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Abstract—This study is concerned with a novel Monte Carlo

Tree Search algorithm for the problem of minimal Euclidean

Steiner tree on a plane. Given ppp points (terminals) on a plane,

the goal is to find a connection between all the points, so that

the total sum of the lengths of edges is as low as possible,

while an addition of extra points (Steiner points) is allowed.

Finding the minimum Steiner tree is known to be np-hard.

While exact algorithms exist for this problem in 2D, their effi-

ciency decreases when the number of terminals grows. A novel

algorithm based on Upper Confidence Bound for Trees is pro-

posed. It is adapted to the specific characteristics of Steiner

trees. A simple heuristic for fast generation of feasible solu-

tions based on Fermat points is proposed together with a cor-

rection procedure. By combing Monte Carlo Tree Search and

the proposed heuristics, the proposed algorithm is shown to

work better than both the greedy heuristic and pure Monte

Carlo simulations. Results of numerical experiments for

randomly generated and benchmark library problems (from

OR-Lib) are presented and discussed.

Keywords—Euclidean Steiner tree problem, MCTS, Monte

Carlo Tree Search, UCT algorithm.

1. Introduction

One of the most recent achievements in the field of com-

putational intelligence was the victory of the AlphaGo pro-

gram in the game of Go against human champion Lee

Sedol. The game of Go had been a challenge for com-

puter scientists for many years. AlphaGo has been based on

the mixture of deep learning algorithms [1] and the Monte

Carlo tree search approach [2]. Monte Carlo tree search

(MCTS) has proved to be a promising new search tech-

nique. Although the most spectacular successes of MCTS

come from the field of playing agents, MCTS is a general

search technique, and attempts have already been made to

apply this technique to other problems, such as planning or

optimization.

In this work, MCTS is applied to the problem of finding the

minimal Steiner tree on the Euclidean plane (ESTP). ESTP

is formulated as follows. Given p points called terminals,

connect them so that the sum of lengths of edges is minimal.

Additional intermediate points called Steiner points can be

added. If adding Steiner points is not allowed, the problem

becomes the task of finding the minimum spanning tree

(MST) for the given set of terminals, which can be solved

efficiently by algorithms such as Prim [4]. However, ESTP

is np-hard [5]. Figure 1 shows a minimal spanning tree

and a Steiner tree for a sample set of points. The sum of

lengths of all edges is smaller for the Steiner tree than for

the minimal spanning tree.

Fig. 1. A minimal spanning tree (a) and a Steiner tree (b) for

a set of points; Steiner points are marked with ”+”.

Many practical problems require to solve a two-dimensional

ESTP on a plane, or other versions of Steiner tree. There-

fore, the issue evokes broad interest. Three-dimensional

problems are also of practical concern. Such problems

emerge in VLSI chip layout design, distribution network

planning [6], wireless and sensor networks [7], robotics

and molecular structure modeling [8]. A good review of

Steiner tree applications can be found in [7], robotics and

molecular structures modeling [8]. Another good review

of Steiner trees applications can be found in [5]. Although

exact algorithms exist that enable to solve ESTP on a plane,

such as those proposed by Melzak [9], [10], Trietsch and

Hwang [11] and Smith [12], they are time-consuming, and

there is a need for new algorithms. New heuristics are still

being proposed [13]. Evolutionary algorithms have also

been proposed for various types of Steiner problems, such

as [14]. The MCTS algorithm proposed for ESTP is, to the

best of the author’s knowledge, truly unique.

Motivations and contributions of this work are as follows.

Firstly, it is the first time the Upper Confidence bound

for Trees (UCT) algorithm has been applied to the Steiner

problem. Secondly, while exact algorithms related to the

Euclidean Steiner problem in 2D exist, the proposed algo-

71



Michał Bereta

rithm can serve as a heuristic to provide fast preliminary

solutions.

Many Steiner problems, such as in higher dimensions, re-

main unsolved, and the proposed algorithm can be treated

as the first attempt to approach these problems with MCTS.

The rest of the paper is organized in the following manner.

In Section 2, MCTS is introduced as a general search al-

gorithm together with its more specific version, which uses

upper confidence bound (UCB) as a policy to guide the

search process. In Section 3, the most important properties

of Euclidean Steiner trees are described, which enable to

formulate a simple heuristic and a greedy search technique.

This heuristic is further combined with MCTS in Section

4 to propose a new algorithm for ESTP. Several possible

improvements are also discussed. In Section 5, the results

of numerical experiments are presented and analyzed. By

using proper statistical procedures, the results of the pro-

posed MCTS for ESTP are compared with the results of the

greedy search method and simple Monte Carlo simulation.

Additionally, the ability of the proposed algorithm to find

the correct solutions is tested on the benchmark problems

from OR-Lib [15], for which the exact solutions are known.

Finally, the conclusions are drawn in Section 6.

2. Monte Carlo Tree Search

In many instances, searching for a solution to a given prob-

lem can be represented as traversing the nodes of a tree. In

most cases it is impossible to visit all the nodes efficiently.

Therefore, heuristics are used to make a decision about the

most promising nodes that should be visited to maximize

the reward (e.g. the probability of winning the game). In

Monte Carlo (MC) simulations the approach is based on

randomly sampling the search space and averaging the re-

sults. It has proved to be successful in many problems. In

the game theory, it was proved that the process of MC sim-

ulation could accurately estimate the expected reward of an

action [16]. The idea of combining Monte Carlo simula-

tion with searching the tree was proposed for the first time

in 2006 by Coulom [17]. The core idea of the proposed

method is to take random samples in the search space of the

given problem domain, and to build the search tree based on

the results. The search tree itself is involved in the simula-

tion, and its structure is constantly expanded by deepening

those parts that seem to be more promising, based on MC

estimates available at a given time. The whole process of

MC tree search is usually described as consisting of four

phases, which are described below.

Selection. After starting a new simulation run in the root

of the tree, a child node is selected based on the so-called

tree policy, and the selected node becomes the current node.

This process is repeated until a leaf of the current tree is

reached. Tree policy dictates which child node should be

chosen for traversing next. It is crucial for the tree policy

to balance between the exploitation of the most promising

nodes (i.e. nodes with the biggest value of the expected

reward) and exploration of other nodes, which might not

have yet revealed their true potential.

Expansion. If the leaf that has been reached does not

represent a final state, the tree is expanded by adding child

nodes to the current leaf. Usually, all possible child nodes

are added, and one of them is selected, possibly in a random

way. In the future passes MCTS will prefer child nodes not

yet visited or selected based on the tree policy (selection

phase).

Simulation. If there are no further nodes to be visited at

the current depth of the tree, the search process is simulated

based on the so-called default policy, until the final state is

reached and the value of the reward is known. The easiest

way is to use a random simulation, although some simple,

problem-specific rules may bring significant improvements.

Using them may, however, decrease the simulation speed.

During this step, no new nodes are added to the tree.

Backpropagation. The information about the received re-

ward is backpropagated through all the nodes that were vis-

ited in the given simulation run, up until the root is reached

and updated as well. Each node has to store at least infor-

mation about the number of simulations that went through

this node, and the average reward received from these sim-

ulations.

At the beginning, the search tree consists only of the

root node. The tree is then built asymmetrically, as more

promising nodes will be visited more often and new child

nodes will be added in the more promising parts of the

tree. Most researchers use a reward function, which as-

sumes values from the [0, 1] range. The goal of MCTS

is to find the decision, which maximizes the expected re-

ward. It means that in the state described by the root node,

the action leading to the root’s child node maximizing the

expected reward should be selected.

MCTS is well suited for problems in which the final state

is guaranteed to be reached in a finite number of steps.

It has several significant advantages. One of the most promi-

nent ones is that there is no need to know any function to

evaluate the intermediate states. This information is neces-

sary only in the final state (e.g. after winning the game)

and is then backpropagated through the nodes. This is un-

like in the case of alpha-beta search. Also, MCTS can be

stopped at any time and the current best solution can be

given as a result. The general MCTS is presented as Algo-

rithm 1. In the description, the term terminal node refers

to the final state of the search (such as winning the game),

and should not be confused with terminals in the Steiner

problem.

The crucial part of the MCTS algorithm is the tree pol-

icy. The most widely applied approach is based on UCB

proposed in [18] for a k-armed bandit problem. Each of

the k arms of the bandit is defined by a random variable

(interpreted as a reward), independent and identically dis-

tributed as the others, with an unknown expectation value.

The goal is to develop (based on past rewards) a policy

of selecting which bandit to play in order to maximize the

reward. There is a straight-forward similarity to the prob-

lem of choosing a child node in MCTS. In [19] it was pro-
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Algorithm 1: General MCTS

Input: root node root

Output: best child of root

while enough computational resources do
leaf = SimulateWithTreePolicy(root)

if leaf is not terminal node then
new node = Expand(lea f )
reward = SimulateWithDefaultPolicy(new node)
UpdateTreeStatistics(new node,root,reward)

else
reward = Reward(lea f )

UpdateTreeStatistics(lea f ,root,reward)
end

end

return BestChild(root)

posed to use UCB1 (a version of UCB) as the tree policy.

Combing MCTS and UCB1 used as the tree policy results

in an algorithm named Upper Confidence Bound for Trees

(UCT). In this algorithm, in the selection step of the MCTS

procedure, being in the current node, an i-th child node is

selected to maximize the UCT value given as:

UCT = ri +C

√

2lnn
ni

, (1)

where ri is the average reward received in simulations go-

ing through i-th child node, ni is the number of times i-th
child node has been visited, n is the number of simulations

going through the current (parent) node, and C is a constant

value responsible for balancing between exploration and ex-

ploitation. In the case of UCT version of MCTS, reward

value is expected to be within [0, 1]. From Eq. 1 it can be

seen, that nodes with a higher average reward are preferred.

However, their attractiveness decreases when they are vis-

ited many times (when ni increases). It means that other

nodes will be visited as well. In the special case when

ni = 0, this node is preferred before others. A significant

finding of UCT is that given enough time and resources, the

probability of selecting a suboptimal child node in the root

converges to zero at a polynomial rate, with the number of

simulations growing to infinity [19]. The UCT algorithm

(i.e. Algorithm 1 with UCB1 used in “SimulateWithTree-

Policy”) will serve as a basis for the proposed algorithm

for ESTP, as presented in Section 4.

3. Simple Heuristic for the Euclidean

Steiner Tree Problem

In this section, the most important properties of Steiner

trees is introduced and a measure of the quality of the

candidate solutions is presented. Then, a special case of the

problem for three terminal points is described. Based on its

solution, a simple heuristic and a greedy search procedure

are proposed to solve the ESTP for any number of terminals.

3.1. Basic Properties of Steiner Trees

Properties of Steiner trees have been studied for decades

by many researchers. The readers interested in the detailed

introduction are referred to [5]. Here, only the properties

essential to the proposed algorithm are presented.

Property 1. Steiner minimal tree (SMT) for a set T of

terminals has at most p−2 Steiner points. It is possible that

no Steiner point (additional point) is necessary to connect

the terminals with the minimum total length of edges. In

this case, SMT equals the minimal spanning tree (MST)

for the points in T .

Property 2. Degree property. In a Steiner tree, each

Steiner point has exactly the degree of three (i.e. it is inci-

dent with exactly three edges).

Property 3. Angle property. Any two edges (from among

three, see property 2), incident with the Steiner point, make

exactly 120◦ with each other.

Figure 1 presents a minimal spanning tree and a Steiner

tree. It can be observed that properties 1–3 are satisfied. It

should be mentioned that a given set of Steiner points that

satisfy the properties above, does not necessarily constitute

an optimal solution. Properties 1–3 are the necessary con-

ditions for a set of candidate Steiner points. It is possible

to build a Steiner tree which satisfies the three properties

and yet it is not the optimal tree.

The common criterion to compare the candidate solutions

in ESTP is to calculate the so-called Steiner ratio for each

candidate Steiner tree. The general procedure is as follows.

Having a set of terminals T and a set of candidate Steiner

points S, let P = T ∪S. Build the minimum spanning trees

for T and for P. Then, the Steiner ratio is defined as:

ρ =
L(MSTP)

L(MSTT )
, (2)

where L(.) is the total sum of lengths of edges from the

corresponding tree, MSTT and MSTP are the minimal span-

ning trees for the terminals and a set of points created by

combining terminals with Steiner points, respectively. This

criterion is minimized for the solution of the considered

problem of finding the minimum Steiner tree. However,

it can be calculated for any set of points S, even points

which do not satisfy the required properties. For that rea-

son, Steiner ratio is a useful criterion that can be used in

any heuristic search algorithm.

3.2. Fermat Point

The task of finding the minimal Steiner tree was first in-

troduced by Fermat as the problem of finding a point with

a minimum distance from other three points that are given.

Later the problem has been generalized by allowing any

number of given points (terminals T ) and any number of

additional points (Steiner points S), while the task was

to interconnect all terminals, achieving the minimum to-

tal length of all edges. The original question formulated by
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Fermat can be given as follows. For a given set of three

points on the Euclidean plane, A, B, and C, find point F
(called Fermat point), such as for any other point F ′ the

condition is satisfied:

|F ′A|+ |F ′B|+ |F ′C| > |FA|+ |FB|+ |FC| . (3)

This is, in fact, ESTP for a set of three terminals, and it is

known from the property 1, that at most one Steiner point

can be present in the optimal solution. This problem can

be solved easily. Two situations are possible. If points A,

B and C form a triangle in which all internal angles are

smaller than 120◦, then the only Steiner point is located at

the Fermat point F of the triangle. The SMT is equiva-

lent to the minimum spanning tree (MST) including three

triangle points and the Fermat point. In the second case,

if there is an internal angle equal to or greater than 120◦,
the Steiner point is incident with the triangle vertex (A, B
or C) in which the two sides of the triangle meet at 120◦

degrees or more. The Steiner minimum tree (and the solu-

tion to the original Fermat problem at the same time) is the

MST spanned on the three triangle points. The procedure

of finding the Fermat point can be formulated in several

ways. One of them can be given as follows.

Given three points A, B, and C on the Euclidean plane,

if ]ABC ≥ 120◦ or ]BAC ≥ 120◦ or ]ACB ≥ 120◦, then

return B, A or C as the Fermat point, respectively. Other-

wise, select any two sides of the triangle ABC. Construct

an equilateral triangle on each of the chosen sides. Find

two lines, going through each new vertex of the constructed

triangles and their opposite vertices of the original triangle.

The Fermat point F is the point of intersection of the two

lines.

3.3. Greedy Heuristic for ESTP

It can be observed that the Steiner tree is inherently con-

nected with the procedure of building the MST. If the set

of Steiner points is given, the Steiner tree can be found by

calling one of the efficient algorithms for MST construc-

tion, such as the Prim algorithm [4]. However, this section

proposes a simple heuristic, which considers the problem

from another point of view.

The primary switch is to start the Prim algorithm with-

out having the set of Steiner points given. Instead, the

candidate Steiner points are added dynamically during the

construction of the MST. The resulting procedure can be

considered as a greedy optimization procedure. The main

idea is based on the Prim algorithm. The Prim algorithm

starts by selecting any of the given points. Then, in each

step, a new point is added to the growing tree as the one

with the minimum distance to any of the previously se-

lected points. This step is repeated as long as all of the

points are selected.

The proposed modification is as follows. The first two

points are selected as in the original Prim algorithm. How-

ever, next steps are modified. A new point p is added to

the growing MST by directly connecting it to its nearest

neighbor p′ or by connecting it through f (a Fermat point)

to two points p′ and p′′. The choice is made in a greedy

way, based on the total sum of lengths of edges in the par-

tial tree. The formal description is given as Algorithm 2.

The meaning of the correction steps is explained further

in this section. In the algorithm, |e| is the length of the

corresponding edge e.

Algorithm 2: Greedy algorithm for Steiner tree

Input: Set of points T (terminals), correct all (boolean

value)

Output: Steiner tree ST for points in T , set of Steiner

points SP
1. Set E = /0 (E is the set of edges in ST ), SP = /0
2. Select any point p from T . Set T ′ = {p} and

T = T \{p}
3. Select point p from T with the minimum distance to

the point p′ in T ′. Set T ′ = T ′∪{p} and T = T \{p}.

Add the edge (p, p′) to E.

4. Select point p from T with the minimum distance to

any point p′ in T ′.
5. Select any point p′′ from T ′, so that p′′ 6= p′ and

(p′, p′′) ∈ E.

6. Calculate Fermat point f for the three points p, p′ and

p′′.
7. if f is a valid Fermat point (i.e., not incident with p,

p′ or p′′) and

|(p, p′)|+ |(p′, p′′)| > |(p, f )|+ |(p′, f )|+ |(p′′, f )| then
remove (p′, p′′) from E,

add (p, f ), (p′, f ) and (p′′, f ) to E,

set T = T \{p}, set T ′ = T ′∪{p, f}, add f to SP,

else

add (p, p′) to E, set T = T \{p}, set T ′ = T ′∪{p}
end

8. If correct all = true, correct solution (Algorithm 3)

9. Repeat from step 4 until T 6= /0.

10. Correct solution (Algorithm 3).

11. Return ST (T ′,E) and SP

3.4. Correction Procedure

After adding a new Fermat point as a Steiner point in

Algorithm 2, some of the previously added Steiner points

may no longer satisfy angle- and degree-related conditions

required from all Steiner points. One example is presented

in Fig. 2. Steiner point F1, inserted by the algorithm, sat-

isfies the angle and degree properties, as it was calcu-

lated as the Fermat point for the three connected termi-

nals (Fig. 2, step A). After the second Steiner point F2 is

inserted (step B) as the Fermat point calculated for three

points connected thereto, F1 no longer satisfies the angle

condition. The situation is fixed using the proposed cor-

rection procedure, which is depicted in part C of Fig. 2.

Note that during the correction procedure point F2 is also

moved from its original position. The correction proce-

dure is given as Algorithm 3. The main idea is to per-

form two actions repeatedly: 1) to remove all candidate
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Algorithm 3: Correction procedure

Input: Set of points T (terminals), set of Steiner points

SP (some of them can be invalid), ε – maximum

allowed violation of angle condition for Steiner

points.

Output: SP – set of valid Steiner points (i.e., satisfying

the angle and degree conditions)

1. Let P = T ∪P and MSTP be the minimum spanning

tree for P.

2. Identify Steiner points in SP which have degrees not

equal 3 in MSTP and remove them from SP; recalculate

MSTP.

3. Repeat step 2 until no sp is removed in step 2.

4. Identify Steiner point sp in SP which violates the angle

condition the most in MSTP. If this violation is more than

ε , recalculate this point as a Fermat point of the triangle

formed by the three points connected to sp (if the Fermat

point is not valid, remove sp); recalculate MSTP.

5. If SP has been modified in step 4, go to step 2.

6. Return SP.

Steiner points which do not satisfy the degree-related con-

dition, and 2) to recalculate the coordinates of those Steiner

points which do not meet the angle-related condition (the

recalculation is done by means of calculating new Fermat

points). These two steps are repeated until no change is

necessary.

Fig. 2. Effect of the correction procedure.

A parameter correct all is introduced in Algorithm 2 to

limit the computational cost of the correction procedure.

Only when it is set to true, the correction procedure will be

called after adding each new Steiner point. Otherwise, it is

called only at the end of the algorithm, after connecting all

terminals. As revealed by tests (see Section 5), in practice,

correct all can be in most situations set to f alse without

decreasing the quality of the final solution significantly.

Algorithm 2 together with Algorithm 3 clearly constitute

a greedy search procedure, as in step 7 of Algorithm 2, al-

ways locally better (shorter) connections are selected. This

does not guarantee a global optimum. However, it can pro-

vide a feasible solution very fast. In fact, it is possible to

run Algorithm 2 starting with each possible terminal as the

starting point in this greedy procedure (point p selected in

step 2 of Algorithm 2). Then, the best solution from all

runs is chosen as the final solution. This simple greedy

heuristic can be further extended by allowing not optimal

local choices in step 7 of Algorithm 2.

4. Monte Carlo Tree Search for

Euclidean Steiner Tree Problem

Algorithm 2 shares a common drawback with all greedy

optimization algorithms. It may be trapped by local min-

ima, as the choices that are optimal locally do not always

lead to the global optimum. This section proposes two

ways to relax the greediness and allow not optimal local

choices with the hope to improve the solution.

4.1. Pure Monte Carlo Simulations for ESTP

The easiest way to relax the greediness of Algorithm 2 is

to allow a random selection of one of the two options in

step 7. The modified procedure is as follows. If the Fermat

point f is not valid, connect the new point as in the original

Prim algorithm; else, if the Fermat point is valid, randomly

select (with equal probabilities) whether the new point is

connected as in the original Prim algorithm, or through the

Fermat point. After the last terminal point is connected, the

found solution (Steiner tree and Steiner points) is remem-

bered together with its Steiner ratio. The whole procedure

is repeated for a given number of iterations. After each

iteration, it is checked whether a better solution is found.

Thus, each iteration is independent of others and can be

easily parallelized. The proposed Monte Carlo simulation

for ESTP is given as Algorithm 4. To simplify the nota-

tion, it is assumed that the set of terminals T is recovered to

its original input state at the beginning of each iteration of

the f or loop. Function RANDOM(0, 1) returns a random

value from a uniform distribution from the [0, 1) range.

4.2. Hybridization of Prim Algorithm and MCTS

The drawback of Algorithm 4 is that the path leading to the

solution (i.e. how the points were connected to the growing

tree) is neither remembered nor used in subsequent itera-

tions. In this section, it is proposed how the quality in-

formation about previous simulations can be utilized. The

presented approach can be viewed as hybridization of the

Prim algorithm and MCTS. It is important to clarify some

potential ambiguities here. In fact, there are two trees in the

proposed approach. The first one is the Steiner tree, which

is the required solution of the problem at hand. During

each iteration of Algorithm 4, a new Steiner tree is built

and evaluated. The other tree in the proposed Algorithm 5

is the MCTS tree, which is a data structure used to remem-

ber the statistics about choices from previous iterations and

to guide the search process.

To describe the proposed MCTS algorithm, one has to de-

fine the tree policy, the default policy, and the reward func-

tion, expanding the node and updating the statistics of the

node. First, let us describe the proposed MCTS algorithm

for ESTP in general. The simulation starts with only the

root node in the MCTS tree. Expansion of the root node
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Algorithm 4: Pure Monte Carlo simulation for Steiner tree

Input: Set of points T (terminals), correct all,
number o f simulations

Output: Steiner tree STbest for points in T , set of Steiner

points SPbest corresponding to STbest
1. STbest = MSTT , SPbest = /0, ρbest = 1 (Steiner ratio)

2. for i = 0 to number of simulations do
a. Set E = /0 (E is the set of edges in ST ), SP = /0
b. Select any point p ∈ T . Set T ′ = {p}, T = T \{p}
c. Select point p ∈ T with the minimum distance to

the point p′ ∈ T ′. Set T ′ = T ′∪{p} and T = T \{p}.

Add the edge (p, p′) to E
d. Select point p ∈ T with the minimum distance to

any point p′ ∈ T ′.
e. Select any point p′′ ∈ T ′, so that p′′ 6= p′ and

(p′, p′′) ∈ E.

f. Calculate Fermat point f for the three points p, p′

and p′′.
g. if f is a valid Fermat point (i.e., not incident with

p, p′ or p′′) AND RANDOM(0,1) < 0.5 then
remove (p′, p′′) from E,

add (p, f ), (p′, f ) and (p′′, f ) to E,

set T = T \{p}, set T ′ = T ′∪{p, f}, add f to SP,

else

add (p, p′) to E, set T = T \{p}, set T ′ = T ′∪{p}
end

h. if correct all = true then
correct solution (Algorithm 3)

end

i. Repeat from step 2.d until T 6= /0.

j. Correct solution (Algorithm 3).

k. ρ = L(MSTT∪SP)/L(MSTT )
l. if ρ < ρbest then

STbest = MSTT∪SP, SPbest = SP, ρbest = ρ
end

end

3. Return STbest and SPbest

is performed by selecting the first terminal as in step 2b

in Algorithm 4. Thus, the number of branches from the

root node equals the number of terminals. On all following

levels of the MCTS tree, expanding the node creates two

branches at the most, one is for direct connection of the

new terminal (as in the Prim algorithm), while the other

for connection through the newly created Steiner point. In

these cases in which the Steiner point cannot be created as

a valid Fermat point, only one branch is created. While

descending from the root, at each existing node, one of the

two possible branches is selected based on the accumulated

statistics in that node according to the common tree pol-

icy based on UCT (Eq. 1) described in Section 2. Thus,

the process is performed differently than in step 2g of Al-

gorithm 4. On the other hand, the default policy of the

proposed MCST for ESTP is done exactly as in step 2g of

Algorithm 4. It means, that when there are no statistics

available on the current level of the MCTS tree, the new

terminal is connected to the growing Steiner tree directly

Algorithm 5: UCT for Euclidean Steiner tree problem

Input: Set of points T (terminals), correct all,
number o f simulations

Output: Steiner tree STbest for points in T , set of Steiner

points SPbest
1. STbest = MSTT , SPbest = /0, ρbest = 1 (Steiner ratio of

the best Steiner tree found), root = /0
2. for i = 0 to number of simulations do

a. Set E = /0 (E is the set of edges in ST ), SP = /0
Tree policy

b. If root = /0, expand root, the number of child nodes

equals the number of terminals |T |. Each child node

is associated with one terminal.

c. Select current node as the child node of the root
maximizing its UCT value, giving priority to those

child nodes which have not been visited yet. Set

T ′ = {p} and T = T \{p}, where p is the terminal

associated with current node.

d. Repeat until current node is not a leaf in MCTS

tree: Select new node as the child node of

current node which maximizes its UCT value, giving

priority to child nodes not yet visited. Let p be the

terminal connected to the growing Steiner tree in a

way described by node new node. If new node
describes direct connection, set T ′ = T ′∪{p} and

T = T \{p}, add the edge (p, p′) to E, where p′ is the

point from T ′ closest to p (remembered in new node);

Else If new node describes connection through

Fermat point f , remove (p′, p′′) from E, add (p, f ),
(p′, f ) and (p′′, f ) to E, set T = T \{p}, set

T ′ = T ′∪{p, f}, add f to SP, where p′′ has the same

interpretation as in Algorithm 4, and is remembered

in new node together with p′. Set

current node = new node. Correct solution if

correct all is true.

Expanding

e. If current node is a leaf in MCTS tree, expand

current node as follows. Find point p in T with the

closest distance to any point p′ in T ′. Select any point

p′′ from T ′, so that p′′ 6= p′ and (p′, p′′) ∈ E. Create

two child nodes of current node in MCTS tree, one

for the direct connection of p to p′, the second for the

case when p is connected to p′ and p′′ through f
(Fermat point for points p, p′ and p′′), if f is valid.

Default policy

f. Execute steps 2d–2l from Algorithm 4 (it can

update STbest and SPbest).

Update MCTS tree statistics

g. Calculate reward value based on the Steiner ratio of

the Steiner tree that has been built during this

iteration: reward = RewardFunction(ρ)
h. Update UCT value of each node in MCTS tree that

has been visited during this iteration (according to

Eq. 1).

end

3. Return STbest and SPbest
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or through a new Steiner point, as long as there is a valid

Fermat point. The choice is made randomly with the proba-

bility of selecting either option equaling 0.5. Each iteration

ends when the last terminal is connected to the Steiner tree

being built during this iteration. The Steiner ratio is calcu-

lated, and its value can be used as the reward. However, it

needs to be converted, as the original UCT algorithm re-

quires the reward to be in the range of [0, 1]. Several possi-

ble ways of performing this conversion are described in the

next section. Having the reward in the proper form makes

it possible to use it for updating the UCT value of nodes in

the MCTS tree according to Eq. 1. The proposed MCTS

for ESTP is described more formally as Algorithm 5.

4.3. Reward Functions

The role of the reward functions proposed here is to pro-

vide a mapping from the Steiner ratios to the reward val-

ues that can be used in MCTS. In ESTP, the Steiner trees

are evaluated using the Steiner ratio ρ , while in MCTS,

there is a need to assign reward values for the leafs which

are from the range of [0, 1]. Additional steps must be taken

to satisfy this requirement. For the minimum spanning tree

for the set of terminals, the Steiner ratio equals 1. Hav-

ing any feasible solution of ESTP means that the Steiner

ratio ρ < 1. It was proved [5], that for problems in the

2D Euclidean space, the minimum possible value of ρ is

ρopt =
√

3
2 ≈ 0.866. Thus, is possible to define a mapping

from the calculated ρ to the reward value that can be used

in the UCT algorithm. The main idea is to assign high

rewards (close to 1) for solutions with ρ close to ρopt , and

low rewards (close to 0) for solutions with ρ close to 1.

Thus, it is enough to define the reward functions on the

domain [ρopt ,1] as reward(ρ) : [
√

3
2 ,1] → [0, 1]. The pro-

posed reward functions are as follows:

• rewardlinear(ρ) = 1−ρ
a with example value of param-

eter a = 7.45, rewardGauss(ρ) = e−
(ρopt−ρ)2

σ with ex-

ample value of parameter σ = 0.005,

• rewardsigmoidal(ρ) = 2− 2
1+e−β (ρ−ρopt )

with example

value of parameter β = 40,

• rewardlog(ρ) = 1− a2 ln(1 + a1(ρ −ρopt)) with ex-

ample value of parameters a1 = 1000 and a2 = 0.204,

• rewardcos(ρ) = cos
(

c(ρ −ρopt)
)

with example value

of parameter c = 11.725.

These functions differ in how they promote the decrease in

the Steiner ratio. For example, the cosine reward function

adds the reward faster for Steiner ratios close to 1 than it is

the case with the linear function. The usefulness of these

reward functions is verified, using numerical experiments,

in the next section.

5. Experimental Studies

In this section, the results of the proposed algorithms ap-

plied to problems of various sizes are presented. Randomly

generated problems, as well as problems with known op-

timal solutions from OR-Lib [15], are considered. The

Friedman test (with Shaffer post hoc tests) is used, to com-

pare the results. The testing procedure is as follows. Only

the average results for each problem of each algorithm are

considered by the Friedman test. All problems of a given

size and all algorithms are taken up at once to discover

potential differences among the average behaviors of the

algorithms. Then, if any differences are found, a set of

pair-wise post-hoc comparisons between algorithms is cal-

culated.

The Friedman test is recommended where one wants to

compare the general behavior of more than two algorithms

on several test problems. This two-step procedure is re-

garded as a better approach than performing many pair-wise

comparisons, such as the Wilcoxon test, which would in-

crease the overall probability of making at least one type I

error, which would erroneously discover differences be-

tween algorithms which, in fact, perform equally in gen-

eral. More details about the testing procedure adopted can

be found in [20]. All the tests were calculated using the

Keel software package [21].

5.1. Results for Random Problems

Preliminary tests. In regard to random problems, for each

problem size, twenty random problems are generated from

a uniform distribution on [0,1]2. Each algorithm is run ten

times on each problem. In the Friedman test, only the mean

values of Steiner ratios are compared.

In the presentation of the results the following abbreviations

are adopted:

• greedy1 – Algorithm 2 run |T |-times using each ter-

minal point as the starting point in step 2 in Algo-

rithm 2 and the parameter correct all set to true;

• greedy2 – the same as algorithm greedy1 except the

parameter correct all is set to f alse;

• MC10k, MC100k – pure Monte Carlo simulation

for Steiner tree (Algorithm 4) run with 10,000 and

100,000 iterations, respectively,

• UCT10k and UCT100k – UCT algorithm (Algo-

rithm 5) with the linear reward function run with

10,000 and 100,000 iterations, respectively.

In the preliminary tests, the algorithms have been first ap-

plied to random problems with 20, 30, 40 and 50 terminals.

The goal was to check how the ideas introduced scale with

the number of terminals. Only the linear reward function

is used and the C = 1 in Eq. 1. For the sake of space, only

the conclusions, and not the detailed results, are provided

here. For problems with 20 terminals, the p-value calcu-

lated from the Friedman test was 0.884. It means that the

test does not discover any significant differences among the

algorithms. The results of all algorithms are similar. For

problems with 30 terminals, UCT and MC algorithms with

100k iterations were ranked as best. The p-value from the

Friedman test was 0.00042, which means that significant
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differences exist in the performance of the algorithms and

Shaffer’s post hoc procedures were calculated. They discov-

ered significant differences between UCT100k and MC100k

algorithms and UCT10k and MCT10k algorithms showing

that 10k iterations are not enough for MCT and UCT algo-

rithms. However, no significant difference was discovered

between MCT100k and UCT10k, which can be interpreted

as the first sign of the advantage of UCT over MC. Ad-

ditionally, there were no significant differences discovered

between any of the greedy and the winning UCT100k and

MC100k algorithms.

Results for problems with 40 and 50 terminals showed that

the Friedman p-values keep decreasing, demonstrating that

the differences are more clear as the problems become more

difficult. The proposed UCT algorithm with 100k iterations

was always ranked as the best. However, considering Shaf-

fer post-host comparisons, significant differences between

UCT and MC algorithms are not discovered when given the

same number of iterations (10k or 100k). The important

difference between the winning UCT100k and the greedy 2

algorithm was signaled only once. On the other hand, the

greedy algorithms perform significantly better than MC10k

and UCT10k. It can be summarized that the majority of

differences discovered in the average behavior of the al-

gorithms stem from the poor performance of MC10k and

UCT10k algorithms. Another important observation is that

the greedy2 algorithm has never been significantly worse

than greedy1. Based on this, in the remaining experiments,

partial solutions found after each iteration of MC and UCT

algorithms are also not corrected, and only the final solu-

tion is corrected.

Scaling the reward function and checking the influence

of parameter C (50 terminals). There are two important

parameters for UCT that may influence the performance

of UCT, the parameter C from Eq. (1) and the reward func-

tion. C is responsible for tuning the importance of explo-

ration vs. exploitation, thus setting it correctly is crucial.

A set of 20 random problems with 50 terminals is consid-

ered here.

In this set of experiments, only the greedy1 algorithm is

considered. All UCT algorithms and the MC algorithm

were allowed to iterate over 100k iterations. The value of

C is given after the underscore, i.e. UCT C0.5 means that

the UCT algorithm with the linear reward function has been

run with C = 0.5. The algorithm abbreviated UCT in the

following results is the algorithm used in the previous set

of experiments (C = 1 and linear reward function). How-

ever, algorithms UCT C1.0, UCT C2.0, UCT C0.5 and

UCT C0.1 have been further modified by scaling the lin-

ear reward function. It has been observed that the best

solutions found had never had the Steiner ratio lower

than 0.96. The theoretical minimum for the Steiner ratio is

ρopt =
√

3
2 ≈ 0.866, it is, however, only achieved for some

special cases of regular grids of terminals. In the case of

real life problems, the Steiner ratio for a given problem

would be higher. In such cases, the reward function in-

troduced and defined over the range [ρopt ,1], does not use

the full range of the domain. The idea here is to limit the

domain of the reward function. The linear reward function

has been scaled, i.e. its domain is only [0.96, 1] and the

parameter a = 25.

The Friedman ranks presented in Table 1, and the small

p-value shows that, in fact, the setting of parameter C
has a huge impact on the performance of the proposed

UCT algorithm. The pair-wise comparisons revealed that

by setting C to a proper value, the UCT algorithm per-

forms significantly better than MC. Also, it can be ob-

served that setting C = 2 significantly decreases the perfor-

mance of the UCT algorithm. There were no significant

differences discovered between the best-performing algo-

rithms (UCT C0.5 and UCT C0.1) and the greedy algo-

rithm. However, when the numbers of best solutions found

are considered (showing the ability of the algorithms to find

best-known solutions for the problems), it can be stated that

the UCT algorithm with the proper value of C should be

preferable. The influence of the scaling of the reward func-

tion is not clear from these experiments. On the one hand,

the UCT version abbreviated simply as UCT (no scaling,

C = 1) is ranked lower than any of the modified UCTs,

except for the UCT with C = 2. On the other hand, no sig-

nificant differences between UCT and any of the modified

UCT algorithms have been discovered. To further investi-

gate this issue, additional experiments have been calculated,

as presented in the later part of this section.

Autoscaling the reward function (problems with 70 ter-

minals). In this set of experiments, 20 random problems

with 70 terminals are considered. Here we test the influ-

ence of the different reward functions introduced earlier.

The number of MC and UCT algorithm iterations exceeded

150,000. All UCT algorithms use parameter C = 0.1. Al-

gorithms abbreviated as lin, cos, Gauss, log, and sigm are

the algorithms with reward functions described in Subsec-

tion 4.3. Algorithms with suffix sc in their name are the

algorithms with the scaled versions of the functions. The

scaling procedure is more elaborate here. Instead of assum-

ing one new lower limit for the Steiner ratio, the idea is to

scale the reward functions based on the Steiner ratio of the

best-known solution for each problem separately. In prac-

tice, the greedy1 algorithm is run as the first one for a given

problem, and the Steiner ratio ρgreedy of the solution found

by this algorithm is used to calculate the new lower limit

for the domain of the reward function used in UCT algo-

rithms. In fact, ρ ′
opt is calculated as ρ ′

opt = 0.995 ·ρgreedy.

Then ρ ′
opt is used to define the new scaled versions of the

reward functions by calculating proper parameter values.

The parameters of the scaled versions of the reward func-

tions are calculated as follows:

• a = 1
1−ρ ′

opt
for the linear function,

• σ =
−(ρ ′

opt−1)2

ln0.04 for the Gaussian function,

• β = ln(1/0.98−1)
ρ ′

opt−1 for the sigmoidal function,
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Table 1

Friedman ranks and numbers of best solutions found for problems with 50 terminals. Entries marked in bold indicate

algorithms which performed significantly worse than the best performing one; p-value = 0.00225

Algorithm UCT C0.5 UCT C0.1 greedy 1 UCT C1.0 UCT UCT C2.0 MC

Ranking 2.6 3.35 3.9 3.9 4.25 4.6 5.4

Best solutions 9 10 3 7 9 7 3

Table 2

Friedman ranks and numbers of best solutions found for problems with 70 terminals. Entries marked in bold indicate

algorithms which performed significantly worse than the best performing one; p-value = 6 ·10−11

Algorithm lin lin sc cos Gauss log sc greedy 1 log sigm sc cos sc sigm MC Gauss sc

Ranking 2.8 3.2 3.65 4.05 5.55 7.5 7.55 7.55 8.6 9 9.2 9.35

Best solutions 7 7 7 6 3 4 2 2 3 0 1 3

• a2 = 0.96
ln(1+(1−ρ ′

opt)a1)
,

• a1 = 1000 for logarithm based function, c = π
2 (1−

ρ ′
opt) for cosine function.

These derivations have been based on the assumptions, that

the respective reward function should have values close

to 0 and 1 at the limits of its domain.

Friedman ranks presented in Table 2 show that there are

significant differences among the algorithms with differ-

ent reward functions. Several important observations can

be made based on pair-wise comparisons. MC and greedy

algorithms are outperformed by the UCT algorithm, pro-

vided that the reward function is properly selected. UCT

with linear, linear scaled, and cosine reward functions are

significantly better than greedy and MC algorithms. UCT

with the Gaussian reward function is also significantly bet-

ter than MC. The superiority of UCT with these functions

is also visible when considering the numbers of best solu-

tions found.

On the other hand, MC and greedy algorithms are not out-

performed by all of the UCT configurations, which shows

that the proper choice of the reward function is crucial. At

this point, a simple linear function seems to be the best op-

tion. Not only does it perform best, but it is also faster to

calculate than the nonlinear functions. Surprisingly, scal-

ing is never beneficial. Even if the scaled version of UCT

is ranked higher than the original version, the difference is

never significant. To explain this, let us ask the question

about how fast a given algorithm finds the best solution in

a given run (i.e. in which iteration). The statistics over all

runs on all 20 problems with 70 terminals have been col-

lected. It was observed, that UCTs based on scaled reward

functions tend to converge prematurely, reaching the final

solution early.

All results presented thus far can be summarized as follows.

The proposed UCT algorithm depends on the proper choice

of the parameter C and the reward function. When prop-

erly set, the proposed UCT algorithm performs significantly

better than the greedy heuristic and the simple MC simu-

lation. On the other hand, when not configured correctly,

UCT may perform poorly. A good choice for C is 0.1,

and a simple linear reward function can be recommended.

The superiority of the UCT algorithm is becoming apparent

when the dificulty of the considered ESTP grows.

5.2. Results for OR-Lib Problems

In this section, it is shown that the proposed algorithm

is, in fact, able to find good quality solutions for ESTP.

A set of benchmark problems from the OR-Lib library

is used [15]. The optimal solutions for these problems

are known and can be used to assess the results achieved

by the proposed techniques. In the tests, the following

files from OR-Lib have been used: estein10, estein20,

estein30, estein40, estein50, estein60, estein70, estein80,

estein90 and estein100. Those files have been taken from

http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/esteininfo.html.

Each file contains 15 problems with the number of termi-

nals corresponding to the number in the name of the file.

The greedy algorithm (greedy1), MC and several UCT

algorithms have been considered. The number of iterations

in MC and UCT algorithms has been set to 250k. For

UCT algorithms, C = 0.1. All reward functions have been

used, however, without scaling.

All UCT and MC algorithms have been run ten times for

each problem. Friedman ranks have been calculated as

previously. The results obtained by the algorithms have

been compared with the optimal solutions taken from the

OR-Lib library.

For each algorithm, and for each problem, the best result

from among ten runs is selected as the Steiner ratio ρbest .

Then, the relative error is computed as

err =
ρbest −ρopt

ρopt
·100% ,

where ρopt is the Steiner ratio of the optimal solution

for a given problem, taken from OR-Lib. For each al-

gorithm, such errors were calculated for each of the 15

problems from the group of problems of a given size.

The minimum, maximum, mean and standard deviation of

these relative error values have been calculated. The whole

procedure has been repeated for each file from OR-Lib,
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Table 3

Friedman ranks for problems from OR-Lib with 90 terminals; p-value = 6.4 ·10−9

Algorithm UCT linear UCT cos UCT gauss greedy 1 UCT log UCT sigm MC

Ranking 1.6 2.7333 3.2 4.2667 4.5333 5.4667 6.2

Table 4

Friedman ranks for problems from OR-Lib with 100 terminals; p-value = 1.03 ·10−6

Algorithm UCT lin UCT cos greedy1 UCT gauss UCT log UCT sigm MC

Ranking 2.1333 2.6667 3.6 3.6 4.5333 5.6667 5.8

i.e. each group of 15 problems of a given size. For the sake

of space, detailed Friedman ranks for problems with 90

and 100 terminals are only presented in Tables 3 and 4. En-

tries marked in bold indicate algorithms which performed

significantly worse than the best performing one. For prob-

lems of all sizes only the summary and conclusions are

given below.

The proposed algorithms can provide near optimal solutions

for known problems from the OR-Lib library. On average,

the best solutions found by the algorithms are never by more

than 1% worse than the optimal ones, and UCT algorithms

have shown to be able to provide the best results. Starting

with the problems with 20 terminals, in the worst cases the

best solutions found by the algorithms were never by more

than 2% worse than the optimal ones (except for 2.2% for

the greedy1 algorithm in the case of size 80 problems). In

the case of problems with ten terminals, those errors ex-

ceeded 2% (they were lower than 3%) due to the existence

of one EST problem which turned out to be difficult for all

the algorithms. For all OR-Lib problems, Friedman ranks

were consistent with the results from the previous section.

For smaller problems, the average performance is not dis-

tinguishable. When the number of terminals increases, the

UCT algorithm with a proper reward function can provide

better results on average. For problems with ten terminals,

all algorithms performed similarly, according to the Fried-

man test. For problems with 20 terminals, the Friedman

test discovered significant differences (p-value = 0.0174),

however, post-hoc procedures were not able to detect the

sources of the differences.

For bigger problems (from 30 terminals up), significant

differences were discovered. There are two sources of the

differences. First, when the number of terminals grows,

MC and greedy algorithms are consistently ranked lower

than an instance of the UCT algorithm. The differences

are not always discovered as significant, according to Shaf-

fer’s post-hoc procedures, showing that the proposed greedy

approach is also interesting on its own. It loses, however,

when the best solutions found are analyzed. The second

source of the differences among algorithms is the selec-

tion of the reward function for the UCT algorithm. The

results confirm that the choice of the reward function is

crucial and there is no clear winner. The linear reward

function is a good choice for problems with a bigger num-

ber of terminals. On the other hand, it performed worse

for smaller problems. For example, for problems with 30

terminals it performed significantly worse than UCT with

the sigmoidal reward function. The cosine function per-

formed poorly for smaller problems, on the other hand, it

provided, on average, the best solutions for problems with

100 terminals. This justifies the use of different reward

functions. However, the linear reward function proves to

be a good choice as computational costs are lower than for

other reward functions.

Due to the limitations of this publication, a more detailed

elaboration of the results is available from the author upon

request.

6. Conclusions

A novel MCTS algorithm for ESTP on a plane has been

proposed. A simple greedy heuristic has been introduced

based on the Prim algorithm and the calculation of the Fer-

mat point. It was utilized in MC simulations and the UCT-

based algorithm, the most popular version of MCTS. To the

best of the author’s knowledge, it is the first time when the

MCTS algorithm has been adapted for ESTP. Several re-

ward functions have been proposed for use with UCT. The

numerical experiments showed a high importance of the

proper selection of the reward function. The proposed UCT

algorithm can provide better results than simple MC simu-

lations and greedy algorithms tested. It was shown, based

on the benchmark problems from OR-Lib, that the proposed

algorithms could provide near optimal solutions. The fu-

ture research direction is to adapt the proposed MCTS to

problems with a higher number of dimensions.
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