters describing the
inspected scene are retrieved by inverting a proper model
describing the scattering phenomena.

Several research groups around the world follow this point
of view and very interesting numerical and experimental re-
sults have been already reported in the scientific literature.
In this paper, some recent advances concerning the devel-
opment of inverse scattering procedures for GPR imaging
are revised and discussed.

2. GPR Imaging as an Inverse Problem

Subsurface imaging requires to solve an electromagnetic
inverse scattering problem [17], i.e. starting from measure-
ments of the scattered electric field collected in a proper
measurement domain (e.g. a line over the air-ground inter-
face), the aim is to retrieve some parameters describing the
buried targets. Such parameters can be the full distributions
of the dielectric properties or some features able to describe
the target (e.g. its shape and position). As it is well known,
such kind of problems turns out to be non-linear [18] and
ill-posed [19]. Consequently, special care is required in the
development of effective solving strategies.

2.1. Quantitative Electromagnetic Inversion

In the scientific literature, several methods have been pro-
posed for tackling this task, not only in the field of subsur-
face imaging [20]-[24]. When a quantitative reconstruc-
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tion is needed, e.g. when the aim is to retrieve the whole
dielectric distribution of the inspected region, the full non-
linear problem must be taken into account. In this case,
the imaging problem is usually recast as an optimization
problem. Newton-like iterative methods [25]-[27] and gra-
dient based solution procedures [28]-[30] are often used
in this case. However, such approaches suffer from local
minima problems [31], and thus are quite sensitive to the
availability of a suitable starting guess. Stochastic mini-
mization schemes have also been largely used [32]-[34].
These methods are in principle able to overcome the prob-
lem of local minima, but their numerical complexity is of-
ten higher than the one of deterministic approaches.

The imaging problem can be simplified by using linearized
scattering models, e.g. by exploiting Born or Rytov approx-
imations [17] in the case of penetrable scatterers and the
Kirchhoff one for metallic objects. It is worth noting that
the class of scatterers for which linear models effectively
work is limited, and consequently, they usually do not allow
a quantitative reconstruction. Anyway, such approaches are
able to detect, localize and provide rough information about
the scatterers’ shape [35]. Moreover, linear estimations can
be used to provide a starting point for non-linear quanti-
tative approaches. In all cases, ill-posedness still remains
an issue and consequently there is a need to employ some
regularization scheme able to increase the stability versus
noise [19].

2.2. Other GPR Imaging Techniques

In the framework of GPR imaging, migration algorithms
are still being used for obtaining qualitative reconstructions
of the inspected scene. Although such approaches have
been initially developed in the framework of seismic imag-
ing starting from qualitative concepts, they can be derived
from approximated linear scattering models [36]. Some
of the main approaches belonging to such class are back-
propagation [37], time-reversal [38], and omega-kappa al-
gorithms [39].

Beside the previous approaches, other qualitative methods,
aimed at directly retrieving only a limited set of informa-
tion about the embedded scatterers (e.g. their positions and
external supports), have also been proposed. The linear
sampling [40], the factorization, and the MUltiple SIgnal
Classification (MUSIC) methods [41] belong to this class
of inversion algorithms.

3. Recent Advancements in the
Development of Inversion Techniques
for GPR Imaging
In the last few years, several research activities have been

performed in order to increase the imaging capabilities
of GPR systems. In particular, beside the development of
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novel inverse-scattering schemes, also methods for back-
ground removal and clutter rejection, soil models and
medium estimation procedures, and GPR antenna model-
ing as well as deconvolution techniques have been pro-
posed. Moreover, efficient approaches for solving the for-
ward scattering problem by buried structures have also been
developed.

3.1. Nonlinear Inverse Scattering Methods

Concerning the development of novel inverse-scattering
schemes, several different approaches that extend and com-
bine various methods previously mentioned have been dis-
cussed and evaluated in the scientific literature. Iterative
multi-scale strategies have been proposed in [42]-[45], al-
lowing an efficient usage of the limited amount of available
information. In such techniques, the inspected area is it-
eratively reconstructed at different scales and at each scale
specific inversion methods are used to obtain a quantitative
reconstruction of the dielectric properties. Compressive
sensing techniques have also been successfully applied in
the field of GPR imaging [46]-[48]. In such approaches,
the imaging problem is recast as a minimization in L! func-
tional spaces. Consequently, sparse solutions (with respect
to a properly selected basis) are obtained. Non-linear inver-
sion algorithms performing a regularization in L” Banach
spaces (with p greater than 1) have also been recently pro-
posed in [49], [50]. Such methods have been found to be
very effective in reconstructing small targets and in reduc-
ing over smoothing and background artifacts with respect
to standard inversion in the Hilbert space (p = 2).

3.2. Linear Inverse Scattering Techniques

Linear strategies have been considered, too. For exam-
ple, in [51] a tomographic approach based on a truncated
singular value decomposition (TSVD) inversion procedure
has been compared to common procedures creating three-
dimensional images by interpolating two-dimensional re-
constructions. The problem of imaging buried targets from
airborne gathered scattered field data has also been ad-
dressed in in [52] by using linear techniques.

3.3. Qualitative Approaches and Sampling Methods

Concerning the use of qualitative techniques, subspace-
based approaches [53] and sampling methods [54] have
been found to be quite effective. It is worth noting that sam-
pling techniques able to provide quantitative reconstructions
have also been recently developed [55], [56]. Approaches
devoted to the localization and shaping of targets have also
been reported. As an example, a technique belonging to
this class has been presented in [57]-[59]. The positions of
buried targets are detected by estimating the scattered field
directions of arrival through subarrays processing followed
by a statistical filtering and a triangularization technique.
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Real-time detection of multiple buried scatterers has also
been attained by using learning based techniques such as
Support Vector Machines (SVM) [60].

3.4. Preprocessing Methods

Several novel algorithmic solutions have also been proposed
for the preprocessing stage needed to successfully apply in-
verse scattering methods. Concerning the background re-
moval and surface clutter mitigation problem, several strate-
gies have been proposed in the past. Although average trace
subtraction is often used for its simplicity, more effective
approaches could enhance the reconstruction quality. As
an example, in [61] a time-gating entropy based method is
presented, which is able to provide better reconstructions
than standard methods.

3.5. Soil Properties Estimation

The development of soil models and medium estimation
procedures is also of great interest. In fact, such infor-
mation is always required for correctly defining the elec-
tromagnetic models used in the inversion procedures. For
example, in [62] an efficient algorithm for the computation
of the time domain reflection coefficient in the transverse
magnetic (TM) case has been developed in order to better
characterize the surface reflections. In [63], [64] subspace
methods and learning-based strategies have been used for
the estimation of time delays, permittivity and roughness
parameters within pavement structures. Estimation of spe-
cific soil parameters (e.g., moisture and clay content) have
also been addressed in [65]. Moreover, in [12], [66], [67]
inversion approaches have been employed for determining
ground water contents in hydrological applications.

3.6. Inclusion of Advanced Antenna Models

Because of the complexity of the inverse problem which has
to be solved in GPR imaging, reconstruction procedures can
be significantly improved including detailed models of the
involved antennas [68], [69]. These models can in prin-
ciple allow to avoid the introduction of strong simplifying
approximations, which clearly degrade the inversion results.
The combination of far-field antenna models with a tomo-
graphic linear inverse scattering method (under the Born
approximation) has been proposed in [70]. More recently,
near-field models have been developed and included in in-
version techniques [16], [71], [72].

3.7. Validation of GPR Inversion Approaches

In the development of inverse scattering methods, the val-
idation of results is crucial. Frequently, inversion tech-
niques are tested using synthetic data, and sometimes with
experimental measurements (where experimental facilities
are available). However, it is difficult to compare dif-
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ferent approaches without a common benchmark. In this
respect, it is worth noting that in the framework of the
COST Action TU1208 “Civil Engineering Applications of
Ground Penetrating Radar” an open database of radargrams
is available [73]. This database, which contains both syn-
thetic and experimental data (e.g., radargrams of concrete
cells, roads, trees, columns, bridges, and so on) can be
exploited by researchers for testing and comparing the per-
formance of GPR inversion techniques. A contribution to
this initiative has also been represented by the GPR imaging
challenge organized within the IWAGPR 2017 conference
[74], where a simulated three-dimensional realistic land-
mine detection environment has been proposed.

4. Conclusions

In this paper, a brief overview about advanced inversion
techniques for GPR has been presented. GPR imaging can
be seen as an inverse scattering problem, in which the di-
electric properties of the buried targets have to be esti-
mated starting from measurements of the electromagnetic
field. With respect to free space configurations, the prob-
lem is more challenging. Therefore, the estimation of the
soil properties and the use of advanced antenna models
act important roles. Of course, several kinds of solution
techniques can be adopted. In particular, both quantita-
tive (linear and nonlinear) and qualitative approaches have
been considered, discussing some of the recent research
trends.
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