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Abstract—In this paper, a multi-objective approach is applied

to the design of aperiodic linear arrays of antennas. The

adopted procedure is based on a standard Matlab implemen-

tation of the Controlled Elitist Non-Dominated Sorting Ge-

netic Algorithm II. Broadside symmetrical arrays of isotropic

radiators are considered with both uniform and non-uniform

excitations. The work focuses on whether, and in which design

conditions, the aperiodic solutions obtained by the adopted

standard multi-objective evolutionary procedure can approxi-

mate or outperform the Pareto-optimal front for the uniform-

spacing case computable by the Dolph-Chebyshev method.

Keywords—antenna array, Dolph-Chebyshev array, genetic al-

gorithms.

1. Introduction

A deeper understanding of evolutionary mechanisms along

with an increasing availability of computational resources,

allow scientists to simulate natural evolution with computer

programs and use it as a new paradigm for problem solving

in physics and engineering.

Genetic algorithms (GAs) [1], [2] are robust population-

based global-search stochastic iterative methods inspired

by the concept of evolution by natural selection. GAs have

been successfully applied in many areas to a wide range of

engineering problems, and nowadays, they are largely ac-

cepted as useful optimization techniques. This is especially

true for antenna array design [3], [4].

The typical array design problem consists in finding posi-

tions and weight coefficients of the array elements, so that

the radiation pattern can satisfy a given set of design speci-

fications [5]. The main design parameters are: gain and di-

rectivity, beamwidth (BW) and half-power beamwidth, side-

lobe level (SLL), aperture, geometry, robustness, noise sen-

sitivity, bandwidth, dynamic range of current excitations,

input and output (radiated) power.

The synthesis techniques for linear arrays can be divided

into two main categories: one dealing with uniformly

spaced (periodic) arrays and the other with non-uniformly

spaced (aperiodic) arrays. The former problem is, at least in

some cases, analytically tractable [5], [6]. The latter prob-

lem is usually solved by numerical methods [7]–[14].

Aperiodic arrays are very attractive with respect to equally-

spaced arrays [10]. A first reason is that the SLL may be

improved over the –13.5 dB limit of uniform arrays, while

keeping a uniform excitation (provided that a suited number

of radiating elements is used and that the average spacing is

approximately equal to or less than half wavelength). Sec-

ond, when dealing with non-uniform excitations it is pos-

sible to reduce the amplitude tapering necessary to achieve

a required SLL. Third, aperiodic arrays may be realized,

in an assigned aperture, by using a reduced number of

elements (thinned arrays) with a limited increase of BW

and a significant reduction of the array cost. Fourth, by

breaking the array periodicity it is possible to improve the

bandwidth and reduce the grating lobes in the radiation

pattern even if the average spacing is high. Fifth, the mu-

tual coupling between adjacent elements can be reduced

thanks to the aperiodicity and to the longer average spacing

achievable.

Many numerical methods have been developed to face

synthesis problems for aperiodic arrays, including tech-

niques based on mathematical programming, such as con-

strained [8] and nonlinear [9] programming. Other nu-

merical optimization strategies have also been proposed,

based on the synthesis of a density-tapered distribution of

uniformly excited elements [7], [12], or of a combined

amplitude-density tapered distribution of non-uniformly ex-

cited elements [11], approximating a properly chosen con-

tinuous source. Stochastic global optimization techniques

based on meta-heuristics, such as evolutionary algorithms

(GAs, differential evolution), have been successfully ap-

plied to the antenna array design problem showing a high

flexibility [3], [15]–[27]. In [28], a comparison is presented

between different population-based optimization methods

applied to the design of scannable circular antenna ar-

rays: genetic algorithms, particle-swarm optimization and

the differential evolution method are considered.

In the array design, it is often necessary to simultaneously

satisfy two or more conflicting specifications, thus a trade-

off between objectives must be found. This is the case

where both SLL and BW must be minimized for a given

number of array elements. In this case, as it is known,
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none of those parameters can be improved without worsen-

ing the other: if the radiated power is fixed, in the presence

of a more directive main beam, there is also more radia-

tion in undesired directions; smaller side lobes, instead,

correspond to a larger main beam. Looking for the best

trade-off between SLL and BW is a Multi-Objective Op-

timization Problem (MOOP). For this class of problems,

GA-based methods are well-suited procedures, since they

are conceived to handle more solutions at the same time [2].

Despite of their proven effectiveness with MOOPs, few re-

search [17], [19]–[21], [23]–[25], [28], [29] treat the array

design as an evolutionary MOOP, whereas the problem is

often regarded as a single-objective optimization.

This paper deals with the problem of finding an opti-

mal SLL-BW trade-off, for aperiodic linear arrays, using

a GA-based technique. In particular, we aim to investigate

whether, by using a standard Multi-Objective GA-based

(MOGA) procedure, it is possible to synthesize aperiodic

linear arrays with a better SLL-BW trade-off with respect

to Dolph-Chebyshev [6] periodic arrays.

In [20], [21] Panduro et al. employed a standard MOGA

procedure called Non-Dominated Sorting Genetic Algo-

rithm II (NSGA-II) [30], to calculate the SLL-BW trade-

off curves for linear arrays with uniform and non-uniform

spacing. First, they validated NSGA-II in the uniform spac-

ing case by comparing its non-dominated set against the

Pareto front computed by using the Dolph-Chebyshev de-

sign method [6]. They observed that NSGA-II yields an

effective approximation to the front, regardless of the num-

ber of array elements. Subsequently, with reference to the

non-uniform spacing case they stated [20] that NSGA-II

is able to find a non-dominated front that outperforms

the Dolph-Chebyshev front for the same number of ar-

ray elements. The authors considered both the case of

non-uniform excitations [20] and that of uniform exci-

tations [21]. They assumed as a benchmark the results

obtained by applying the Dolph-Chebyshev method with

a uniform half-wavelength spacing. We believe that a more

appropriate benchmark be the optimal front for the periodic

case, computed by applying the Dolph-Chebyshev method

with optimum spacing, i.e. by using the maximum spac-

ing that allows to prevent grating lobes in the physical

domain. Accordingly, we here investigate whether by us-

ing a standard MOGA procedure it is possible to approx-

imate or outperform the SLL-BW Pareto-optimal front for

the uniform spacing case by means of evolved aperiodic

solutions.

The paper is organized as follows. In Section 2 the setup of

the MOGA procedure is presented and the adopted method

is described in detail. Section 3 presents numerical re-

sults. In particular, we first recall the main results from

our previous work [31] and analyze them more in depth.

Subsequently, we further extend our study by using the

adopted MOGA procedure to synthesize aperiodic arrays

with uniform excitations. Moreover, the optimization of

a third objective is performed: the power radiated by the

sidelobes. Section 4 concludes the work.

2. The Method

The standard MOGA procedure employed in this work

is a Matlab implementation of NSGA-II with Controlled

Elitism (CE-NSGA-II). This algorithm shows a better con-

vergence than the original NSGA-II [32]. We use the stan-

dard Matlab solver “gamultiobj” with the setup described

in [31].

We consider aperiodic linear arrays of isotropic elements

symmetrically arranged with respect to the array center,

with a real symmetrical distribution of the excitations.

Thus, the main beam will be directed to broadside. There

are two reasons for this choice. First, symmetrical excita-

tions make the design of the feed network and the com-

pensation of the mutual coupling effects easier. Second,

numerical results can be compared with broadside sym-

metrical Dolph-Chebyshev arrays.

Fig. 1. Array geometry: (a) odd number M = 2N +1 of elements,

(b) even number M = 2N of elements.

Geometry and notations are described in Fig. 1. When the

total number of isotropic elements is M = 2N +1 (Fig. 1a)

the array factor is given by:

F(θ ,I,D) =
2N+1

∑
i=1

Ii e j sign(i−(N+1))k di cosθ
, (1)

where sign(x) = 1 if x > 0 and –1 otherwise, θ is the an-

gle between the direction of observation and the array axis,

k = 2π
λ

is the wavenumber (λ being the radiation wave-

length), I = [I1, I2, . . . , I2N+1] is the vector of current excita-

tions, and D = [d1,d2, . . . ,d2N+1] is the vector of distances

between each array element and the array center. When the

total number of isotropic elements is M = 2N (Fig. 1b), the

array factor is given by:

F(θ ,I,D) =
2N

∑
i=1

Ii e j sign(i−N)k di cosθ
, (2)

where I = [I1, I2, . . . , I2N ] is the vector of excitation currents

and D = [d1,d2, . . . ,d2N ] is the vector of the distances be-

tween each array element and the array center.
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In the genetic representation, each individual is specified

by two vectors: the vector I of the current excitations and

the vector S = [s1,s2, . . . ,sM−1] of the separations between

adjacent elements. By exploiting the array symmetry, the

length of these two vectors can be roughly halved. More

precisely, the two vectors can be re-defined as follows: I =
[I1, I2, . . . , IN ] if M = 2N, I = [I1, I2 . . . , IN+1] if M = 2N +1,

and S = [s1,s2, . . . ,sN ] in both cases.

The array design problem is modeled as a bound constraint

MOOP, namely as a minimization one.

We first deal with two design objectives: SLL and BW.

In such a case, for the design of aperiodic non-uniformly

excited linear arrays with M isotropic elements, we have

the following formal MOOP statement: minimize ( f1, f2)
subject to I ∈ ∆1 and S ∈ ∆2, where the objective fitness

functions are f1 = SLL and f2 = BW, ∆1 = [0,1]L and

∆2 = [0.5λ , smax]
L, where L = N if M = 2N and L = N +1

if M = 2N + 1. The smax represents the maximum allowed

separation between adjacent elements (also called, spacing).

For what pertains the amplitude of the current excitations,

as the input power is not assigned, only normalized ampli-

tude values are of interest. Hence, we limit them to the

dimensionless range [0, 1]. Moreover, to neglect mutual

coupling effects, we bound the minimum spacing to 0.5λ .

Subsequently, an additional design objective is considered:

the power radiated by the sidelobes (SLP) is minimized.

The formal MOOP statement in this case becomes: mini-

mize ( f1, f2, f3) subject to I ∈ ∆1 and S ∈ ∆2, where the

objective fitness functions are f1 = SLL, f2 = BW and

f3 = SLP.

3. Results and Discussion

The used benchmark is represented by the trade-off SLL-

BW curves obtained by applying the Dolph-Chebyshev

method with optimum period (in the following referred to

as the Dolph-Chebyshev front).

It is apparent that for a fixed M, according to the Pareto cri-

terion of dominance [2], the Dolph-Chebyshev front domi-

nates the front of solutions adopted in [20], [21] and char-

acterized by a half-wavelength period.

In [31], it was shown that the evolved non-dominated so-

lutions from [20] do not outperform the right benchmark.

Except for a bit inaccuracy due to the numerical nature

of the method, the MOGA’s non-dominated periodic so-

lutions converge to optimum Dolph-Chebyshev solutions.

The genetic procedure synthesizes approximations of the

Dolph-Chebyshev front not only at objective value levels

(SLL and BW) but also at design variable levels (currents

and separations).

In [31], we also started the analysis of the non-uniform

spacing case. The CE-NSGA-II was used to synthesize ape-

riodic non-uniformly excited linear arrays, for different val-

ues of M, in two test cases: separations belonging to the

interval [0.5λ , λ ], as in [20], [21], and separations belong-

ing to [0.5λ , 5λ ]. The latter case was considered because

aperiodic arrays can control the grating lobes in the radia-

tion pattern, even if the average spacing is large. As a result,

it was shown that the evolved non-dominated solutions can

outperform Dolph-Chebyshev solutions when separations

belong to [0.5λ , 5λ ], i.e. when the MOGA procedure can

fully exploit the aperiodicity to control the grating lobes.

Unfortunately, this happens only when SLL > –13 dB. It

was also observed that, in the outperforming region,

evolved fronts cross Pareto-optimal fronts with a higher

number of elements. This behavior is known in the litera-

ture as array thinning [10], [33]. With an aperiodic array it

is possible to obtain almost the same SLL-BW trade-off as

a periodic array involving a higher number of elements.

Let us now study more in depth the non-uniform spacing

case.

Figure 2 shows the evolved front obtained for aperiodic non-

uniformly excited arrays, with M = 12 and separations be-

longing to the interval [0.5λ , 5λ ] (dotted line with circles).

In the same figure, the Pareto-optimal front is reported

(solid line, Dolph-Chebyshev). The evolved trade-off curve

between SLL and BW was computed over data collected

in 5 consecutive runs of the CE-NSGA-II. It can be appre-

ciated that evolved solutions outperform Dolph-Chebyshev

solutions when SLL is higher than nearly –13 dB as men-

tioned before, and that for lower SLL values the evolved

front follows the Dolph-Chebyshev front (a worse approxi-

mation is observed for SLL lower than nearly –22 dB).

Fig. 2. SLL-BW trade-off curves computed over data collected

in 5 consecutive runs of the CE-NSGA-II, with separations in

[0.5λ , 5λ ] against the Dolph-Chebyshev front computed by means

of the Dolph-Chebyshev method with optimum period.

For seven solutions of the evolved front, Fig. 3 shows ar-

ray factors, excitation amplitudes, and spacing distributions.

Each row refers to a different solution, identified by the

relevant sampling number. The first column reports array

factors, with angles in radians and amplitudes normalized

to the peak value. The second column shows array current

distributions, with amplitudes normalized to the maximum

current. The third column shows array spacing distribu-

tions (normalized to λ ). A horizontal solid line indicates

a separation of one wavelength.
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Fig. 3. Study of seven non-dominated solutions, sampled over the evolved front of Fig. 2. Each row refers to one of those solutions.

The first column illustrates array factors (amplitudes, normalized to the peak value, as a function of angle in radians). The second

column shows array current distributions, with amplitudes normalized to the maximum current. The third column shows array spacing

distributions (normalized to λ ). A horizontal solid line indicates a separation of one wavelength.

Observing rows 1 to 5 in Fig. 3, a transition can be

noted from solutions with an aperture wider than the cor-

responding Dolph-Chebyshev solutions, to solutions with

a comparable aperture. Solution 1 has all separations

greater than one wavelength, and a number of zeros in

the visible space much greater than the 22 zeros placed

in the visible space by the Dolph-Chebyshev method.

This result highlights the capability of aperiodic arrays

of controlling the grating lobes in the visible space at

the expense of an SLL value, which is only –4.23 dB.

From row 1 to 4 a lowering of the side-lobes is observed

as well as an increase of the beam width. Furthermore,

a reduction of the number of zeros in the visible space

occurs.
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Solution 5 is an aperiodic approximation of a Dolph-

Chebyshev array. The number of zeros in the visible space

is 22, the side-lobe pattern is almost uniform, all separa-

tions are smaller than one wavelength, and the mean spac-

ing is very close to the optimum period. From row 5 to 6

a transition occurs toward tapered current distributions, thus

achieving lower SLL values.

Finally, the Solution 7 witnesses the deviation of the

evolved front from the Dolph-Chebyshev one. The sidelobe

pattern becomes more irregular, losing two zeros in visi-

ble space. The aperture gets smaller than the correspond-

ing Dolph-Chebyshev solution, with an average separation

shorter than the optimal period. The current distribution

is still tapered to match the low SLLs. Thus, in this low

SLLs region the adopted MOGA procedure reveals to be

not able to efficiently exploit the array aperture, by putting

all zeros in visible space to shrink the beam width.

Fig. 4. Analysis of the distribution of separations obtained in the

evolved solutions with M = 12 non-uniformly excited elements:

(a) ratio between standard deviation and average spacing for each

evolved solution as a function of SLL, (b) number of separations

shorter than λ vs. SLL for evolved solutions with separations in

[0.5λ , 5λ ].

The spacing distributions of the presented evolved non-

dominated aperiodic solutions are further studied in Fig. 4.

In Fig. 4a, the ratio σ
s

between the standard deviation σ

and the average separation s is plotted as a function of

SLL for each evolved solution. Circles and crosses repre-

sent solutions with separations in [0.5λ , 5λ ] and [0.5λ , λ ],

respectively. The corresponding regression models are in

solid and dash-dotted line, respectively. This figure shows

that the MOGA procedure fully exploits the aperiodicity

of evolved arrays only in the region where the evolved

front outperforms the Dolph-Chebyshev front. In Fig. 4b,

the number of separations shorter than λ is plotted as

a function of SLL, for evolved solutions with separations in

[0.5λ , 5λ ]. It can be argued that the outperforming occurs

in a region of the SLL-BW plane where the MOGA proce-

dure synthesizes a larger array aperture to shrink the BW,

with separations longer than one wavelength. In fact, going

towards SLLs smaller than –13 dB, we notice a transition of

evolved solutions from arrays with all (or most) separations

longer than one wavelength (right side of Fig. 4b) towards

arrays with all separations shorter than one wavelength (left

side of Fig. 4b). When SLL < –13 dB, it is not possible to

find aperiodic radiating configurations with apertures sig-

nificantly larger than the corresponding Dolph-Chebyshev

solutions, taking simultaneously under control the entrance

of grating lobes in visible space.

Here a special case of symmetrical excitations is consid-

ered, which can highly simplify the design and realization

of the feed network – the uniform current distribution. The

CE-NSGA-II is used to synthesize aperiodic uniformly ex-

cited linear arrays for different values of M. The setup of

the algorithm is the same as that of the previous experi-

ment, except for the vector of current excitations, that now

is I = [1]L with L as in Section 2. The objectives are, once

Fig. 5. SLL-BW trade-off curves, computed over data col-

lected in 5 consecutive runs of CE-NSGA-II with separations

in: (a) [0.5λ , λ ], (b) [0.5λ , 5λ ], against the Pareto-optimal

fronts computed with the Dolph-Chebyshev method with optimum

period.
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again, SLL and BW. We distinguish two test cases: in the

first case the separations belong to the interval [0.5λ , λ ],

in the second one they belong to [0.5λ , 5λ ].

In Figs. 5a-b the numerical results obtained in the first and

second test case are shown, respectively. In particular, in

Fig. 5a the SLL-BW trade-off curves are plotted, computed

over data collected in 5 consecutive runs of CE-NSGA-

II (dash-dotted line) with separations in [0.5λ , λ ]. The

Pareto-optimal fronts computed with the Dolph-Chebyshev

method with optimum period are also plotted (solid line).

Figure 5b refers to the case where the separations are in

the [0.5λ , 5λ ] interval.

As in the previous experiment, Fig. 5 shows that the pre-

sented evolved non-dominated solutions can outperform

Dolph-Chebyshev solutions only when the separations be-

long to [0.5λ , 5λ ]. Again, this happens in a region of the

SLL-BW plane characterized by SLL > –13 dB. In both

cases it is possible to observe an interesting partial overlap-

ping of an evolved front with the Dolph-Chebyshev front

relevant to solutions with slightly fewer elements.

This result is of practical interest, since it can be exploited

to achieve the same array performances as non-uniformly

excited arrays with a slightly greater number of radiating

elements, but with uniform excitations. Moreover, when

separations belong to [0.5λ , 5λ ], it can be noted an array-

thinning effect in crossing points between evolved fronts

and the Dolph-Chebyshev fronts with a higher number of

elements (see Fig. 5b).

Fig. 6. Same as in Fig. 4 but with uniform excitations.

It is interesting to analyze the spacing distributions of pre-

sented evolved solutions. In Fig. 6, the same as in Fig. 4

is reported, but with uniform array excitations. It can be

observed that the MOGA procedure yields solutions with

a higher exploitation of aperiodicity with respect to the

case studied in Fig. 4, with an enhancement of this behav-

ior in the region where the evolved front outperforms the

Dolph-Chebyshev fronts. Again, this happens for a selec-

tion of arrays with greater array apertures with respect to

the corresponding Dolph-Chebyshev solutions.

Finally, we use CE-NSGA-II to synthesize aperiodic non-

uniformly excited linear arrays with minimal radiated power

in unwanted directions. For this purpose, the power radi-

ated in sidelobes normalized to the power radiated in the

main lobe is considered:

SLP =
PSL

PML

, (3)

where PSL is the radiated power in side-lobes and PML is the

radiated power in the main lobe. Therefore, the objectives

to be minimized are now three: SLL, BW and SLP.

In Fig. 7a, non-dominated solutions with M = 12 are

shown, computed over data collected in 5 consecutive runs

of CE-NSGA-II with 3 objectives (circles). Some represen-

tative solutions obtained by the Dolph-Chebyshev method

with optimum period are also reported (black triangles)

for SLL = –5, –10, –15, –20, –25 and –30 dB. Figure 7b

shows a comparison between the SLL-BW trade-off curves

computed by CE-NSGA-II with 2 (dash-dotted line with

black dots) and 3 (dash-dotted line with circles) objectives.

The latter curve is the result of the application of the Pareto

dominance criterion over data obtained from a projection

of the tridimensional front (shown in Fig. 7a) on over the

SLL-BW plane. For comparison, the Dolph-Chebyshev

front is also reported (solid line).

It is apparent that the introduction of the third objective

helps the MOGA procedure to converge towards fronts with

a better spread [27]. In fact, the fronts are calculated over

a wider range of SLLs. This is due to the synergy of the

third objective (SLP) with the first one (SLL) for solutions

approaching the Dolph-Chebyshev front, i.e. having almost

the same BW.

In Fig. 8, a comparison is presented between the array

factor of one evolved solution, sampled very close to the

Dolph-Chebyshev front, and the array factor of the corre-

sponding solution on the Dolph-Chebyshev front. The side-

lobe radiation pattern of the evolved solution appears irreg-

ular and tapered to keep minimized the SLP. The evolved

array considered in Fig. 8 has about the 33% of the SLP

corresponding to a uniform sidelobe pattern.

Examining the current distributions, similar tapering strate-

gies as in the Dolph-Chebyshev solutions are observed

when SLL < –13 dB. In Fig. 9 the same as in Fig. 4 is

reported, but with three objectives, and separations in the

[0.5λ , 5λ ] interval. In the outperforming region, there is

a greater exploitation of aperiodicity with respect to the

solutions computed with two objectives (and with separa-

tions in [0.5λ , 5λ ]). The higher aperiodicity in this SLL
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Fig. 7. Numerical result for: (a) non-dominated solutions with

M = 12 computed over data collected in 5 consecutive runs of CE-

NSGA-II with 3 objectives, (b) comparison of the SLL-BW trade-

off curves computed by CE-NSGA-II with 2 and 3 objectives. The

Dolph-Chebyshev front for M = 12 is also reported.

Fig. 8. Array factors for M = 12 and SLL = –20 dB of one

evolved solution obtained by means of CE-NSGA-II working with

three objectives (solid line) and of the corresponding Dolph-

Chebyshev solution (dashdot line).

region is exploited by the MOGA procedure to minimize

the radiated power in the reduced grating lobes, that are

visible due to the larger array aperture.

These results confirm that now we can approximate the

Dolph-Chebyshev front with aperiodic arrays of different

nature, and precisely aperiodic linear arrays with optimal

SLL-BW-SLP trade-off. It is worth to note that, as shown

Fig. 9. Same as in Fig. 6 when the objectives are three and

separations are in the [0.5λ , 5λ ] interval.

in Fig. 8a, the advantage over Dolph-Chebyshev solutions

in the reduction of radiated power in unwanted directions

gets smaller when SLL increases.

4. Conclusions

The main purpose of this work was to experimentally ver-

ify the capability of a standard Multi-Objective GA-based

(MOGA) procedure to synthesize aperiodic linear arrays

of antennas with a better trade-off between side-lobe level

(SLL) and main beam width (BW) with respect to Dolph-

Chebyshev arrays with optimum period. To this aim, we

considered symmetrical broadside arrays with isotropic ra-

diators, focusing on the problem of optimizing SLL and

BW simultaneously.

The adopted procedure is based on a standard Matlab

implementation of the so-called Controlled Elitist Non-

Dominated Sorting Genetic Algorithm II (CE-NSGA-II).

First, we recalled numerical results obtained in [31] for

aperiodic non-uniformly excited linear arrays. Those re-

sults furnish a better interpretation of CE-NSGA-II be-

havior, compared to results obtained by other authors in

previous works, where Dolph-Chebyshev solutions with

half-wavelength period were inappropriately utilized as

a benchmark. We adopted as a benchmark the SLL-BW

trade-off curves obtained by applying the Dolph-Chebyshev

method with an optimum period, here defined as the

Dolph-Chebyshev front. In the present paper, we demon-

strated that the evolved aperiodic solutions obtained by the

adopted MOGA procedure, as well as the aperiodic ones
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from [20], [21], cannot outperform Dolph-Chebyshev solu-

tions. They only yield an aperiodic approximation of the

Dolph-Chebyshev front, as long as the separations belong

to the [0.5λ , λ ] interval.

As a further step, we allowed the MOGA procedure to

fully exploit the capability of aperiodic arrays to take un-

der control grating lobes in the visible space by consid-

ering a wider range of separations, i.e. the [0.5λ , 5λ ] in-

terval. In this case, SLL-BW trade-off curves of evolved

non-dominated solutions outperform the Dolph-Chebyshev

front in a narrow region of the SLL-BW plane character-

ized by SLL > –13 dB. We also analyzed results with

respect to the spacing distribution: a higher exploitation of

the aperiodicity was observed by the adopted MOGA pro-

cedure in the region where the Dolph-Chebyshev front is

outperformed. In other regions, as long as the evolved front

follows the Dolph-Chebyshev front, the MOGA procedure

provides aperiodic approximations of Dolph-Chebyshev so-

lutions. The obtained results suggest that the evolved ar-

rays can outperform the Dolph-Chebyshev front thanks to

a greater aperture, which they exploit – by using a higher

aperiodicity – to take the grating lobes under control. An

extrapolation of the data set constituted by the first non-

outperforming points of the evolved fronts with respect to

the corresponding Dolph-Chebyshev fronts for each num-

ber of radiating elements considered in our previous exper-

iments [31] (shown in Fig. 10 of the present paper) sug-

gests that, by further increasing the number of radiating

elements, this behavior can be exploited only until a SLL

limit of about –13.2 dB.

Subsequently, we studied the attractive case of aperi-

odic arrays with uniform excitations. As in the previous

experiment, the evolved non-dominated solutions outper-

form Dolph-Chebyshev solutions only when separations are

longer than one wavelength, i.e. only when the adopted

MOGA procedure can synthesize aperiodic arrays with

Fig. 10. Extrapolation analysis of the first non-outperforming

points for different numbers of radiating elements. The data set

is obtained by the evolutionary synthesis of aperiodic arrays with

non-uniform excitations and with separations in the [0.5λ , 5λ ]

interval. The figure shows (with circles) the first non-outper-

forming points for aperiodic arrays with M = 6, 8, 10, 12 radiat-

ing elements and (with a solid line) the extrapolation polynomial

obtained by interpolation of the collected data.

a higher aperture and, thanks to a higher aperiodicity,

achieve a better control of the grating lobes. Again, this

happens in a region of the SLL-BW plane character-

ized by SLL > –13 dB. In all other cases, the evolved

non-dominated solutions belong to discontinuous fronts.

We also observed an interesting overlapping of evolved

fronts with Dolph-Chebyshev fronts with slightly fewer

radiating elements, which could be interesting for practi-

cal applications. By analyzing the spacing distributions of

the evolved non-dominated solutions, we noticed that the

adopted MOGA procedure provides solutions with a higher

level of aperiodicity with respect to the previous experi-

ment, with an enhancement of such behavior in the region

where evolved fronts outperform Dolph-Chebyshev fronts.

This was to be expected because, by assuming a uniform

current distribution, we have reduced the degrees of free-

dom of the problem, so that the optimizing procedure can

exploit only the spacing distribution.

In the last part of the paper, we extended the presented

multi-objective approach and introduced a third objective:

the minimization of the side-lobe power (SLP). We com-

pared the obtained results with the previous ones, calcu-

lated with only two objectives (SLL and BW). The in-

troduction of the third objective helps the MOGA proce-

dure to converge to fronts with a better spread and to find

new interesting solutions with irregular sidelobes, when

SLL < –13 dB, with radiation patterns different from those

of Dolph-Chebyshev solutions, but very close to them in the

SLL-BW plane.

In conclusion, the numerical results reported in this pa-

per shed light on whether and in which design conditions,

it is possible to synthesize, by using a standard MOGA

procedure, aperiodic broadside symmetrical linear arrays

with a SLL-BW trade-off competitive with optimal peri-

odic Dolph-Chebyshev solutions.
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