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Abstract—This paper deals with phase gratings working in

the paraxial domain. The profile of the optimum-efficiency

beam multiplier with an arbitrary number of output diffrac-

tion orders is derived in an analytic form by exploiting meth-

ods from the calculus of variation. The output beams may be

equi-intense or with arbitrary distribution of power. Numer-

ical examples are given for different values of the number of

output beams.

Keywords—beam multipliers, diffractive optical elements, grat-
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1. Introduction

Diffractive Optical Elements (DOEs) [1] that split a laser

beam into multiple output beams are used in many in-

dustrial and scientific applications, i.e. in optical signal

processing, laser manufacturing, interferometry, read-write

magneto-optic data-storage systems, and optical networks.

In several cases, the so-called polarizing beam splitters

are used [2], which divide an incoming beam into out-

put beams with different polarization states. More often,

beam multipliers are employed to replicate an incoming

beam into a set of output beams with identical polar-

ization state. The output beams may be equi-intense or

show a suitable distribution of power. To realize a beam

multiplier, binary Dammann structures are primarily

used [3], [4]. Continuous-phase gratings are also sometimes

realized [5]–[7].

The diffraction efficiency of a beam multiplier is the frac-

tion of the incident beam power that is converted into the

power of the desired output beams. Maximization of this

parameter is a fundamental target in designing beam mul-

tipliers. Usually, in the evaluation of the diffraction effi-

ciency, absorption and reflection losses are not considered.

The former is negligible and the latter can be reduced by

using suitable antireflection coatings.

Another important goal to be pursued in the design of beam

multipliers is the uniformity of the output beams (or the

achievement of the desired power distribution).

The upper bound of the diffraction efficiency of beam mul-

tipliers was derived and studied in [10]–[12], for diffractive

phase gratings working in the scalar domain. Obviously,

the maximum diffraction efficiency of real devices is gen-

erally lower than the upper bound. It is worth citing that,

by exploiting the further degree of freedom offered by the

polarization, in some cases it is possible to overcome the

efficiency upper bound and achieve 100% efficiency [13].

In this paper, we focus on phase gratings working in the

paraxial domain. We exploit mathematical methods from

the calculus of variations for solving the problem of find-

ing optimal profiles for diffractive beam multipliers and we

calculate their diffraction efficiency. The problem of opti-

mizing a phase profile is usually faced by using numerical

techniques [8], [9], whereas here the optimal profiles in an

analytic form are derived.

The present work is the continuation of previous studies,

where our research team concentrated on beam multipli-

ers with three [5], [14] and four [6] equi-intense output

beams. In particular, in [5], the profile of a DOE pro-

ducing three equi-intense diffraction orders with the max-

imum efficiency was derived in an analytic form. In [14],

a full-wave electromagnetic analysis of this beam multi-

plier was performed. In [6], the profile of a DOE produc-

ing four equi-intense diffraction orders with the maximum

efficiency was derived and its full-wave electromagnetic

analysis was presented. It is worth mentioning that in [15]

the optimum triplicator proposed in [5] was realized, ex-

perimentally tested, and compared to binary gratings of

Dammann type. Here, we generalize the procedure pro-

posed in [5], [6] and prove that an optimum-efficiency beam

multiplier with an arbitrary number of equi-intense diffrac-

tion orders exists. We derive its phase transmittance in an

analytic form. This phase transmittance can also be used to

design the optimum-efficiency beam multiplier with a fixed

power distribution.

The paper is organized as follows. In Section 2 the analyt-

ical derivation of the phase transmittance of the optimum-

efficiency beam multiplier is presented. In Section 3 nu-

merical examples for different values of the number of out-

put beams are presented. For each considered number of

output beams, we give the profile of the optimum beam-

multiplier and calculate its diffraction efficiency. Conclu-

sions and ideas for future work are given in Section 4.
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2. Theory

As is well known, in the paraxial domain the vectorial na-

ture of light can be neglected and the influence of a diffrac-

tive element on the illuminating wavefront can be described

by its transmission function [16]. Here the transmission

function of a phase grating producing an arbitrary number

of replicas of an incident field is obtained, with an arbi-

trary power distribution and with the maximum diffraction

efficiency (see Fig. 1).

Fig. 1. Scheme illustrating the operation of a phase grating acting

as a beam multiplier.

Let us consider a grating having the transmission function

τ(x) = eiΦ(x), where Φ(x) denotes the phase profile. With-

out loss of generality, in the following formulas we assume

a unitary value (in suitable units) of the grating period d.

Due to the periodicity of the structure, the following Fourier

series expansion holds:

τ(x) =
∞

∑
m=−∞

τmei2πmx
, (1)

where τm is the Fourier coefficient corresponding to the

diffracted order of index m having the following expression:

τm =

1
2

∫

− 1
2

ei[Φ(x)−2πmx]dx . (2)

We define M as the set of indices corresponding to the de-

sired diffracted orders. Generalizing the approach proposed

in [5], [6], we consider the functional:

I = ∑
m∈M

βm|τm|
2
, (3)

where βm are suitable positive multipliers and the sum in-

cludes the desired output diffracted orders. The first varia-

tion of I is

δI = ∑
m∈M

βmδ |τm|
2 (4)

and the first variation of the Fourier-coefficient square mag-

nitude is:

δ |τm|
2 =

= i

∫

ε(x)
{

τ∗mei[Φ(x)−2πmx]− τme−i[Φ(x)−2πmx]
}

dx , (5)

where the difference between a typical phase profile and

the optimum one has been denoted by ε(x). On imposing

that the first variation of I vanishes, we have:

∑
m∈M

βm|τm|sin (αm −Φ(x)+ 2πmx) = 0 , (6)

being αm the argument of τm. From Eq. (6) it follows that

cosΦ ∑
m∈M

βm|τm|sin(αm + 2πmx) =

= sinΦ ∑
m∈M

βm|τm|cos(αm + 2πmx) . (7)

Assuming that

R(x) = ∑
m∈M

βm|τm|cos(αm + 2πmx) (8)

and

Γ(x) = ∑
m∈M

βm|τm|sin(αm + 2πmx) , (9)

Eq. (6) can be satisfied if Φ(x) satisfies

cos[Φ(x)] = g(x)R(x) (10)

and

sin[Φ(x)] = g(x)Γ(x) , (11)

being g(x) a real arbitrary function. Therefore, the phase

distribution Φopt(x) maximizing the functional I assumes

the form:

Φopt(x) = arctan

[

Γ(x)

R(x)

]

+ πstep [R(x)] , (12)

where step(·) denotes the Heaviside step function, i.e., for

x ≥ 0: step(x) = 1, for x < 0: step(x) = 0. The parameters

αm and βm have to be chosen in such a way that all the

Fourier coefficients |τm| have the same magnitude, or else

they respect a fixed distribution. In this case, a maximum

of I is also a maximum of transmission efficiency and

Eq. (12) gives the profile of the optimum-efficiency beam

multiplier.

3. Numerical Results

Although the expression in Eq. (12) seems to be quite

complicated, the optimum profile assumes, eventually apart

from discontinuities, a simple and regular shape.

In Figs. 2 and 3, two different solutions for the four-beam

multiplier are reported. The phase distribution Φ(x) is plot-

ted as a function of x
d
.

The first solution works on the diffracted orders m =±1 and

±3. In this case, for symmetry reasons α1 = α−1, β1 = β−1,

α3 = α−3, β3 = β−3, it is possible to choose α1 = 0 and

β1 = 1. The following optimum values for the other two

parameters are found: β3 = 1.046 and α3 = 1.845. The

achieved diffraction efficiency is η = 91.9025%. This result

is consistent with [6].
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Fig. 2. Profile of the optimum 4-beam multiplier, working on

the diffracted orders m = ±1 and ±3.

The second solution works on the diffracted orders m=±1

and ±2. For symmetry reasons α1 = α−1, β1 = β−1, α2 =
α−2, β2 = β−2, it is possible to choose α1 = 0 and β1 = 1.

The following optimum values for the other two parameters

are found: β2 = 1.05 and α2 = 1.5883. The diffraction

efficiency turns out to be η = 94.1306%.

Fig. 3. Profile of the optimum 4-beam multiplier, working on

the diffracted orders m = ±1 and ±2.

These examples show that, for a given number of out-

put beams, different solutions are possible if there are no

specifications on the diffracted orders to be used. The sec-

ond solution presents an efficiency higher than the first.

However, in the first solution the output beams are equally

spaced. Both the presented solutions are even-phase grat-

ings. It is also possible to work on different diffracted orders

obtaining a four-beam multiplier with asymmetric phase

distribution. If the angular directions of the output beams

are not specified, then as part of the optimization prob-

lem it is necessary to determine which diffracted orders

have to be chosen to achieve the maximum transmission

efficiency.

It is observed that the first solution presents a discontinuity

in x = ±0.25d, whereas the second solution is continuous.

Note that, if a beam is splitted into an even number of odd

diffracted orders, the optimal phase distribution will always

have discontinuities.

In Fig. 4, a further example is presented. The profile of

the optimum-efficiency five-beam multiplier is plotted as

a function of x
d
. This grating works on the diffracted orders

m = 0, ±1 and ±2. For symmetry reasons α1 = α−1, β1 =
β−1, α2 = α−2, β2 = β−2, it is possible to choose α0 = 0

and β0 = 1. The following optimum values for the other

parameters are found: β1 = 0.459, α1 = −1.5708, β2 =
0.899, α2 = 3.1416. The diffraction efficiency turns out to

be η = 92.1%.

Fig. 4. Profile of the optimum 5-beam multiplier.

For each beam multiplier, the parameters αm and βm max-

imizing the transmission efficiency have been found by im-

posing a beam uniformity equal to 0.001 and by performing

a simple optimization search over a multi-dimensional grid

of possible values for the parameters. For sure, there are

better and faster ways of solving this optimization prob-

lem, but our aim was giving some numerical examples to

highlight theoretical work. For high values of the number

of output beams, this kind of optimization search becomes

computationally difficult and more sophisticated techniques

have to be applied to find the parameters αm and βm.

As already mentioned, we derived the profile of the

optimum-efficiency beam multiplier in the paraxial domain.

In the resonance domain, when grating-profile features have

transverse dimensions comparable with the wavelength of

the impinging radiation, the scalar diffraction theory fails.

To study the properties of a DOE rigorously, a full-wave ap-

plication of the electromagnetic theory is necessary. A rig-

orous treatment of the problem allows, for example, to un-

derstand the operational limits of a diffractive beam multi-

plier and study its angular response, as in [6] and [14].

The theory of propagation of electromagnetic waves in

periodic media is well developed [17]–[21]. An efficient

and versatile electromagnetic spectral-domain technique

96



The Optimum-efficiency Beam Multiplier for an Arbitrary Number of Output Beams and Power Distribution

that we suggest to apply for the full-wave investigation

of DOEs is the Fourier Modal Method. This approach

was originally developed for the characterization of two-

dimensional diffraction gratings, but nowadays is em-

ployed also for the modeling of two-dimensional photonic

crystals [22]–[25], crossed gratings and three-dimensional

photonic crystals [26], as well as electromagnetic band-gap

materials working in the microwave region of the frequency

spectrum [27]–[33].

4. Conclusions

This paper focuses on the problem of splitting a beam into

a set of equi-intense output beams, or in beams respecting

a fixed power distribution. The profile of the optimum-

efficiency beam multiplier, with an arbitrary number of

output diffraction orders, is derived in an analytic form;

methods from the calculus of variation are exploited. Nu-

merical examples are given, for different values of the num-

ber of equi-intense output beams. For a given number of

output beams, solutions with different angular directions of

the output beams are compared.

Ideas for future research activities include:

• checking the performances of the optimum beam

multiplier when a high number of output beams is

required,

• performing a detailed comparison between the opti-

mum beam multiplier and Dammann gratings,

• designing suitable antireflection coatings for the op-

timum beam multiplier and studying their effect on

the performance of the grating,

• carrying out a full-wave study of the optimum beam

multiplier by using a rigorous electromagnetic tech-

nique, such as the Fourier Modal Method,

• fabricating and measuring some prototypes.
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