
Paper Detecting Password File Theft

using Predefined Time-Delays between

Certain Password Characters
Khaled W. Mahmoud, Khalid Mansour, and Alaa Makableh

Department of Computer Science, Zarqa University, Zarqa, Jordan

https://doi.org/10.26636/jtit.2017.112517

Abstract—This paper presents novel mechanisms that effec-

tively detect password file thefts and at the same time prevent

uncovering passwords. The proposed mechanism uses delay

between consecutive keystrokes of the password characters.

In presented case, a user should not only enter his password

correctly during the sign-up process, but also needs to in-

troduce relatively large time gaps between certain password

characters. The proposed novel approaches disguise stored

passwords by adding a suffix value that helps in detecting

password file theft at the first sign-in attempt by an adversary

who steals and cracks the hashed password file. Any attempt

to login using a real password without adding the time delays

in the correct positions may considered as an impersonation

attack, i.e. the password file has been stolen and cracked.

Keywords—access control, intrusion detection systems, network

security, password protection.

1. Introduction

The wide spread of communication methods, especially

through the Internet expedites various computational tasks

and facilitates data sharing amongst people and organiza-

tions. Several methods were proposed in the literature to

enhance data security and protect privacy. Customers’ pass-

words are amongst the most important data to secure. Ac-

cording to what was recorded in the last few years about

password file thefts, obtaining the maximum level of pro-

tection to secure password files and detecting password

file thefts is still a major challenge in the digital system

world [1].

As textual passwords are still widely used as an authen-

tication mechanism and they are unlikely to disappear in

the near future [2], [3], passwords should be selected and

saved carefully. Many password file theft incidences were

reported recently [4], [5], and big companies have been ex-

posed to password database theft such as Yahoo, Hotmail,

Social Security Administration [1]. This urges security

community to develop methods to increase the immunity

of passwords and effectively detects the theft of password

files. Moreover, timely discovering the theft of password

files is a very important issue. Storing passwords properly

is a key issue in protecting them.

This paper proposes adding an extra level of security that

puts the adversary at risk of being detected at the first login

attempt. This helps companies to deny any access from ad-

versary who is trying to impersonate users and access the

system as a legitimate user. The proposed mechanisms are

built on the password hardening technique that was pre-

sented in [6] and [7]. This password hardening technique

depends mainly on the way users perform the sign-up step.

When a user leaves relatively large time gaps between cer-

tain consecutive password characters, an adopted keying

pattern is created and associated with the password. It al-

lows to both harden the password and detect password file

thefts.

The rest of this paper is organized as follows. Section 2

presents the common password file structures. Section 3

reviews the related work. In Section 4, the idea of pass-

word pattern is explained. Section 5 shows the proposed

approaches for detecting password file theft. Finally, re-

search conclusions and suggestions for further studies are

discussed in Section 6.

2. Password File Structure

Password-based authentication systems require password

files or tables to organize users’ login information. In this

critical file, which should be kept secret, users’ IDs are

stored in plaintext. However, the passwords are stored ac-

cording to the security policy adopted by the used system.

Three types of security policies exist:

• Plain text – some servers store passwords as a plain-

text. In this case, security depends entirely on the

password file secrecy (i.e. protecting the file from

being stolen). Once the authentication server is com-

promised and the password file is stolen, the adver-

sary can impersonate users and logs in using the cor-

rect passwords.

• Hashed passwords – hash function (or algorithm) is

a function that can be used to transform the input

data into a fixed size output (hash value) regardless

the input size. This function is a one-way function

because it is easy to get the result for any given input

but it is very difficult or impossible to get the input

backward given the result and the function. Many

hash functions exist and some have many versions

101

Khaled W. Mahmoud, Khalid Mansour, and Alaa Makableh

such as: SHA1, SHA256, SHA512, MD2, MD4

and MD5. In this type of security policy, the re-

sult of hashing the original password H(P) is stored

in the password file. Unfortunately, this way is not

sufficient against brute force and dictionary attacks.

In case the list of hashed passwords is stolen, the

attacker can apply offline brute-force attack to find

a password with a hash value equivalent to the value

stored in the stolen list. Later on, the adversary can

impersonate the user and logs in using the correct

password.

• Hash + salt – salt is a random data that is appended

to the password before passing it to the hash function

H(p||s). Salt is used to increase the amount of crack-

ing time by increasing the size of passwords space.

In addition, it is used to overcome the fact that many

user’s accounts have the same password and so their

hash values. Despite this enhancement, passwords

are still under leakage by attackers.

3. Literature Review

Several techniques are proposed in the literature to either

harden the cracking process or to discover the theft as soon

as possible.

Injection “deceive” in password-based systems is a general

trend that aims to hide the correct passwords and to enable

fast discovery of password file thefts. For example, some

approaches suggest to insert fake accounts in the passwords

file or insert extra fake password files [8], [9], any use to

those accounts or files indicates an intrusion [10]. More

about those approaches are given next.

3.1. Kamouflage

Kamouflage is proposed as an architecture for building

theft-resistant password managers [11]. It aims to protect

local password database (e.g., stored on a laptop or a cell

phone) by adding a list of statistically indistinguishable de-

coy passwords to hide the real list. Decoy sets are generated

using certain rules based on the correct passwords. In case

the attacker decrypts passwords, it is difficult for attack-

ers to distinguish between the correct password set and the

decoy sets.

3.2. Honeywords

Honeywords are sets of decoy passwords that are added to

each user accounts to deceive the adversary [10]. Honey-

words, which are similar to user-selected passwords, are

stored in hashed form along with the correct password, i.e.

the structure of the password file is altered by adding a list

of candidate passwords for each user rather than a single

password for each account. In this case, the adversary faces

a list of candidate passwords for each user and this makes

the process of distinguishing between honeywords and the

correct user’s password harder for the adversary who steals

and compromises a password file. Consequently, using any

of these honeywords to login will generate an alarm to the

system administrator. This alarm implies that the passwords

file was stolen and cracked and an illegal login attempt is

recorded.

The honeywords system requires an extra secure server

called honeychecker to store the indexes of correct pass-

words. The server is connected to the main server through

a dedicated line. This server aims to improve the overall

security by separating the information related to users’ au-

thentication process. During the login process, if the en-

tered password is not in the list associated with the user

then the login failed. If a match is found, then the in-

dex of this match is sent to the honeychecker for verifica-

tion. If the index is correct, then the user is authenticated.

Otherwise, the honeychecker will raise a silent alarm to the

system administrator and return false to the main server to

deny the login.

To ensure the effectiveness of the honeywords approach,

honeywords should be generated in a manner that makes ev-

ery sweetword (sweetwords list is a set of all honeywords

plus the correct password) to seem strongly as a candi-

date password. This makes it difficult for the adversary to

guess the correct password. In addition, if a wrong pass-

word is used, a password alarm can be raised by the system.

Different methods to generate honeywords can be found

in [10]. Some of these methods can be done without users’

intervention while others require user intervention (i.e. by

modifying the sign-up interface). More methods can be

found in [12], [13].

An enhancement that was presented in [14] aims to in-

crease the effectiveness of the honeywords system and to

overcome more active attack scenarios by adding phone

number as an extra information field for each user in the

honeychecker database. Honeychecker uses phone number

to communicate with the user in special cases such as pass-

word change or many invalid sign-in operations.

3.3. Paired Distance Protocol

The article in [13] proposed a new honeywords system

based on paired distance protocol (PDP) with less storage

overhead. In PDP, the user chooses a random string (RS)

that will be appended to the password during registration.

A distance chain – which is derived from RS – is used

to replace the honeywords for each user account. Distance

chain is a set of paired distances (separated by “–”) between

every two consecutive elements of RS. This distance is cal-

culated using a secret honey circular list (hcl) that holds

the keyboard letters and digits spread in random order (see

Fig. 1). As an example, the distance chain for the random

string f a5 is (20–22), i.e. the number of elements that is

traversed in clockwise between f and a in hcl is 20 and the

number traversed in clockwise between a and 5 is 22.

The password file contains the username, the hashed pass-

word and the distance chain for the RS. The honeychecker

is still needed to store the username and the first character

of the RS. During login, if the user submits an incorrect

102

Detecting Password File Theft using Predefined Time-Delays between Certain Password Characters

Fig. 1. Random order for 36 letters and digits in honey circular

list.

password, then the system will reject the user login directly.

If the password is correct, then the system will calculate the

distance chain from the given RS and compare it with the

stored distance chain in the password file. If no matches

are found, then the login will be denied. If the derived dis-

tance chain gets matched with a stored one, then the system

will match the first character in the given RS with the char-

acter stored in the honeychecker. If a match is found then

the login is permitted. The success of PDP is associated

with the high randomness in choosing RS. PDP provides

security against multi-system attacks and DoS.

3.4. Two Password Files Model

The paper in [12] proposed a new system that simulates

the honeywords system. However, the difference is that

the proposed mechanism stores the user’s authentication

information in two password files F1 and F2 that are located

in the main server.

• F1 is a two-column table. The first column is a list of

all usernames sorted in an alphabetical order. A list

of indexes that are randomly selected from the first

column in F2 is stored in the second column beside

each user. One of these indexes is the index of the

correct password. The correct index is paired with

the username and delivered to honeychecker.

• F2 is a two-column table. The first column is just

an index column and the second column is the hash

value of each account’s password. Some of these ac-

counts are decoy user accounts (or honeypots). They

are created by the administrator during system ini-

tialization.

During user login, the system authenticates the user as fol-

lows:

1. The system goes through F2 in order to find the index

of the given password.

2. If this index is not in the corresponding list of this

user in F1 then the login fails directly.

3. Otherwise, the system checks if the returned account

is a honeypot account. If yes, the system will raise

an intrusion alarm.

4. If this account is not a honeypot account, then the

returned index is sent to the honeychecker to check

if it is the correct index. If no, the honeychecker will

again raises an intrusion alarm.

3.5. ErsatzPasswords

ErsatzPasswords scheme is another solution provided in [4]

to control the problem of password file theft and detect the

leakage attempts. The proposed scheme uses a machine-

dependent function (HDF) at the authentication server to

harden the off-site password discovery. Adding this hard-

ware supports the software system and makes the cracking

process impossible without accessing the target machine

physically. Moreover, a single password file identical to

the traditional password file exists and no additional server

is needed. Whenever the attacker attempts to crack the

password file offline, he/she uncovers ersatzpasswords, i.e.

fake passwords, which will raise an alarm in case of their

use. The following steps are used during sign-up operation:

1. Each user presents his username, password p and

ersatzpassword p∗.

2. Calculate the salt s∗ = HDF(p)⊕ p∗.

3. Calculate B = H(HDF(p)⊕ s∗||s∗).

4. B and the associated username are stored only in the

password file.

During the login process, if the presented password is cor-

rect and B is equal to the stored value then the user is

successfully authenticated. If the presented password was

the ersatzpassword p∗ (i.e. the password file was stolen and

the hash values were inverted), then the result of H(p∗||s∗)
will be equal to the stored B and consequently an alarm

will be raised. Finally, if there is no match, then this can

be treated as an error login.

3.6. PolyPasswordHasher

PolyPasswordHasher is a software only solution proposed

in [5] that reduces the possibility of cracking user’s pass-

words by making them interrelate. The basic idea in this

mechanism is to XOR a secret share with a salted pass-

word hash at the account creation time, where Shamir secret

sharing [15] method is used to create the shares. The result

of XORing is stored in a password file given that neither the

share nor the salted password hash exists on the disk. To

specify which share was used, an extra field called the share

number is added to the password file. This scheme prevents

the adversary from validating the hash value for password,

103

Khaled W. Mahmoud, Khalid Mansour, and Alaa Makableh

and the attacker cannot gain any information from compro-

mising the password file because the share and the password

hash value are not stored on the disk. However, if the ad-

versary reached the arbitrary memory on the server then he

can steal the secret.

3.7. Synergetic Authentication

The study in [16] proposed Synergetic Authentication

(SAuth) protocol. A user can be authenticated by a site

if and only if true credentials are used at that site and an-

other vouching site voted for authenticating that user. For

example, let user A has an account on the system S and

also has an account on the system V. The login request of

A to access S will not be accepted unless the system V

sends vouching message to system S ensure the truth of A

information. So, if an adversary compromised the database

of the system S and tries to impersonate the user A his try

will fail. The adversary must compromise both systems S

and V simultaneously to success in this attack.

The design of SAuth system provides a mechanism that can

detect the activities that seem irregular. If the vouching

system received several user authentication requests ended

with fail, this could be considered as an attempt to imper-

sonate a certain user(s). The major limitation to this mech-

anism is when users have the habit of password reusing. To

alleviate this risk, decoy passwords are proposed. The other

limitation is the need for synchronizing between different

services.

4. Hardening Passwords by Adding

Delays between Keystrokes

Text passwords are common, easy and reliable authen-

tication method. To ensure the desired goal of access pro-

tection, the creation of passwords and how they are stored

need to be managed carefully. Several research papers were

dedicated to harden passwords and make them stronger.

Some of these methods verify not just the knowledge of the

password, but also verify other credentials such as: the pos-

session of a specific token, the current GPS location of the

user [17], the fingerprints [18], the signature or something

individuals can be characterized with such as keystroke dy-

namics biometrics [19], [20].

In this paper, a modified version of the method that was pro-

posed in [6] to strengthen passwords is adapted and used in

detecting passwords file theft. In Mansour’s method, users

need to type their passwords in certain rhythms during the

sign-up process. During sign-up, the user is required to

enter his password twice. The password is accepted only

if the two trials return the same keying pattern. Otherwise,

the user is instructed to repeat entering the password twice

again. For a successful login, a user needs to key password

with the same sign-up rhythm. A strong password is for-

mulated based on classifying the delay times between con-

secutive password characters into either slow or fast based

on a certain threshold value. The exact delay time values

are not critical since the keying rhythm is classified into

fast and slow regardless the exact delay times.

In the modified version and in order to simplify the reg-

istration process, the user is deliberately declaring the lo-

cation(s) of large delay. The users are instructed to enter

their passwords normally without leaving large delays and

then select – for example by mouse – the large-delay loca-

tion(s). A special sign-up interface is designed and some

components (such as check boxes) to specify the delay po-

sitions are added. At sign-in, the login is accepted only if

the user enters the correct password with large delay in the

specified position(s). The user should leave a delay time

at the selected position(s) that exceeds normal typing. As

an illustration, if a user specifies a delay after the third

character, then the system will not allow the user accessing

the system unless he/she types in the correct password and

leave relatively large time delay after the third character.

Any accidental waiting time during typing password will

be considered as a large delay and will lead to reject the

login if this delay is in the wrong position. For more details

refer to [7].

It should be clear that this approach of password hardening

is different from password hardening based on keystroke

dynamics. Authentication systems based on keystroke dy-

namic capture normal typing behaviors of users using long

training session(s). In these systems, the users are authen-

ticated only if they write the correct password using their

way of writing (i.e. rhythm) [21]. In proposed system,

users predefined the keystroke pattern rather than using his

human patterns. Consequently, proposed system does not

require training or analyzing the keying behaviors of users.

In addition to hardening textual passwords, the above idea

is extended to detect a possible password file theft. The

next section shows how the adopted keying pattern data

can be used to detect password file theft.

5. Password File Theft Detection

According to what was recorded in the last few years about

password file thefts, obtaining the maximum level of pro-

tection to secure password files and detecting any violation

over the password file is still a challenge in the digital sys-

tem world [1]. In this section, three novel password file

theft detection mechanisms are presented. The first two

mechanisms require an auxiliary secure server, while the

third one uses login server only.

5.1. Preliminaries

The following notations are defined for the i-th user: ui is

the username, pi j is a honeyword number j that belongs to

user i. The honeywords plus the correct password p′i forms

what we call sweetwords. k is the number of sweetwords,

ci is the index of the correct password for user i, and dpi
is the delay pattern. The delay pattern is a sorted comma-

separated list of all positions where user i should leave

104

Detecting Password File Theft using Predefined Time-Delays between Certain Password Characters

large delay. For example, if the large delays come after the

fourth, the second and the seventh character, then the delay

pattern is <2,4,7>. Finally, the delaylist is a list of time

delays between every two successive password characters.

In proposed system, two types of servers can be used: lo-

gin server and auxiliary server (or honeychecker). The lo-

gin server maintains the password file while the auxiliary

server maintains the authentication file, which stores data

related to the correct passwords. We assume that a ded-

icated line for communication between honeychecker and

the login server is used. In addition, both types of servers

are able to raise an alarm if a password file disclosure is

detected.

5.2. Honeychecker Server-based Mechanisms

In the first mechanism a traditional password file structure

is used to store usernames and the hash value of correct

passwords. The honeychecker server stores users’ names

and their associated delay patterns dp.

In case the password file was hacked and cracked, the sys-

tem makes it more difficult for the adversary to access the

system since the password has to be keyed in a certain pat-

tern given that this pattern does not exist in the login server.

With every accessing attempt, if the entered password was

correct, its keying pattern user-dp is extracted and sent to

the honeychecker server. If the pattern is correct, then it is

considered a successful attempt, otherwise it is considered

a possible password file theft, see Algorithm 1.

Algorithm 1 . Login and user authentication algorithm for

the first mechanism
u← read the entered username

(p, delaylist) ← read the entered password and record

the delays between each successive character.

search the password file for the user u

if u is not stored in the password file then

return login-fail

else

p’← get the correct password from password file

end if

if p 6= p′ then

return login-fail

else

user-dp ← extract-the-delays (delaylist)

send u and user-dp to the honeychecker

stored-dp ← get the stored delay pattern for this user

from honeychecker

if user-dp = stored-dp then

return login-succeed

else

raises a theft alarm

end if

end if

To extract the delay pattern from the collected delaylist,

a detailed algorithm is given in [7]. It sorts the list of de-

lays in an ascending order a long with the original po-

sition of each delay value. Then it computes the differ-

ence between every two-successive delay in the sorted list

and returns the location of the maximum difference. All

elements appear after this location is considered the user

delay pattern.

This mechanism is characterized by its simplicity and ef-

fectiveness since neither extra storage space is needed to

store honeywords nor extra effort is needed to design these

words.

If the password was only correct, we cannot be sure that

this case is a theft of password file since a legitimate user

can enter his password without its correct pattern for var-

ious reasons such as fatigue and forget cases (false posi-

tive). However, when the system raises an alarm for possi-

ble file theft, the administrator needs to take further actions

to check the current situation.

To further protect passwords in case of password file theft,

the next mechanism augments honeywords with correct

password in the password file.

The second mechanism uses password file with honey-

words. With this mechanism, each user account in the

password file is associated with a list of honeywords as

shown in Table 1. Note that, the sweetwords are stored

in the password file without any information related to the

keystroke latencies.

Table 1

Passwords file structure stored in login server

based on honeywords system

Username Sweetwords

u1 {p11, p12, p13, p′14, . . . , p1k}

u2
{

p21, p22, p23, p24, . . . , p′2k

}

.

un {pn1, p′n2, pn3, pn4, . . . , pnk}

The honeychecker (auxiliary secure server) is required in

the authentication process. In addition to the username

and the delay pattern dp a new column is added in the au-

thentication file to store the index ci of the correct password

p′i in the list of sweetwords (see Table 2).

Table 2

The authentication file structure stored in honeychecker

Username Index (ci) Delay pattern (dpi)

u1 c1 dp1
...

...
...

alice 3 3,6
...

...
...

un cn dpn

As any normal login process, the user enters his creden-

tial information, i.e. username and password. The system

captures username u, password p and the keystroke laten-

105

Khaled W. Mahmoud, Khalid Mansour, and Alaa Makableh

cies between every two successive characters. Firstly, the

system checks whether the entered password p is in the

sweetwords list. If p does not exist then the login is de-

nied. Otherwise, the index of this sweetword (call it y) is

sent to the honeychecker paired with the username u and the

users’ delay pattern that was extracted from delaylist. The

honeychecker checks whether y matches the stored index c

for this user. If no match is found then the honeychecker

raises a theft alarm, else the honeychecker checks for the

correctness of the delay pattern. If the password p is en-

tered correctly (i.e. with relatively large time gap in the

specific positions), the honeychecker returns a message to

accept the login, otherwise a theft alarm is raised. This

process is shown in Algorithm 2.

Algorithm 2 . Login and user authentication algorithm for

second mechanism
u← read the entered username

(p, delaylist) ← read the entered password and record

the delays between each successive character.

search the password file for the user u

if u is not stored in the password file then

return login-fail

else

sweetwords ← get the list of sweetwords from login

server

end if

if p /∈ sweetwords then

return login-fail

else

y← get the index of p in sweetwords

user-dp ← extract-the-delays (delaylist)

send u, y and user-dp to the honeychecker

(c, stored-dp) ← search the authentication file for the

user u and return the index of the correct password

and its delay pattern.

if y 6= c then

raises a theft alarm

else

if user-dp = stored-dp then

return login-succeed

else

raises a theft alarm

end if

end if

end if

According to the honeywords system presented in [10],

when the attacker gets the password file and inverts the

hashed values, any use of honeywords (wrong password)

will raise a theft alarm. However if accidentally the cor-

rect password is picked, the attacker gets in. In proposed

mechanism, a new layer of protection has been added. If

a user accidentally tries the correct password without key-

ing it according to the predefined delay pattern, the system

raises a theft alarm. Consequently, the chance for password

file theft detection is increased.

To have a more secure authentication system, the number

of sweetwords per user suggested in [10] was 20 and can

reach 1000 in some circumstances. In proposed mecha-

nism, the number of sweetwords can be much less due to

the fact that guessing the correct password does not guar-

antee successful access to the system. If the attacker was

able to guess the correct password due to the existing small

number of sweetwords, the second piece of information

(i.e. delay pattern) gives a second layer of protection. More-

over, the problem of designing honeywords become easier

for small set of sweetwords.

5.3. Login Server-based Mechanism

Some authentication systems suffered from increasing the

required storage area such as adding k−1 honeywords for

each user as in [10], or adding additional file as in [12].

The storage cost is increased as the number of users in the

system increases. Hence, storage optimization becomes an

issue. Moreover, an auxiliary server is also needed in the

authentication process. Using this server is considered an

extra storage cost. Eliminating this server may simplify the

authentication process. In this section a new mechanism

that requires no honeychecker server and no honeywords is

introduced, where each password by itself works as a pass-

word and a honeyword at the same time. The trap is in

a single password rather than a list of honeywords.

The passwords file (see Table 3) has the same structure as

in traditional passwords file. It contains two columns of

information: usernames and hashed passwords h(uasi)
where uas stands for “user authentication string”. The

user authentication string is actually a concatenation of two

parts: p′i and dpi. For example, if user i selects his pass-

word as me@me12 and the delay pattern was <2, 5, 7>,

then uasi= me@me12257.

Table 3

Password file structure

Username Password

u1 h(uas1)

u2 h(uas2)
...

...

un h(uasn)

During the login process, the user enters his credential in-

formation (username and password). The password should

be keyed in the predefined pattern. The first authentication

step checks if the entered password p is equal to uas. If yes,

raise a password file theft alarm. This step adds a security

level that aims to detect password file theft and cracking

as early as possible. If there are no penetration signs, the

system extracts the user delay pattern from the delaylist and

checks whether h(p || user-dp) = h(uas). if yes then the lo-

gin is succeeded otherwise the login is failed. This process

is shown in Algorithm 3.

This mechanism is a simple one with no extra storage over-

head; no need to k honeywords. Clearly, if the system

106

Detecting Password File Theft using Predefined Time-Delays between Certain Password Characters

has n users then no more than n authentication values are

stored. Moreover, no auxiliary server is needed. Addition-

ally, it has a normal password file structure. Such normal-

ity makes the adversary believe that the cracking results

are original passwords and this increases the possibility of

trapping him.

Algorithm 3 . Login and user authentication algorithm for

the third mechanism
u← read the entered username

(p, delaylist) ← read the entered password and record

the delays between each successive characters.

search the password file for the user (u)

if u is not stored in the password file then

return login-fail

else

h(uas)← get the stored hashed password

end if

if h(p) = h(uas) then

raises a theft alarm

else

user-dp ← extract-the-delays (delaylist)
if h(p || user-dp) = h(uas) then

return login-succeed

else

return login-fail

end if

end if

Finally, to further disguise the cracked passwords, dp can

be encoded into alphabets and inserted in a position that

depends on the average of dp. The insertion positions can

vary for different users depending on their delay patterns.

6. Conclusion

The proposed mechanisms use a new strong password that

is based on augmenting time delays between certain pass-

word characters. These delays are used in both accessing

systems and detecting password file thefts. Two of the pro-

posed methods use a honeychecker server while the third

one applies a different mechanism that does not need a hon-

eychecker server.

The three mechanisms can raise a theft alarm. Particularly,

in case of correct password and wrong delay pattern. This

can happen in two cases: the first one is when the attacker

succeeds in getting the password and tries guessing the

delay pattern, while the second case is when legitimate

users do certain mistakes in the pattern during the login

process. Many actions can be taken in these cases such

as blocking the account or sending an alarm to the genuine

user. In order to avoid raising an alarm for legitimate users,

the system can be tuned such that the system can raise

a silent alarm to the administrator for the first failed login

but after a few failed login attempts, the system can take

stronger actions.

As a future work, large scale empirical study is needed to

analyze both the effectiveness of the proposed password

hardening system and the ability of the three proposed

mechanisms in detecting password file theft.

Acknowledgements

This research is funded by the deanship of scientific re-

search at Zarqa University, Jordan.

References

[1] D. Mirante and J. Cappos, “Understanding Password Database Com-

promises Technical Report”, Tech. Rep. TR CSE-2013-02, Polytech-

nic Institute of NYU, 2013.

[2] D. Florêncio, C. Herley, and P. C. van Oorschot, “An administrator’s

guide to internet password research”, in Proc. 28th Large Instal. Sys.

Administr. Conf. LISA14, Seattle, WA, USA, 2014, pp. 44–61.

[3] P. Jadhao and L. Dole, “Survey on Authentication Password Tech-

niques”, Int. J. of Soft Comput. and Engin. (IJSCE) vol. 3, no. 2,

pp. 67–68, 2013.

[4] M. H. Almeshekah, C. N. Gutierrez, M. J. Atallah, and E. H. Spaf-

ford, “Ersatzpasswords: Ending password cracking and detecting

password leakage”, in Proc. of the 31st Ann. Comp. Secur. Appl.

Conf. ACSAC 2015, Los Angeles, CA, USA, 2015, pp. 311–320.

[5] J. Cappos and S. Torres, “PolyPasswordHasher: Protecting Pass-

words in the Event of a Password File Disclosure”, Tech. Rep., 2014

[Online]. Available: https://password-hashing.net/submissions/

specs/PolyPassHash-v1.pdf

[6] K. Mansour, “Adopted keystroke rhythm for password hardening”,

in Proc. 11th Int. Conf. on Passwords Passwords 2016, Bochum,

Germany, 2016.

[7] K. W. Mahmoud, “Elastic password: A new mechanism for strength-

ening passwords using time delays between keystrokes”, in Proc. 8th

Int. Conf. on Inform. and Commun. Syst. ICICS 2017, Irbid, Jordan,

2017, pp. 316–321.

[8] M. J. A. Mohammed Almeshekah and Eugene H. Spafford, “Im-

proving Security using Deception”, Tech. Rep. 203-13, Center for

Education and Research Information Assurance and Security, Purdue

University, West Lafayette, USA, 2013.

[9] F. Cohen, “The use of deception techniques: Honeypots and decoys”,

The Handbook of Inform. Secur., vol. 3, no. 1, pp. 646–655, 2006.

[10] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking

detectable”, in Proc. of the 20th ACM SIGSAC Conf. on Comp. and

Commun. Secur. CCS 2013, Berlin, Germany, 2013, pp. 145–160.

[11] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh, “Kamouflage:

Loss-resistant password management”, in Proc. 15th Eur. Symp.

on Res. in Comp. Secur. ESORICS 2010, Athens, Greece, 2010,

vol. 6345, pp. 286–302.

[12] I. Erguler, “Some remarks on honeyword based password-cracking

detection”, IACR Cryptology ePrint Archive, vol. 2014, p. 323, 2014.

[13] N. Chakraborty and S. Mondal, “A new storage optimized hon-

eyword generation approach for enhancing security and usability”,

Comput. Res. Repository, vol. abs/1509.0, p. 8, 2015

(arXiv:1509.06094).

[14] Z. A. Genc, S. Kardas, and M. S. Kiraz, “Examination of a New

Defense Mechanism: Honeywords”, IACR Cryptol. ePrint Archive,

vol. 2013, p. 696, 2013.

[15] A. Shamir and A. Shamir, “How to share a secret”, Commun. of the

ACM (CACM), vol. 22, no. 1, pp. 612–613, 1979.

[16] G. Kontaxis, E. Athanasopoulos, G. Portokalidis, and A. D. Kero-

mytis, “Sauth: Protecting user accounts from password database

leaks”, in Proc. of the 20th ACM SIGSAC Conf. on Comp. and

Commun. Secur. CCS 2013, Berlin, Germany, 2013, pp. 187–198.

[17] N. Abdelmajid and K. W. Mahmoud, “Global position system

location-based authentication (KERBEROS AS AN EXAMPLE)”,

ITEE Journal: Inform. Technol. and Elec. Engin., vol. 5, no. 3,

pp. 13–18, 2016.

107

Khaled W. Mahmoud, Khalid Mansour, and Alaa Makableh

[18] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric

recognition”, IEEE Trans. on Circ. and Syst. for Video Technol.,

vol. 14, no. 1, pp. 4–20, 2004.

[19] P. S. Teh, A. B. J. Teoh, and S. Yue, “A survey of Keystroke dy-

namics biometrics”, The Scientific World Journal, vol. 2013, Article

ID 408280, p. 24, 2013.

[20] S. P. Banerjee and D. Woodard, “Biometric authentication and

identification using Keystroke dynamics: A Survey”, J. of Pattern

Recogn. Res., vol. 7, no. 1, pp. 116–139, 2012.

[21] P. Dholi and K. P. Chaudhari, “Typing pattern recognition us-

ing Keystroke dynamics”, in Mobile Commun. and Power Engin.,

vol. 296, pp. 275–280, 2013.

Khaled Walid Mahmoud re-

ceived a B.Sc. in Computer

Science from Jordan Univer-

sity in 1992, a M.Sc. in Com-

puter Science (Artificial Intelli-

gence) from Jordan University

in 1998 and a Ph.D. in Print

Security and Digital Water-

marking from Loughborough

University, UK, in 2004. This

was followed by academic ap-

pointments at Zarqa Private University (Assistance Profes-

sor in Computer Science). His areas of interest include

information security, digital watermarking, image process-

ing, AI and Arabic language processing.

E-mail: k.w.mahmoud@zu.edu.jo

Department of Computer Science

College of Information Technology

Zarqa University

P.O. Box 132222, Zarqa 13132, Jordan

Khalid Mansour received his

Ph.D. in Computer Science

from Swinburne University in

2014. He is currently the head

of CS Department at Zarqa Uni-

versity, Jordan. His research in-

terests include automated ne-

gotiation in multi-agent sys-

tems, web services and informa-

tion security.

E-mail: kmansour@zu.edu.jo

Computer Science Department

Zarqa University

P.O. Box 132222, Zarqa 13132, Jordan

Alaa Makableh received her

M.Sc. degree in Computer Sci-

ence from Zarqa University in

2016 and a B.Sc. in Com-

puter Information Systems from

Hashemite University (Jordan)

in 2007. Her research interest

is in information security espe-

cially knowledge-based authen-

tication systems.

E-mail: alaa.magableh@gmail.com

Computer Science Department

Zarqa University

P.O. Box 132222, Zarqa 13132, Jordan

108

