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Abstract—This paper deals with the synthesis of flattop and

cosecant squared beam patterns using the firefly algorithm

which is based on metaheuristics. This synthesis is followed

by the correction of the radiation patterns when unfortunate

malfunctioning of the individual elements in the array occurs.

The necessary attention is given to the recovery process, with

due emphasis on reduction of side lobe level, ripple and the

reflection coefficient. Simulation in Matlab shows a success-

ful employment of the firefly algorithm in producing voltage

excitations of the good elements necessary for the recovered

patterns. The performance of the firefly algorithm in failure

correction is validated by duly comparing it with a standard

benchmark.

Keywords—cosecant squared pattern, failure correction, firefly

algorithm, flattop beam pattern, linear array, side lobe level.

1. Introduction

Past decades depict the importance of various shaped beam

patterns, like the flattop pattern or the cosecant squared

pattern, in a variety of applications relating to telecom-

munications. Many methods are being developed for the

generation of these kinds of patterns and, in addition, im-

portance is also attached to the various parameters that have

evolved out of the radiation patterns. The most significant

parameter is the side lobe level (SLL) referring to the ratio

of the peak of the main lobe to the peak of the side lobe

in the antenna array radiation pattern [1]. It is also the

most important factor in the optimization of antenna array

patterns. The higher SLL level, the bigger deterioration in

the pattern that will cause failures in one or more of the

antenna elements. These failures are represented by the

zero excitations elements. These failures affect not only

the SLL, but also many other parameters, like beam width

or reflection coefficient. The reflection coefficient (RC) de-

scribes how much of an electromagnetic wave is reflected

by an impedance discontinuity or a mismatch in the com-

munication medium. The RC value equals the ratio of the

amplitude of the reflected wave to the incident wave. Fail-

ures disturb the signal and force a correction to the patterns,

irrespective of the beams shape.

The best correction method is to replace hardware, if the

antenna array is easy to reach. This leads to a further in-

crease in cost and difficulty. On the other hand, there are

solutions relying on digital beam forming, using evolution-

ary algorithms, where – by modifying the excitations of

good (unfailed) elements – the failures can be corrected in

such a way that the recovered radiation pattern resembles

that of the original pattern in terms of radiation pattern

parameters as well as other parameters.

Literature review reveals many algorithms used in the past

that proved to be helpful. Depending on their concepts and

characteristics, each is proving to be better than the other.

Rodriguez and Ares [2] recovered the original pattern by

changing the amplitude and phase distributions separately

for both the sum and shaped beam patterns, successfully

using the simulated annealing technique. Yeo and Lu in [3]

presented numerous examples of single and multiple ele-

ment failure corrections using beam forming weights, rep-

resenting them directly by a vector of complex numbers.

Lozano et al. [4] synthesized the patterns by finding the

optimal configuration of the array factor roots, using the

simulated annealing technique in both sum and flat-topped

beam patterns. Rodriguez et al. applied the genetic algo-

rithm [5] in restoring the array pattern with three fail-

ures, by changing the amplitude distribution of less than

a third of the unfailed array elements. Yeo and Lu in [6]

utilized particle swarm optimization for the radiation pat-

terns correction during the failure of a few elements in the

array.

Active impedance [7] affects the patterns and its corre-

sponding parameters in terms of mutual impedance and

self-impedance. Synthesis of antenna arrays with a shade

of mutual coupling have been reported in [8]–[10]. To

quote a few works in the past concerned with shaped beam

patterns, Zhou et al. in [11] realized a 10-element flat-

top beam shaped linear antenna array, which gave a well-

proportioned power distribution in the required zone using

the genetic algorithm. Lei et al. [12] ] presented a cose-

cant squared beam pattern in a wide band integrated linear

printed array using a modified least square method by ma-

trix inversion, which can be directly used in surveillance

radar applications.

This paper proposes a synthesis of the flat top beam pattern

and the cosecant squared beam pattern, using amplitude and
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phase excitations, with a two-bit phase shifter for the flat

top beam and continuous phase for the cosecant squared

beam.

One of the recent evolutionary firefly algorithms (FA)

[13]–[15] has been used here to generate excitations, due to

its successful past usage in the field of antenna arrays [15].

The novelty of the approach presented in this paper consists

in the fact that the failure correction process is performed

for different shaped beam patterns, and active impedance

is duly taken into consideration during the processing of

both far-field patterns. The proposed algorithm is compared

with the well-known Particle Swarm Optimization (PSO)

algorithm [16]–[17].

2. Problem Formulation

The far field pattern in x-y plane for the linear antenna array

constructed of parallel half wavelength (λ ) dipoles equally

spaced at a distance d = 0.48 λ is given by:

FFP(φ) =

[

N

∑
n=1

Cne j(n−1)kd cosφ

]

·ElementP(φ) , (1)

where n represents the element number, N is the total num-

ber of array elements, φ is the angle measured from the x

axis to the far-field point, k is the wave number and Cn is

the excitation current of n-th element.

The element pattern of each dipole ElementP is assumed

to be omnidirectional within the plane taken into consid-

eration, and is substituted by a value equal to unity. The

expression for the self and mutual impedances are taken

from [7]. A sum pattern is produced in the broadside di-

rection using the current excitations obtained with the help

of the mutual coupling impedance matrix.

Fig. 1. Geometry of a linear antenna array with elements in the

x axis and placed parallel to z axis.

Considering the characteristic impedance Z0 of the feed

network to be 50 Ω, the reflection coefficient RC (in dB)

at the input of the a-th dipole antenna is given by:

RC = 20log
|ZA

a |−Z0

|ZA
a |+ z0

, (2)

where ZA
a is the active impedance of the elements. From

among all the elements in the array, the maximum of the

RC value is obtained. The active impedance of any failed

element is considered to be zero. The problem is to obtain

a new set of voltage excitations of the remaining non-failed

elements such that the corrected pattern resembles similar

to that of the original pattern in terms of the expected ra-

diation pattern parameters, i.e. SLL, ripple in the flat top

portion of the pattern, and RC. Similarly, for the restora-

tion of the cosecant squared pattern, a new set of voltage

and phase excitations for the remaining good elements is

generated in such a way that the corrected restored pattern

using the newly generated excitations resembles the original

pattern in terms of radiation pattern parameters.

The fitness function for generation of the original and the

corrected flattop beam pattern is:

Fitness = wt1F2
1 +wt2F2

2 +wt3F2
3 , (3)

where:

F1 =

{

SLLo −SLLd if SLLo > SLLd

0 if SLLo ≤ SLLd
,

F2 =

{

|rippleo
max|−rippled

max if |rippleo
max| > rippled

max

0 if |rippleo
max| ≤ rippled

max

,

F3 =

{

RCo
max if RCo

max > RCd
max

0 if RCo
max ≤ RCd

max

.

In Eq. (3), ripple refers to the difference between the max-

imum and the minimum value of the far-field pattern in the

desired flat top sector pattern. The “o” prefix stands for the

obtained values and “d” refers to the desired values with

the “max” suffix referring to the maximum obtained value.

The fitness function for generation of the original and the

corrected cosecant squared pattern is:

Fitness = wt1F2
1 +wt2F2

2 +wt3F2
3 +wt4F2

4 , (4)

where:

F1 =

{

SLLo −SLLd if SLLo > SLLd

0 if SLLo ≤ SLLd
,

F2 =

{

|rplomax|−rpldmax if |rplomax| > rpldmax

0 if |rplomax| ≤ rpldmax

,

F3 =

{

RCo
max −RCd

max if RCo
max > RCd

max

0 if RCo
max ≤ RCd

max

,

F4 =

{

|rpco
max|− rpcd

max if |rpco
max| > rpcd

max

0 if |rpco
max| ≤ rpcd

max

.
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In Eq. (4), rpl and rpc refers to the difference between the

maximum and the minimum value of the far-field pattern

in the desired flat portion (90 to 100◦) and the cosecant

squared beam portion (100 to 145◦) in the pattern.

3. Firefly Algorithm

The firefly algorithm [13]–[14] is based on the social be-

havior of fireflies or lightning bugs living in tropical and

moderate regions and known for their conspicuous usage of

bioluminescence during twilight to attract their correspond-

ing mates or prey. Only three rules related with fireflies

are used here. All the fireflies are attracted to each other

irrespective of their gender. The degree of attractiveness

is proportional to their brightness. The darker ones will

move towards the brighter ones. However, the apparent

brightness decreases as their mutual distance increases. If

no fireflies are available whose brightness would be higher

than a given value, the other fireflies will start moving ran-

domly.

The steps involved in this algorithm are given as below.

Initialization. The algorithm starts with the initialization

of the location of M fireflies in D dimensional search space,

with the searching boundary given by:

xmd(0) = randmd(0, 1)(xupper
md − xlower

md )+ xlower
md , (5)

where m = 1, 2, . . . , M and d = 1, 2, . . . , D. The xupper
md and

xlower
md are the corresponding upper limit and lower limits of

the d-th variable in the overall population with rand being

the uniformly distributed random value.

Light intensity. The next step is to determine the light

intensity (brightness) of each firefly at the current iteration

using the fitness function for optimization. This intensity

is inversely proportionate to the fitness function for every

firefly.

Updating of the locations. Each firefly moves towards

a brighter firefly and updates its position for the next it-

eration. The attractiveness factor β is relative and is also

judged by other fireflies. In other words, it will vary with

the distance between two fireflies. In addition, light inten-

sity decreases with the distance from its source, and light

is also absorbed by the medium. Thus, it is obvious to say

that the light intensity varies according to the inverse square

law. For a given medium with a constant light absorption

coefficient, the light intensity I varies with the distance r,
I = I0e−γr, where I0 is the original light intensity level. To

use the combined influence of absorption as well as the in-

verse square law, the light intensity is approximated using

the Gaussian form as I = I0e−γr2
.

As the attractiveness of a firefly is proportionate to the

light intensity observed by other fireflies, the firefly attrac-

tiveness β is β = β0e−γr2
, where β0 is the attractiveness at

r = 0. The attractiveness between the fireflies is:

xm = xm +β0 e−γr2
mp(xm − xp)+αεm , (6)

where γ is the light absorption coefficient whose value

depends on the characteristic features of the medium but

is fixed in a given medium, α is the randomization

parameter varying between 0 and 1, εm is a vector of ran-

dom numbers drawn from an uniform of Gaussian distribu-

tion, and the attractiveness between the two fireflies m and

p is given by the product of β0 and e−γr2
mp terms.

The Cartesian distance between two m and p fireflies is

given at xm and xp by:

rmp =‖ xm − xp ‖=

√

D

∑
d=1

(xm,d − xp,d)2 . (7)

The algorithm states that the brightest firefly cannot move

in any direction, whereas the remaining fireflies modify

their location accordingly at current generation. This pro-

cess is used to obtain the overall best result at the end

of the final specified number of iterations. The brightness

of the brightest firefly is regarded as the final best fitness

value.

The firefly algorithm parameters are as follows: random-

ness = 1, minimum value of β =0.2 and absorption coef-

ficient = 1. The settings for PSO are: inertial weight =
time-varying inertia weight changing randomly between U

(0.4, 0.9) with iterations, time-varying acceleration coeffi-

cients c1 (t) and c2 (t) to be 1.495 over the full range of

the search.

4. Simulated Results

4.1. Flat Top Beam Pattern

A linear antenna array containing 24 elements with spacing

of 0.48 λ along the x axis and situated parallel to z axis

is taken into account for simulation purposes. The voltage

excitation ranges from 0 to 1 with the binary phase shifter

generating only 0 and 180◦ phases. Moreover, the choice

of the initial population is random and the population size

is 48. The original pattern is obtained using FA and is

scheduled for 10 runs with 1000 iterations. For the gen-

eration of the original pattern, the values of wt1, wt2 and

wt3 are kept at 5, 15 and 1 respectively. The corrected pat-

tern is run 20 times with 1500 iterations each. And for the

corrected pattern, the values they are kept at 1, 3 and 3.

The choice of these values denotes the importance of the

concerned designed parameter associated therewith. Seven

elements out of 24 (29%) are taken as failed: V(3) = 0,

V(6) = 0, V(11) = 0, V(14) = 0, V(17) = 0, V(20) = 0, and

V(22) = 0. The choice of defective elements is random.

Table 1 shows that the original pattern without any failures

is generated by using the firefly algorithm as per the desired

ones. A random choice of 7 element failures deteriorates

the pattern resulting in a very poor SLL, as well as rip-

ples and RC. The two algorithms are made to engage in

generating the necessary amplitude and the binary phases

of the remaining unfailed elements and the results obtained

through the algorithms shows that the FA has flared far
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Table 1

Desired and obtained values of parameters for the flattop beam pattern

Parameters Desired values

Patterns

Original FA Damaged
Corrected Corrected

using FA using PSO

SLL [dB] –25 –25.278 –5.5891 –24.9873 –23.8248

Maximum ripple (70 to 110◦) [dB] ±0.5 0.40283 4.3745 0.54535 1.529

Maximum reflection coefficient 0.25 0.24786 4.3745 0.25793 0.53846

Mean – – – 32.12 175.83

Standard deviation – – – 11.82 62.72

Computation time [s] – 5661 – 16854 17032

Fig. 2. Original, damaged and corrected normalized power pat-

tern versus φ for flattop pattern using FA.

Fig. 3. Original, damaged and corrected normalized power pat-

tern versus φ for flattop pattern using PSO.

Fig. 4. Amplitude excitations vs. number of elements.

better than the PSO algorithm. Even though FA could not

fully meet the needs, it resulted in producing parameters

that are very close to the desired values. A magnitude

deficit of 0.0127 dB in SLL, 0.0454 dB in maximum rip-

ple and 0.00793 in RC is definitely a very low value and

this shows a good agreement between the desired and cor-

rected values obtained by using FA. A comparison with

PSO also reveals that FA has flared far better than PSO in

terms of all parameter values. This is sufficient enough to

prove that the former algorithm is better than PSO. The

patterns are shown in graphical form in Figs. 2 and 3.

Figure 4 shows the corresponding amplitude distributions.

A negative value in amplitude distribution represents a 180◦

phase.

Table 2

Desired and obtained values of parameters for the cosecant squared beam pattern

Parameters Desired values

Patterns

Original FA Damaged
Corrected Corrected
using FA using PSO

SLL [dB] –20 –21.2463 –6.3317 –19.691 –19.3237

Maximum ripple (90 to 100◦) [dB] ±0.5 0.2024 3.0963 0.53363 1.6616

Maximum reflection coefficient 0.25 0.25698 0.34199 0.27632 0.36964

Maximum ripple (100 to 145◦) [dB] 1 0.99394 5.1404 1.3294 1.8336

Mean – – – 81.64 129.42

Standard deviation – – – 68.47 79.83

Computation time [s] – 4200 – 25578 26428
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4.2. Cosecant Squared Beam Pattern

A linear antenna array of 18 elements along the x axis and

situated parallel to the z axis is taken into account for simu-

lation purposes. The element spacing is 0.48 λ . The origi-

nal pattern is run 10 times with 1000 iterations each and the

population size is 36. The corrected pattern is run 20 times

with 1500 iterations each and the population size is 72.

For the generation of both the patterns using FA, the

values of wt1, wt2, wt3 and wt4 are kept uniform. Five

elements out of 18 are taken as failed: V(3) = 0, V(5) = 0,

Fig. 5. Original, damaged and corrected normalized power pat-

tern versus φ for cosecant squared pattern using FA.

Fig. 6. Original, damaged and corrected normalized power pat-

tern versus φ for cosecant squared pattern using PSO.

Fig. 7. Amplitude distribution vs. number of elements.

V(8) = 0, V(13) = 0, V(17) = 0. The choice of the defec-

tive element is random. The voltage excitation ranges from

0 to 1 and phase ranges from –180 to 180◦.

Fig. 8. Phase distribution vs. number of elements.

The original pattern is successfully generated by the FA

algorithm. Both algorithms are made to engage in the re-

covery process and Table 2 shows that FA has once again

flared better than PSO. A magnitude deficit of 0.309 dB

in SLL, 0.03363 dB in ripple (flat), 0.02632 in RC and

0.3294 dB in ripple (shaped beam) is quite an acceptable

one and this also shows that there is a good agreement with

the desired and corrected values in the event of a failure.

Table 2 also shows that FA has flared far better than PSO

in the recovery process. The patterns are shown in Figs. 5

and 6. Figures 7 and 8 show amplitude and phase distri-

butions.

5. Conclusion

The simulation performed with the use of Matlab proves

successful usage of FA in most of the cases, and it edges

better over the benchmark algorithm in restoring the radi-

ation pattern and its associated antenna parameters. This

work can be extended in the future to failure correction

of shaped beam patterns in other geometries of antenna

arrays.
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