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Université Lille Nord de France, IFSTTAR, Villeneuve-d’Ascq, France

https://doi.org/10.26636/jtit.2017.120717

Abstract—The extraction of quantitative information from

Ground Penetrating Radar (GPR) data sets (radargrams) to

detect and map underground utility pipelines is a challenging

task. This study proposes several algorithms included in the

main stages of a data processing chain associated with radar-

grams. It comprises pre-processing, hyperbola enhancing, hy-

perbola detection and localization, and parameter extraction.

Additional parameters related to the GPR system such as the

frequency band and the polarization bring data sets additional

information that need to be exploited. Presently, the algo-

rithms have been applied step by step on synthetic and exper-

imental data. The results help to guide future developments

in signal processing for quantitative parameter estimation.

Keywords—buried pipes, dielectric characterization, GPR, ICA,

PCA, polarization, template matching, ultra-wide band.

1. Introduction

The rapid growth of buried utility networks of different

types (i.e., fiber optics, telecommunication lines, electrical

cables, water and gas pipes, district heating network) to

fulfill services in the urban landscape need mapping of the

underground to update urban cadastral databases, to con-

tribute to space saving and a wise use of land resources

when planning for new networks [1], [2]. Among non-

destructive techniques, Ground Penetrating Radar (GPR)

appears the most suitable device for locating and identi-

fying objects made of a dielectric or conductive solid or

hollow material buried within 1.5 m of the ground surface.

A few international organizations promote recommenda-

tions to properly use GPR in utility engineering, such as the

ASCE (CI/ASCE 38-02) and the ASTM (ASTM D6432-99)

international (2011) in North America [3], [4], EuroGPR

in Europe, and the CEI (306-08) in Italy [5]. Moreover,

European COST (Cooperation in Science and Technology)

Action TU1208 “Civil engineering applications of Ground

Penetrating Radar” [6] promotes applied research and emits

recommendations on GPR applied to civil engineering.

One of its working groups is devoted to utility detection and

mapping by GPR. In this work, ground-coupled radar sys-

tems have been employed because, compared to air-coupled

systems, the energy transfer of electromagnetic (EM) waves

in the sub-surface and the penetration depth is increased.

The moving of the GPR system along a linear path gives

a distance-time graph called radargram (also called B-scan,

a set of traces or A-scans), contains diffraction hyperbo-

las associated with buried dielectric discontinuities due to

the presence of circular-section objects that induce reflec-

tion with the emitted signal. It must be underlined that

only small circular-section objects generate hyperbolas in

radargrams. In the present work, the surveyed scenarios

hosted long pipes compared to the GPR central wavelength,

with a diameter shorter than 100 mm. The interpretation of

hyperbolas, that represent the signatures of the objects, is

a challenging task because several physical and geometrical

parameters (i.e., soil heterogeneity and variations, soil ab-

sorption, antenna coupling, antenna-target coupling, target

proximity) contribute to blur the information or mitigate

contrasts. Consequently, several processing methods are

developed in the literature because of the non-uniqueness

of the solution, and they are generally adapted to a field

situation because the EM problem is tedious.

Fig. 1. The several stages of the processing link for the quanti-

tative analysis of a radargram associated with buried targets.

Thus, the data processing chain synthesized in Fig. 1 has

been developed to particularly analyze theoretical and ex-

perimental data sets. The processing is made of two main
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stages associated with pre-processing and analysis algo-

rithms to extract quantitative information from the hyper-

bola signatures associated with detectable targets. The in-

formation is relative to the evaluation of the target location,

depth, size and dielectric nature. Attention has been paid

to clutter removal in the case of a shallow target depth

and a low permittivity contrast between the target and the

soil, and on hyperbola detection in the presence of multi-

ple targets and a heterogeneous soil. Parameters such as the

frequency band and polarization have been considered as

they can bring more detailed information from radargrams

with additional processing.

2. The Measurements

The acquisition of radargrams was achieved using several

GPR systems operating at frequencies ranging from 300

MHz to 1.5 GHz either in the time domain (GSSI SIR 3000,

UtilityScan DF) or in the frequency domain (a SFCW GPR

conceived in our laboratory). The SFCW (Step Frequency

Continuous Wave) GPR is a laboratory system and cannot

make at present fast measurements such as commercial sys-

tems. The sampling distance step was around 5 mm using

commercial GPRs, and defined to 40 mm using the labora-

tory system. The two types of GPR systems were used to

make comparisons, and results are presented in this paper

at 900 MHz.

The SIR 3000 was equipped with one of the three antenna

pairs operating at the central frequencies 500, 900 MHz and

1600 MHz, and the UtilityScan DF worked with a double

frequency antenna system at 300 MHz and 800 MHz that

is supposed to collect data at the same sampling distance

because the switching device is rapid enough during walk-

ing. Only the transverse magnetic (TM) polarization with

respect to the pipe axes has been considered because these

GPR systems only consider this polarization.

The SFCW GPR is made of a pair of shielded bowtie

slot antennas (A4 sheet size designed on a single-sided

FR4 substrate) has been used with a portable Anritsu MS

2026B Vector Network Analyzer (VNA) in the frequency

band [0.05; 4 GHz] (1601 samples, intermediate frequency

500 Hz, 2 m coaxial N cables) [7]. A full two ports cal-

ibration was made that allows to measure the four Si j( f )
coefficients.

Measurements in the frequency domain and in an Ultra-

Wide Band (UWB) offer the advantages of selecting if

needed a frequency band and shaping a Gaussian pulse as-

sociated with this frequency band, and using easily the po-

larization diversity. The complex transmission coefficient

S̃21( f ) measured at each scanning distance with a step of

40 mm is transformed in the time domain using an inverse

Fourier transform to obtain a radargram. An apodization

of each frequency curve has been made to smoothly extend

the measured band from 4 to 9 GHz, and then perform the

product with the spectrum of the excitation signal (the first

derivative of the Gaussian function with duration 0.5 ns)

used in Finite Difference Time Domain (FDTD) simula-

tions. Two symmetric antenna configurations have been

defined such as presented in Fig. 2 to consider two per-

pendicular polarizations: the end-fire configuration (or TM

mode) with both antennas aligned along their larger dimen-

sion, and the broadside configuration or transverse electric

mode (TE) with both antennas facing each other symmet-

rically along their larger dimension. The laboratory made

SFCW GPR has been easily modeled as all the antenna

characteristics and geometry are known.

Fig. 2. The two polarization configurations of the SFCW GPR:

(a) TM polarization (end-fire), and (b) TE polarization (broad-

side).

The measurements have been performed in two different

test sites:

• a large sandy box belonging to the public square

Perichaux in Paris 15th district [8]. The sand was

wet on the surface, and its permittivity has been esti-

mated to a real permittivity ε ′s. A couple of canonical

objects (pipe or blade) dielectric or conductive with

lateral dimension less than 25 mm have been buried

at a depth close to 160 mm. They have been sepa-

rated by a distance around 750 mm;

• an utility zone built under the urban test bed Sense-

City in Marne-La-Vallée (France) [9]. This zone is

under the 10 m wide traffic circle with lawn at

the center. The underground contains two series of

5 trenches parallel to each other with size 0.3×4 m

and separated by an offset of 40 cm (Fig. 3). Each

target has been positioned in the middle of a trench

at a depth ranging from 14.5 to 64.5 cm from the

4.4 cm thick asphalt surface. The two series of

trenches include dielectric or conductive pipes (di-

ameter 63 mm) and dielectric or conductive blades

(thickness between 1 and 3 cm). The pipes have been

filled with air or water. The trenches were filled

with a soil of fine elements (without gravels) com-

monly used in urban underground filling. The near

sub-surface is made of four main layers correspond-

ing to asphalt (layer 1), aggregate cement (layer 2),

a natural soil (layer 3), and a quite wet natural soil

(layer 4) located under a geotextile (a thin disconti-

nuity). The real permittivities of the soil layers have

been estimated as: asphalt (layer 1) ε ′1 = 4.5 (corre-

sponding to a time propagation of 0.64 ns), aggregate

cement (layer 2) ε ′2 = 7.7 (1.4 ns), natural soil ε ′3 = 34

(8.5 ns).
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Fig. 3. Structure of the sub-surface in Sense-City site: (a) the main multilayers of the soil, (b) geometries of the buried objects,

(c) distribution of the buried pipes and strips.

3. Modeling

A 3D full-wave FDTD modeling using the commercial soft-

ware EMPIRE has enabled to analyze EM phenomena as

a function of parameters such as soil and pipe permittiv-

ity, pipe depth, and antenna polarization and make com-

parison with experimental results [8], [9]. The complete

SFCW GPR made of a pair of shielded bowtie slot anten-

nas (frequency band [0.46 ; 4] GHz) and designed on a FR4

substrate (real relative permittivity ε ′ = 4.4 and thickness

e = 1.6 mm) has been modeled in the presence of a semi-

infinite soil [7]. Each antenna is enclosed in a shielded

conductive rectangular box filled with a three-layered ab-

sorbing foam with total dimensions 362× 23× 67.5 mm.

The offset between antennas in simulations and experiments

has been fixed to 60 mm, and the elevation hs above the soil

is hs = 40 mm. The soil electrical parameters (ε ′s, σs) are

assumed constant across the frequency range. The GPR

system is moved linearly on the soil surface with a step

∆y = 40 mm (see Fig. 2) to acquire a radargram. The ex-

citation signal generally used in the simulations is the first

derivative of the Gaussian function with a duration equal

to 0.5 ns (99% of the total energy) and begins at 0.33 ns.

4. Pre-Processing

The pre-processing step aims to prepare radargrams be-

fore analyzing the hyperbola signatures of sub-surface tar-

gets to extract quantitative information. After time scaling

and amplitude scaling (if needed), the main step consists

of clutter removal to reduce the reflection component of

the ground surface, direct waves between antennas, cou-

pling between the antenna system, and a shallow target,

as well as scattering induced by soil heterogeneities. The

clutter often hides target signatures because its amplitude

is far stronger and the arrival time is shorter. Several clut-
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Fig. 4. Pre-processing applied on a synthetic radargram issued from FDTD simulations: (a) geometry of the soil structure including

a buried conductive pipe probed by a pair of shielded bowtie slot antennas (TM polarization), (b) raw radargram, (c) radargram processed

by PCA, (d) radargram processed by PCA modified, (e) distribution of the PCs. (See color pictures online at www.nit.eu/publications/

journal-jtit)

ter reduction techniques were proposed in the literature and

their development is an active research topic because the

clutter is not uniform in a radargram, it is unsteady and it

has different types [10].

The methods proposed appear initially suited to targets

with small lateral dimension, overlapping hyperbola signa-

tures, varying clutter along the scanning direction (a non-

stationary signal), overlapped target and clutter signals in

time and frequency [11]. The semi-automatic methods

tested and compared are the mean or median subtrac-

tion [12], the Principal Component Analysis (PCA) that

has been modified and the Independent Component Anal-

ysis (ICA) [13], [14]. Basically, PCA relies on the second

order statistics to perform the correlation analysis, whereas

ICA requires higher order statistics (4th moment). Both

methods have the advantage of requiring limited prior in-

formation on the data set.

4.1. PCA

The objective of PCA is to express the original data set in

another domain by means of any appropriate linear transfor-

mation. PCA is a subspace projection method that is based

on either on a Singular Value Decomposition (SVD) or an

Eigenvalue Decomposition (EIG) to select relevant compo-

nents in different subspace projections [13]. Each eigen-

value is related to a certain eigenvector (principal com-

ponent), and the eigenvalues are ordered in the descending

order. The main problem of this algorithm is how to choose

the principal components where information is contained.
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Every eigenvalue represents a specific amount of variance

in measured data, and the objective is to obtain a new set

of uncorrelated data.

From the initial data matrix X(M ×N) (with M ampli-

tude signals A-scans and N time samples; M < N) the

first k1 components associated with the clutter and the last

N−(k2 +1) components associated with noise are generally

removed thus giving a new data set:

X0 =
k2

∑
k1+1

ui si vT
i , (1)

where ui and vi are eigenvectors.

However, difficulties can be met when the clutter does not

have the highest energy within the radargram in the case of

a target that induces a strong Radar Cross Section (RCS)

such as a conductive or a water filled target, or a high

contrasted dielectric target with the surrounding soil [15].

Moreover, it appears difficult to select the index rank de-

fined by k1 and k2 when there are multiple targets and

reflections. Thus, we have proposed to modify PCA and

apply the algorithm on a radargram with a reduced time

scale (investigation depth) and a splitting of the scanning

scale associated with a selected hyperbola signature into

3 parts. This splitting is based on an energy criterion that

compares energy in the apex area and energy in the arms.

This splitting allows to analyze separately the area close

to the apex and relative to the two arms as they show dis-

tinct amplitude value and interaction with the clutter. It

particularly concerns target response with high energy that

is comparable to the clutter energy.

An illustration of the application of PCA and PCA mod-

ified is presented in the case of a conductive pipe with

radius R = 12 mm (see Fig. 4a), buried at a depth d of

110 mm (that is, 3
4

of the wavelength λsoil at 1 GHz) in

a soil with real permittivity ε ′ = 3.5( d
λsoil

≈ 1 at 1 GHz),

that has been probed by the pair of bowtie slot antennas

used in the SFCW GPR (TM polarization). The data set

have been obtained from FDTD simulations (see Fig. 4b)

and, in this case, there is overlapping between clutter and

hyperbola response. The arrival times of the clutter and the

target are 3.4 and 3.9 ns, respectively. The PCs selected

represents 90% of the energy, the first one is removed as

it represents the clutter component (see Fig. 4e). The pro-

cessing by conventional PCA depicts visually bad perfor-

mance in reducing the coupling between antennas as part

of the horizontal component of antenna coupling remains

(see Fig. 4c). PCA modified preserves the target hyperbola

shape (see Fig. 4d) but it does not eliminate completely

the clutter over the apex, and a clutter remains in the time

interval 3. . .4 ns.

4.2. ICA

ICA has been recently proposed as an alternative to eigen-

vector decomposition in radar images as it has proved it-

self to be a very promising tool to better interpret non-

Gaussian heterogeneous clutter. ICA that is based on higher

order statistical moments, can recover statistical indepen-

dent sources and the mixing mechanism without having

any physical background of the latter [14], [15]. The ICA

model associated with a data matrix X that is assumed ran-

dom is generated from a source matrix S through a linear

process:

X = SA , (2)

where X is the matrix used in the PCA algorithm, S =
(s1,s2, . . . ,sN2) is the M×N2 source matrix (N2 ≤ N), and

A is the N2 ×N mixing matrix.

ICA assumes that the components of the source matrix

are statistically independent with respect to each other,

that makes ICA more efficient in the separation process.

Before processing with the calculations, X is transposed

(XT = AT ST ) and then ICA uses centering, whitening, and

dimensionality reduction algorithms as pre-processing steps

to simplify and reduce the complexity of the problem. The

FastICA algorithm (fixed-point algorithm first proposed by

Hyvärinen and Oja [15]) available in a Matlab package

leads to the determination of two sub-solutions: 1) the esti-

mation of the mixing matrix A, and 2) the estimation of the

source signals S. To measure the non-Gaussianity (the in-

dependence) of the sources a non-linear and non-quadratic

function, also called a contrast function, is used that helps

to optimize the performance of the ICA algorithm.

In this work, negentropy has been used to measure the

non-normality or the degree of unstructuredness of a ran-

Fig. 5. Pre-processing applied on the synthetic radargram of

Fig. 4a using ICA: (a) radargram processed by ICA, (b) Kurtosis

criterion applied on ICs.
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dom vector. Negentropy is non-negative and has a high

value for non-Gaussian variables. In practice, negentropy

is difficult to calculate and must be approximated, a solu-

tion proposed by Hyvärinen [15]. An iteration based on

the fast-fixed-point technique that uses random vectors as

starting values, allows to estimate step by step the sev-

eral independent components (ICs). Afterwards, the main

difficulty relies on the selection of ICs which contain in-

formation. The Kurtosis criterion applied to the ICs has

served to define a threshold beyond which the ICs selected

contain information.

As an illustration, the previous synthetic radargram associ-

ated with a conductive pipe buried at 110 mm depth has

been analyzed by the ICA algorithm. The results in Fig. 5a

show that the clutter is better reduced by ICA than by PCA

modified, as there is no artifact above the apex, however

a weak horizontal clutter remains visible. The Kurtosis

criterion applied on ICs are plotted in Fig. 5b.

4.3. Comparison Criteria between Processing

Algorithms

The visual comparison of the reconstructed images with re-

duced clutter provides a first qualitative assessment of the

algorithms tested. Attention has to be paid to spatial co-

herency along the scanning direction in such a way that the

visibility of a hyperbola must be strengthened as compared

to that of the clutter. Thus, a few tools have been used

to quantitatively compare the performance of the clutter

reduction algorithms.

Signal to Clutter and Noise Ratio (SCNR)

The ratio is defined as the average energy of the recon-

structed clutter-reduced image (represented by a matrix F

of real values fi, j with i = 1, . . . ,M and j = 1, . . . ,N) with

the average energy contained in the “noise” image (named

G with elements gi, j with i = 1, . . . ,M and j = 1, . . . ,N),

that is obtained by subtracting the raw image from the pro-

cessed image such as [17]:

SCMRdB = 10log
Ptarget

Pclutter+noise

=

10log

∑
i=1,N

∑
j=1,M

| fi, j |
2

∑
i=1,N

∑
j=1,M

(

|gi, j − fi, j|
)2

.

(3)

In practice, we don’t have the opportunity to acquire an im-

age without clutter and noise, that limits the interpretation

of the SCNR.

Peak Signal to Noise and Clutter Ratio (PSCNR)

Another parameter is the PSCNR that uses presently the

peak signal instead of its average energy such as [18]:

PSCNRdB = 10log
NM max(| f |)2

∑
i=1,N

∑
j=1,M

(

|gi, j − fi, j|
)2

. (4)

Again, this ratio has some limits.

Receiver Operating Characteristics (ROC) curves

ROC curves appear more appropriate to compare quanti-

tatively clutter reduction algorithms. The ROC curve is

simply a graph of detection versus false alarm probabilities

parameterized by a threshold S [19]. From a ROC curve

(1× 1 square region), fundamental information extracted

from metrics (in general area-under-roc-curve AUC) is de-

rived. A ROC curve is calculated by comparing pixel to

pixel two binary images, a reference image containing only

the desired information and the image processed by an al-

gorithm using a varying threshold S in the amplitude range

of the raw image. The reference image defined corresponds

to a skeleton of the hyperbola response including the first

positive and negative amplitudes. The threshold applied on

the raw image serves to compute a binary image to make

a comparison with the reference image.

As an illustration, these 3 parameters have been evaluated

for the radargrams of Figs. 4c-d (PCA), and also Fig. 5a

(ICA). The largest SCNR and PSCNR values belong to the

median subtraction technique (14 and 72.9 respectively),

and afterwards the better performances are attributed to

PCA modified and ICA. The ROC curves visualized in

Fig. 6 show that the curve associated with PCA is slightly

below the one issued from the raw data. The curve as-

sociated with PCA modified appears higher than the one

belonging to ICA.

Fig. 6. ROC curves associated with the different pre-processing

algorithms (median subtraction, PCA, ICA) applied on the raw

radargram of Fig. 4a.

As a conclusion, the median subtraction technique appears

a robust method for clutter reduction but it has its limits

in the case of the overlapping of clutter and hyperbola re-

sponse. As a conclusion, the median subtraction technique

appears a robust method for clutter reduction that has how-

ever its limits, in the case of overlapping between clutter

and hyperbola response. The PCA algorithm shows bet-

ter performance in the case of the relative pipe diameter
d

λsoil
≤ 0.7 and when there exists partial overlapping be-

tween clutter and hyperbola. When the hyperbola response

has a high amplitude, PCA modified improves the removing

of the clutter The ICA algorithm shows better performance

in the case d
λsoil

≥ 1 and without overlapping.
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5. Hyperbola Detection and Fitting

In practice, the difficulties encountered in hyperbola detec-

tion in a radargram rely on the heterogeneity of the back-

ground and a weak contrast between the hyperbola and the

background. Thus, we have proposed a semi-automatic de-

tection algorithm based on template matching that doesn’t

require a training period [20]. It is applied after a pre-

processing stage and is made of a series of steps:

• A template containing a typical hyperbola signature

is built, that is issued from synthetic or experimental

data. The template does not need to be fully similar

to the responses to be detected. When the hyperbolas

in the radargram cannot be detected by a single pat-

tern, several patterns can be used in sequence. Each

defined template includes a small portion of a hyper-

bola signature near the apex. It has to be scaled in

time, distance and amplitude to the radargram that

has to be analyzed.

• An amplitude distance map is calculated by trans-

lating on the radargram the predefined template at

every possible positions. A mean amplitude distance

is evaluated according to the L1 norm.

Assuming an observed image G with elements gi, j

or g(i, j) and size M ×N, and a template image T

with elements ti, j or t(i, j), both images with scaled

amplitudes, we define the L1 norm distance map E

between g and t by the following relation [18]:

E(m,n) =
M

∑
i=1

N

∑
j=1

|t(i, j)−g(i−m, j−n)| . (5)

The summation is evaluated at all pixels (i, j) of

the template t that is translated to all possible po-

sitions (m, n) along the observed image g. The po-

sition (m, n) at which the smallest value E(m, n) is

obtained corresponds to the best match between the

template t and the corresponding sub-image in g.

• A threshold value increased progressively by the user

allows to select a number of minima on the distance

map that corresponds to a high level of similarly with

the template.

• At the selected positions, the hyperbola points close

to the apex that correspond to a maximum or a mini-

mum amplitude have to be extracted. Because higher

order reflections in a hyperbola pattern may produce

a stronger amplitude as compared to the amplitude

of the first reflection, an user interaction is necessary

(semi-automatic) to select a hyperbola curve either

on the upper or on the lower half zone of the central

template position. Starting from the vertical symme-

try axis of the template, close points belonging to

the hyperbola curve on the left and on the right legs

(usually 3 or 4 points) are extracted step-by-step. Be-

cause the number of curve points extracted is limited,

a polynomial fitting of the second order was made to

refine the estimate of the abscissa y0 at the apex.

• The estimation of the several parameters describing

the hyperbola curve such as d, R, V , the target depth

and radius and the celerity in the soil, respectively

(see Fig. 7) is obtained using a hyperbola fitting of

the curve points to the classical analytical relation

according to the LS criterion. Parameters SR and y0,

representing respectively the center-to-center distance

between antennas and the horizontal coordinate of the

object, are a priori known. The position of the radar

referenced at the center of the system is located using

coordinate yk.

Fig. 7. Cross-view of a pipe buried in a soil and parameters

associated with the ray-path theory.

The equations associated with the travel-time write as fol-

lows [21]:
{

yT = yk −
SR
2

yR = yk + SR
2

, (6)











TT x2target =
[

(y0 − yT )2 +(d + R)2
] 1

2
−R

Ttarget2Rx =
[

(y0 − yR)2 +(d + R)2
]

1
2
−R

, (7)

where TT x2target and Ttarget2Rx represents the ray paths be-

tween the transmitter or the receiver to the buried object.

The velocity v of the medium depends on the real relative

permittivity ε ′s such as:

v =
c

√

ε ′s
; (ε ′′s ≪ ε ′s) . (8)

The generalized hyperbola equation (yk, tk) including the

antenna offset is expressed by:

tk =
TT x2target + Ttarget2Rx

v
. (9)

Thus, (y0, t0) represents the position in coordinate and

time of the maximum of the hyperbola. It must be un-

derlined that the hyperbola depends on five parameters

(SR, y0, d, R, v). In general, the pipe radius cannot be prop-

erly estimated, as it appears smaller than the radiating aper-

ture of one antenna (on the order of the first Fresnel zone

in the soil). The minimum of the sum of squares of the
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distances between theoretical yk,theo and measured yk,meas

data has been solved using the Gauss-Newton method as

follows:

F =
K

∑
k=1

(

yk,theo − yk,meas

)2
. (10)

Some constraints relative to the parameter ranges have been

added in the algorithm to better drive the solution.

The Hessian matrix in 2D and particularly its eigenvalues

can be used to characterize the uncertainties on the esti-

mated parameters (d, v).

5.1. Application to Experimental Data

In the sandy box of the public square Perichaux, Paris 15th,

the dielectric permittivity of the soil at this moment was

estimated to 3.5 from common mid-point (CMP) measure-

ments. Two targets, a 25 mm diameter dielectric pipe filled

with air and a thin horizontal 10 mm width (2 mm thick)

conductive strip were buried at the depths estimated to

160 and 170 mm respectively such as presented in Fig. 8a.

Both objects are separated by a 750 mm distance. The

scanning by the SFCW GPR has been performed in both

end-fire and broadside polarizations (see Figs. 2a-b).

A synthetic template was computed from 3D FDTD sim-

ulations (software Empire) considering the detailed bowtie

Fig. 8. Geometry of the sandy box with two buried objects,

an air-filled pipe and a horizontal conductive strip (a), synthetic

template issued from FDTD simulations involving a pair of bowtie

slot antennas (end-fire configuration) moved on a soil (ε ′s = 3.5,

σs = 0.01 Sm−1, hs = 10 mm) with a buried conductive pipe

(R = 12.5 mm) (b).

slot antenna geometry (Section 3) and 32 mm radius con-

ductive pipe buried in a soil with a real relative permittivity

ε ′ = 3.5 (σ = 10−2 Sm−1). The end-fire configuration has

been considered. In this template visualized in Fig. 8b,

it was wise to define a compact hyperbola signature with

reduced multiple reflections to further detect different hy-

perbolas in a radargram in both polarizations. The template

was scaled in time and amplitude to match the experimen-

tal time step ∆t = 5.56 ·10−2 ns (step distance 40 mm used

in the experiments), and the amplitude range of the experi-

mental radargrams. Signed amplitudes have been used here

to not deteriorate the image quality.

The template matching algorithm proposed has been per-

formed on experimental radargrams considering the two or-

thogonal polarizations after application of the median sub-

traction technique. Results are presented for the geometry

relative to Fig. 8a, and the time range has been defined to

5 ns. That leads to the L1 norm distance maps (also abso-

lute distance maps) visualized in Figs. 9a and 9c. The posi-

tion (m, n) at which the smallest value E(m, n) is obtained

corresponds to the best match between the template t and

the corresponding sub-image in g. A threshold value allows

to select a limited number of local minima corresponding

to distances less than the threshold where the template is

well matched with enough amplitude (visualized by “+”

signs on the radargrams). The maximum threshold values

leading to the detection of the most significant hyperbolas

are 0.162 and 0.195 in the broadside and end-fire configu-

rations, respectively (see Figs. 9b and 9d). Higher values

give additional detections (false alarms) that don’t corre-

spond to buried objects but to background heterogeneities.

In the end-fire polarization, the distance map cannot permit

to detect the air-filled pipe.

The results of the parameter evaluation from the least-

square (LS) fitting of each hyperbola detected are col-

lected in Tables 1 and 2. In general, the positions y0 of

the objects appear correctly evaluated. Concerning the real

permittivity value of the soil, the broadside configuration

gives higher estimates as compared to the end-fire configu-

ration, and consequently the target depths appear more im-

portant.

Table 1

Parameter estimation in the broadside configuration

for the experimental B-scan of Fig. 9b (max. is associated

with the detection of the positive amplitude)

Object
d R

ε ′
T0 y0

fval
[mm] [mm] [ns] [mm]

Pipe no. 1
200 60 3.6 3.08 458.9 2.68 ·10−2

(max)

Pipe no. 1
∼160 12.5 3.5–4 ∼500

(true values)

Strip no. 2
200 60 3.47 2.99 1232 2.23 ·10−2

(max.)

Strip no. 2
∼170 5 3.5–4 ∼1200

(true values)
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Fig. 9. Analysis of experimental radargrams (in pixels, time range 5 ns) associated with an air-filled pipe and a horizontal conductive

strip using the template matching algorithm: (a, b) in the broadside and (c, d) end-fire configurations; (a, c) time-distance maps,

(b, d) positions of the image template in the original B-scans and hyperbola fitting.

Table 2

Parameter estimation in the end-fire configuration

for the experimental B-scan of Fig. 9d

Object
d R

ε ′
T0 y0

fval
[mm] [mm] [ns] [mm]

Strip no. 2
165.6 25.5 2.65 2.82 1250 1.85 ·10−2

(max.)

From Table 3 that collects eigenvalues of the Hessian ma-

trix at the estimates of the depth and the velocity (d, v), we

remark that the depths of the pipe and the strip have been

both estimated to 200 mm, and more important than those

a priori known (see Fig. 8a). In the case of a soil having

weak permittivity variations, an additional step would be

to find an optimum permittivity value issued from the sev-

eral estimates. We remark that the objective function fval

associated with the LS fitting is presently higher for exper-

imental data than for synthetic data of the order of 10−2,

because the image quality appears lower.

To detect the air-filled pipe in Fig. 9d, joint information

from radargrams issued from the parallel and end-fire con-

figurations (polarization diversity) could be used. Thus,

the mean distance map was calculated from the individ-

ual distance maps in the broadside and end-fire configura-

tions (see Figs. 9a and 9c) leading to the result visualized

Table 3

Eigenvalues of the Hessian matrix at the estimates

of the depth d and velocity v from hyperbola fitting

in both polarizations

Configuration Eigenvalues for (d; v)

Parallel

Pipe no. 1 (4.1 ·10−5; 2.1 ·10−2)

Strip no. 2 (4.2 ·10−5; 1.9 ·10−2)

End-fire

Strip no. 2 (4.0 ·10−5; 9.6 ·10−3)
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in Fig. 10a. A weak threshold (0.18) situated between the

previous ones (0.162 and 0.195) associated with both po-

larizations (see Fig. 10b), has allowed here to detect both

hyperbolas without false alarms in the end-fire configura-

tion, that was not possible when this polarization was only

considered. Further insight into the solutions of the param-

eters estimated in the fitting has been gained by calculating

the Hessian matrix H at the stationary point to evaluate its

nature using its eigenvalues.

Fig. 10. Mean distance map in the parallel and end-fire configu-

rations associated with an air-filled pipe and a horizontal conduc-

tive strip (Fig. 8a) (a) and positions of the image template in the

experimental B-scan in the end-fire configuration (b).

The rate of convergence and sensitivity to round-off errors

is given by the condition number of matrix H, that is the

ratio of its largest to its smallest eigenvalues. In the present

examples, fixing the pipe radius that cannot be evaluated

properly has led to a decrease of the condition number.

The eigenvalues associated with the several fittings in both

polarizations are collected in Table 3. In general, the condi-

tion number is high, that means that correlation may exist

between the two parameters and thus the convergence of

the estimation algorithm appears slow.

6. Polarization Diversity

As a target can depolarize the incident field, thus giving

a scattering response depending and the orientation of the

antennas relative to the target, it is worth to exploit the

polarization to characterize the target, and its orientation,

particularly in the case of a long target such as a cylinder.

6.1. Analytical Modeling

The influence of the dielectric characteristics of a canonical

target such as a cylinder (index d) illuminated by a elec-

tromagnetic (EM) polarized plane wave is described by the

scattering theory [16], [23]. The backscattered fields de-

pend strongly on the orientation of the cylinder relative to

the antennas, its dielectric properties, and the radius of the

cylinder compared to the wavelength λ0 in the surrounding

medium (index 0). The medium is usually air, but can be

a dielectric material such as considered here. The scatter-

ing properties of a long cylinder has been described by the

Bessel and Hankel functions. The scattering width (SW) is

the equivalent area proportional to the apparent size of the

target (in the far-field zone) that scatters the field relative

to the incident power in each direction φ . Four expressions

associated with SW consider both TE and TM polariza-

tions and the case of a dielectric or a conductive cylinder

as follows [23]:

TE polarization

Conductive cylinder:

SW =
2λ0

π

∣

∣

∣

∣

∣

+∞

∑
n=0

εn
J′n(β0R)

H(2)′(β0 R)
cos(nφ)

∣

∣

∣

∣

∣

2

(11)

Dielectric cylinder:

SW =
2λ0

π

∣

∣

∣

∣

∣

+∞

∑
n=0

εn ×

×
ηdJ′n(βdR)Jn(β0R)−η0J′n(β0R)Jn(βdR)

η0Jn(βdR)H
(2)′
n (β0R)−ηdJ′n(βdR)H

(2)
n (β0R)

∣

∣

∣

∣

∣
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TM polarization

Conductive cylinder:

SW =
2λ0

π

∣

∣

∣

∣

∣

+∞

∑
n=0

εn
Jn(β0R)

H(2)(β0 R)
cos(nφ)

∣

∣

∣

∣

∣

2

(13)

Dielectric cylinder

SW =
2λ0

π

∣

∣

∣

∣

∣

+∞

∑
n=0

εn ×

×
η0J′n(βdR)Jn(β0R)−ηdJ′n(β0R)Jn(βdR)

ηdJn(βdR)H
(2)′
n (β0R)−η0J′n(βdR)H

(2)
n (β0R)

∣

∣

∣

∣

∣

(14)
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Fig. 11. Influence of the pipe radius and the real permittivity on the scattering width (SW) as a function of the frequency in the case

of (a, b) a conductive and (c, d) a dielectric air-filled cylinder (ε ′ = 1 in “c” and ε ′ = 9 in “d”).

where β0 and βd are the wavenumbers, associated with

the surrounding medium and the dielectric cylinder; they

can be complex. Jn(.) is the Bessel function of the first

kind of order n, J′n(.) is its derivative, H
(2)
n (.) is the Hankel

function of the second kind of order n, and H
(2)′

n (.) is its de-

rivative.

The simplified modeling of the GPR system considers that

the antennas, linearly polarized, are closely spaced. This

results to a backscattering angle corresponding to φ = 180◦.

Before analyzing theoretical and experimental B-scans, we

have studied the scattered responses SW in a very large fre-

quency band [0.2 ; 2] GHz considering several pipe radii

and two dielectric contrasts between the pipe and the sur-

rounding medium. The results collected in Figs. 11a-b,

in the case of a conductive cylinder with a radius in the

range 5 . . .40 mm, highlight that the TM polarization (elec-

tric field parallel to pipe axis) generally leads to a higher

backscattering response whatever the value of the real per-

mittivity value (ε ′0 or ε ′′0 = 0) of the surrounding medium.

We remark that the TE component oscillates under the TM

component for a radius higher than 5 mm. In general, the

scattering width increases with the pipe radius and when the

radius becomes large as compared to the wavelength of the

medium; at 2 GHz, λ0=75 mm for ε ′0 =4, and λ0 =50 mm

for ε ′0 =9. Consequently, the TM polarization is preferred

to detect a conductive pipe independently of its radius and

the wavelength of the surrounding medium. Figure 11c-d

associated with a dielectric cylinder show that the TE polar-

ization gives a higher SW when the radius value is inferior

to the wavelength and when the permittivity of the pipe

(here filled with air) is less than the medium permittivity

(ε ′0 = 4). When the pipe is more dielectric (ε ′0 = 9) than

the medium, we remark that the TM polarization is in gen-

eral higher than the TE polarization. We also observe that

for a radius greater than 10 mm, TE and TM components

oscillate and they can meet each other.

6.2. In-situ Measurements

The measurement results presented have been made in the

test bed Sense-City (see Fig. 3). To facilitate the subsequent

interpretation of vertical profiles with buried pipes, refer-

ence measurements were performed apart from the areas
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with buried objects to obtain the dielectric characteristics

of the multilayered soil. Using the commercial GPR GSSI

SIR 3000, a scanning has been acquired to identify the

several layers of the sub-surface. Consistently with the di-

rect observations during excavation, the raw radargram at

900 MHz (without time zero correction and clutter removal)

shown in Fig. 12 shows a soil made of four layers corre-

sponding to asphalt (layer 1), aggregate cement (layer 2),

Fig. 12. Experimental radargrams (B-scans) of the subsurface

without buried objects measured by the SIR 3000 system (linear

gain and low and high pass filters applied) at 900 MHz in the TM

polarization.

a natural soil (layer 3), and a wetter natural soil (layer 4)

located under the geotextile (a thin discontinuity). A sub-

layer of layer 3 (layer 3b) of natural soil under the aggregate

cement appears visible in this zone of the site and it is at-

tributed to a compacted layer of natural soil. This layer will

not be observed in the zone with the trenches because the

soil has been excavated. From the radargram at high res-

olution, we have estimated the real permittivities ε ′ since

we have an a priori knowledge of the thickness h of each

layer from the construction phase. According to Fig. 3a,

the real permittivity estimations of the soil layers are the

following: asphalt (layer 1) ε ′1 = 4.5 (0.64 ns), aggregate

cement (layer 2) ε ′2 = 7.7 (1.4 ns), natural soil (mean of

layers 3b and 3) ε ′3 = 34 (8.5 ns). Based on these results,

a mean real permittivity of 12.7 is derived (decomposition

in volumetric fractions).

Measurements have been made manually using the SFCW

georadar system on the pipe zone of the test site whose

cross section is presented in Fig. 13. The radargrams are

presented in the time domain in both TE and TM polariza-

tions (see Figs. 14a-b) considering a pulse with a peak fre-

quency at 900 MHz. Neither low pass, nor high pass filters

and nor time zero correction were applied here. The pipe

in T5 was filled with air. A linear time gain [–10 ; 20] dB

was applied to the radargram of Fig. 14a in the TE polariza-

tion (broadside). We remark in this figure that the air-filled

pipe at depth 30 cm in T4 shows a detectable hyperbola

signature (contrary to the SIR 3000 results). The signature

of trench T1 appears weakly detectable, certainly because

the distance step (4 cm) has not been defined here small

enough (this will be improved in the future). In the TM

polarization (end-fire), such as visualized in Fig. 14b, the

measurements were made in two sequences that explains the

vertical discontinuity in the radargram. In general, we re-

mark that all the hyperbolas appear strongly attenuated that

is consistent with the synthetic radargram obtained from

FDTD simulations [22].

7. Conclusion

In this work, signal and image processing techniques

have been collected with the aim of extracting quantita-

tive information from experimental radargrams containing

hyperbola signatures from pipes and strips with lateral di-

mension less than around ten centimeters. The difficulties

met in the analysis of GPR radargrams is the detection

of a hyperbola pattern in a noisy background, in a weak

image quality, with overlapping between signatures of the

clutter and one or multiple targets (particularly buried in

a shallow depth), and also the detection of a target with

a small lateral dimension and a weak contrast with a per-

turbed surrounding medium. The main objective was to

propose a data processing chain easily implementable to

analyze by steps radargrams made of hyperbola signatures

associated with relatively small pipes (less than 100 mm).

Thus, a semi-automatic data processing has been proposed

that is supposed to be adaptable to hyperbola signatures en-

Fig. 13. Cross-section of the pipe zone in the Sense-City test bed.
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Fig. 14. Experimental radargrams measured by the SFCW GPR

system in the: (a) TE (broadside), and (b) TM (end-fire) polar-

izations.

countered in a generally noisy and heterogeneous environ-

ment showing different dielectric contrasts with the tar-

gets. It has been observed that to remove the clutter, deep

and shallow targets must be distinguished. In the case of

a shallow target, which significantly influences the clut-

ter and the interface reflection, the PCA algorithm appears

in general more efficient than ICA. In the case of a deep

target, ICA appears to be more efficient than PCA. The

template matching algorithm has been adapted to the hy-

perbola detection by means of the definition of a adequate

template that represents a hyperbola shape close to the apex.

The template has been generated from FDTD simulations.

The algorithm has been validated on experimental radar-

grams, and has been extended to take advantage of data

sets that consider the polarization diversity. This addi-

tional parameter improves the algorithm robustness. Fu-

ture researches aim at applying the template matching al-

gorithm on radargrams with different target shapes (pipe

and cracks) and dielectric contrasts with the surrounding

soil. Improvement of the data processing chain could be

made by adding complementary algorithms such as space-

frequency time-reversal matrices [24], wavelet transform,

or hyperbola detection that accounts for hyperbola miss-

hapedness [25].
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