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Abstract—The rearreangeable conditions for the 2×2 three-

stage switching fabric of a W-S-W architecture for elastic

optical switches are considered in this paper. Analogies be-

tween the switching fabric considered and the three-stage Clos

network are shown. On the other hand, differences are also

shown, which presented the modifications required in the con-

trol algorithm used in rearrangeable networks. The rearrange-

able conditions and the control algorithm are presented and

proved. Operation of the proposed control algorithm is shown

based on a few examples. The required number of frequency

slot units in interstage links of rearrangeable switching fabrics

is much lower than in the strict-sense non-blocking switching

fabrics characterized by the same parameters.

Keywords—elastic optical networks, elastic optical switching

nodes, interconnection networks, rearrangeable non-blocking

conditions

1. Introduction

The Elastic Optical Network (EON) architecture has been

proposed to utilize the bandwidth available in optical fiber

more efficiently. By breaking the fixed-grid spectrum al-

location limit of conventional Wavelength Division Mul-

tiplexing (WDM) networks, EONs increase flexibility in

connection provisioning [1], [2]. To do so, depending on

the traffic volume, an appropriately sized optical spectrum

is allocated to the connections in EON. This optical spec-

trum is referred to as the Frequency Slot Unit (FSU).

Furthermore, unlike the rigid optical channels of conven-

tional WDM networks [3], a light-path can expand or con-

tract elastically to meet different bandwidth demands in

EON. In this way, the incoming connection request can

be served in a spectrum-efficient manner. This technolog-

ical advance poses additional challenges on the network-

ing level, especially in terms of efficient establishment of

the connection.

Similarly to WDM networks, an elastic optical connection

must occupy the same spectrum portion between its end

nodes, that is, ensuring the so-called spectrum continu-

ity constraint. However, when wavelength conversion (or

spectrum conversion) is introduced in WDM (EON) net-

works, blocking probability is significantly reduced. In ad-

dition, in EONs, the entire bandwidth of each connection

must be contiguously allocated. Bandwidth assigned to

an optical channel depends on the required transmission

data rate, distance to be covered, path-quality, wavelength

spacing between channels, and/or the modulation scheme

used [2], [4]–[6].

Several architectures of elastic optical switching nodes were

proposed in literature [7]–[10]. In this paper, we deal with

one of these switching fabric architectures, i.e. the W-S-W

(wavelength-space-wavelength) switching fabric, called the

WSW1 [11]. Strict-sense non-blocking (SSNB) conditions

for the WSW1 architecture have been proved in [11] as

well. We proposed rearrangeable non-blocking (RNB) con-

ditions for this architecture in [12] for simultaneous routing

of connections with a limited number of connection rates.

The term simultaneous connections means that all connec-

tions arrive at the same time at all inputs, and must be

served simultaneously.

Simultaneous connections can be routed using the modified

matrix decomposition algorithm. Several such algorithms

were proposed in literature, for instance the Neiman’s al-

gorithm [13], which consists of a relatively simple itera-

tion phase followed by a relatively complex iterative phase.

The latter is necessary only if the matrix cannot be de-

composed completely after using phase one. One of the

modifications to phase one of Neiman’s algorithm was pro-

posed for instance in [14]. Neiman’s algorithm is used to

route connections simultaneously in the three-stage Clos

switching fabric [15]. The three-stage Clos network con-

sists of two outer stages of rectangular switches, and of

an inner stage of square switches. The WSW1 switching

fabric can be modeled by the Clos network, as it will be

shown later in this paper. However, we cannot use the same

routing algorithms which are used for the three-stage Clos

switching networks directly in the WSW1 switching fabric,

for reasons mentioned in [12].

In our model, the number of simultaneous connection rates

that can be served is limited to z. The upper bound for RNB

connections when r > 2 was derived in [12]. The aim for

using the RNB switching fabric is to reduce the required

number of FSUs in the interstage links, i.e. to reduce the

cost of this switching fabric. In this paper, we improve the

result presented in [16]. The necessary and sufficient RNB

conditions have been derived in [12] for the special case
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when r = z = 2 and n
m1

, n
m2

, and
m2
m1

are integers. In [16], we

generalized these conditions to the general case, when r =
z = 2 and for any values of n, m1, and m2. We also showed

that after applying the decomposition algorithm mentioned

in [12], we will get a set of connections that can be set up

through the interstage links.

The main idea of this paper is to propose merge operation

for matrices, and to show how to calculate the required

number of FSUs in the interstage links. We also aim to

present how to determine the sequence of matrices that

can be merged together, satisfying the condition that each

connection must use adjacent FSUs.

The remaining portions of the paper are organized as fol-

lows. In the next section, the WSW1 switching fabric is

presented and the problem is described in a more detailed

way. The connection model and its representation are pre-

sented as well. In Section 3, the RNB results for the pro-

posed model are derived and proved. In Section 4 examples

of the algorithm’s operation are presented. The paper ends

with conclusions.

2. Switching Fabrics and

the Model Used

The WSW1 switching fabric considered in this paper was

described in more detail in [11]. Here, we will only pro-

vide a short description which will make the paper easier to

follow. This architecture is presented in Fig. 1. In the first

and third stages, there are r Bandwidth-Variable Wave-

length converting Switches (BV-WSs), and one Bandwidth-

Variable wavelength selective Space Switch (BV-SS) of ca-

pacity r× r is in the second stage. Each BV-WS in the first

Fig. 1. The WSW1 switching fabric architecture.

stage has one input fiber with n FSUs and one output fiber

with k FSUs, while each BV-WS in the third stage has one

input fiber with k FSUs and one output fiber with n FSUs.

The internal architecture of BV-WSs and BV-SS can be

found in [11]. The switching fabric serves m-slot con-

nections, FSUs in input/output fibers are numbered from 1

to n, BV-WSs in both input and output stages are numbered

from 1 to r, and FSUs in interstage fibers are numbered

from 1 to k (see Fig. 1).

In the presented considerations we assumed that BV-WSs

have full range conversion capability, i.e. an m-slot connec-

tion which uses a set of m adjacent FSUs in the input fiber

can be switched to a set of any other m adjacent FSUs

in the output fiber. A new m-slot connection from input

switch Ii to output switch O j will be denoted by (Ii,O j ,m).
When the numbers of FSUs occupied by this connection

are important, the number of the first FSU will be also

provided. Thus, (Ii[x],O j[y],m) denotes the m-slot connec-

tion in the input fiber of switch Ii which occupies FSUs

from x to x+m−1, and FSUs from y to y+m−1 of out-

put fiber of switch O j. In the switching fabric, when a new

connection (Ii,O j,m) arrives, a control algorithm must find

a set of m adjacent FSUs in interstage links, which can be

used for this connection, and these must be FSUs with the

same numbers in the interstage links from Ii and to O j,

since BV-SS has no spectrum conversion capability. In the

case of the simultaneous connection model, we have a set

of compatible connection requests which occupy most of

FSUs in the input and output fibers, i.e. the number of free

FSUs in each input/output fiber is less than m1. This set

of connections is denoted by C and is divided into two

different types of connections: m1 and m2.

Example 1. Let us introduce a simple example. The set of

connection requests C for the switching fabric of capacity

2×2 with n = 13 consists of eight connections (see Fig. 2).

These connections are divided into two types: with m1 = 2
and m2 = 5. There are three m2-slot connections and five

m1-slot connections. Additionally, one FSU remains free

in input fiber no. 1.

The exact mechanism of routing these connections in the

WSW1 switching fabric will be explained in detail later, in

Section 3. The problem now is which FSUs in interstage

Fig. 2. The 2×2 WSW1 switching fabric with C ={(I1[1],O2[6],2); (I1[3],O1[1],5); (I1[8],O2[8],5); (I2[1],O1[6],2); (I2[3],O1[8],2);
(I2[5],O1[10],2); (I2[7],O1[1],5); (I2[12],O1[12],2)}.
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links should be used by these connections, and how many

FSUs are needed to set up all these connections, i.e. when

the switching fabric is RNB. In [12] we proposed a control

algorithm to assign FSUs to particular connection requests

using the matrix decomposition algorithm, and showed the

RNB conditions when n
m1

, n
m2

, and
m2
m1

are integers. The

case with any number of m1, m2, and n is considered in

Section 3.

The WSW1 switching fabric could be represented by the

three-stage Clos network shown in Fig. 3. The Clos equiv-

alent of the WSW1 switching fabric shown in Fig. 4 is

presented in Fig. 5. The space switches in the first stage of

the Clos network correspond to the first stage switches in

the WSW1 switching fabric. Similarly, the space switches

Fig. 3. Three-stage Clos network architecture.

in the third stage of the Clos network correspond to the

third stage switches in the WSW1 switching fabric. Each

FSU in the input fiber of the WSW1’s switch Ii is rep-

resented by one input of switch Ii in the Clos network.

Similarly, each FSU in the output fiber of the WSW1’s

switch O j is represented by one output of switch O j in

the Clos network. In interstage links of the WSW1 fabric,

each FSU corresponds to one center stage switch in the

Clos network. Therefore, we have k switches in the cen-

ter stage. The Clos network with these parameters can be

as C(k,n,r). It is known that if k ≥ n the Clos network is

rearrangeable and if k ≥ 2n−1 — it is strictly non-block-

ing [15]. The number of inputs and outputs to the Clos

network is N = nr.
A matrix decomposition algorithm starts by deriving the Hn
matrix of size r × r, where each element Hn[i, j] denotes

the number of connection requests at input switch Ii which

are directed to output switch O j. Because each first stage

switch has n inputs, the sum of the entries in each row is n,

Fig. 4. 2×2 WSW1 switching fabric with C ={(I1[1],O1[3],3);
(I1[5],O2[1],2); (I2[1],O1[1],2); (I2[3],O2[3],3)}.

Fig. 5. Three-stage Clos network architecture with C ={(I1[1],
O1[3],3); (I1[5],O2[1],2); (I2[1],O1[1],2); (I2[3],O2[3],3)}.

(See color pictures online at www.nit.eu/publications/journal-jtit)

and since each last stage switch has n outputs, the sum of

the entries in each column is also n.

Let us consider the WSW1 switching fabric in Fig. 4. This

switching fabric serves 4 connections which occupy 2 or

3 FSUs. In Fig. 5, this WSW1 is modeled as a three-stage

Clos network. In Fig. 4, we used different colors to recog-

nize these connections. The connection marked with a solid

line (blue connection) occupies 3 adjacent FSUs from I1
to O1, and it is represented in Fig. 5 by solid lines. Sim-

ilarly, the connection marked with a dashed line (orange

connection), which occupies 2 adjacent FSUs from I1 to

O2, is marked orange in Fig. 5. Other connections from I2
are represented in the same way. These connections can be

represented by the connection matrix H5 =
[

3 2
2 3

]

.

According to Neman’s algorithm [13], this matrix can be

decomposed into 5 permutation matrices: P1, P2, P3, P4,

and P5. Each permutation matrix represents one switch

from the middle stage of the Clos network (see Fig. 5).

FSUs belonging to connections represented by P1 =
[

1 0
0 1

]

are set up through the first switch from the middle stage (or

first FSUs in interstage links in the WSW1 switching fab-

ric), FSUs belonging to P2 =
[

1 0
0 1

]

are set up through the

second switch, and so on for P3 =
[

0 1
1 0

]

, P4 =
[

1 0
0 1

]

, and

P5 =
[

0 1
1 0

]

. As a result, the blue connection which occupies

3 adjacent FSUs in the input link, is set up through 1st, 2nd,

and 4th FSUs in the WSW1’s interstage link. However, this

is not correct, since these FSUs are not adjacent to each

other. In general, the problem of routing connections in

the WSW1 structure looks similar to routing connections

in the three-stage Clos network. However, some important

differences include the following:

• instead of finding connections which can be set up

though one center stage switch, we have to find con-

nections which can be set up using the same set of

FSUs in the interstage link,

• connections which occupy several FSUs must use ad-

jacent FSUs.
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3. Rearrangeability Conditions

We consider 2×2 WSW1 switching fabric with the num-

ber of connection rates limited to 2, i.e. there are only

mx-slot connections, where x = 1,2. A set of compatible

connections in C is represented by Hmx matrices:

Hmx =

[

hmx
11 hmx

12

hmx
21 hmx

22

]

, (1)

where hmx
i j is equal to the number of mx-slot connection

requests from switch Ii to switch O j. According to Algo-

rithm 1 given in [12], the Hmx matrix can be decomposed

into cmx
max permutation matrices Pmx

i , where cmx
max represents

the maximum number of mx-slot connections in one input

or output, while cmx
min represents the minimum number of

such connections. We can use this algorithm to set up the

set of connection requests given in Example 1 (see Fig. 2).

In Table 1, steps of decomposition of the given set of con-

nection requests are presented one by one. In the first row,

connection matrices Hm1 and Hm2 are given. In the next

rows, matrices that result from decomposition of Hm1 and

Hm2 matrices are presented. For each decomposed matrix,

the number of assigned FSUs are provided in second and

fourth columns. As can be noticed, the number of occupied

Table 1

Assignment of FSUs to connections used in Example 1

Matrices

representing

m1-slot

connections

FSUs in

interstage

links

Matrices

representing

m2-slot

connections

FSUs

interstage

links

Hm1 =

[

0 4
1 0

]

— Hm2 =

[

1 0
1 1

]

—

Pm1
1 =

[

0 1
1 0

]

1–2 Pm2
1 =

[

1 0
0 1

]

9–13

Pm1
2 =

[

0 1
0 0

]

3–4 Pm2
2 =

[

1 0
0 0

]

14–18

Pm1
3 =

[

0 1
0 0

]

5–6 — —

Pm1
4 =

[

0 1
0 0

]

7–8 — —

FSUs in interstage links is 18. After applying the decom-

position algorithm, it is time to commence the merging

operation which can reduce the required number of FSUs

in the intestage links to 14. The final arrangement for the

8 connections mentioned is shown in Fig. 6.

In [12], we proved that the WSW1 switching fabric pre-

sented in Fig. 1 with r = 2 is rearrangeably non-blocking

when m ∈ {m1;m2} if and only if:

k ≥ n, (2)

where m1 < m2, and n
m1

, n
m2

, and
m2
m1

are integers. In this

article we propose a new theorem to find value k that makes

the WSW1 switching fabric RNB for a scenario of a more

general nature.

Theorem 1: The WSW1 switching fabric presented in

Fig. 1 with r = 2 is rearrangeably non-blocking for m-slot

connections, where m ∈ {m1;m2}, if:

k ≥
⌊

n
m2

⌋

·m2 +

(⌊

n
m1

⌋

−

⌊

n
m2

⌋

·

⌊

m2

m1

⌋)

·m1. (3)

Proof: Let C denote a set of compatible connections. We

have two connection rates, m1 and m2, and all connections

can be represented by Hm1and Hm2 matrices. According to

the decomposition algorithm given in [12], Hm1 and Hm2

can be decomposed into cm1
max and cm2

max permutation ma-

trices Pmx , respectively. Each Pmx matrix represents a set

of mx-slot connections which can be set up using the same

mx FSUs in interstage links. From these Pmx matrices, only

cm1
min and cm2

min matrices contain exactly one value 1 per each

row and each column. Other
(

cm1
max − cm1

min

)

matrices Pm1

and
(

cm2
max − cm2

min

)

matrices Pm2 contain some rows and/or

columns with 0 values only. Permutation matrices Pm1 with

0s only in certain row(s) or column(s) can be merged with

matrices Pm2 with 0s only, but in other row(s) or column(s).

In this case, at most
(

cm2
max − cm2

min

)

matrices Pm2 can be

merged with at most
(

cm1
max − cm1

min

)

matrices Pm1 . The re-

quired number of FSUs in interstage links k, which allows

to set up all connections simultaneously, is given by the

flowing formula:

k ≥cm1
min ·m1 + cm2

min ·m2 +
(

cm2
max−cm2

min

)

·m2

+

(

(

cm1
max−cm1

min

)

−
(

cm2
max−cm2

min

)

·

⌊

m2

m1

⌋)

·m1
. (4)

Fig. 6. 2×2 WSW1 switching fabric with set C of requested connections (see Fig. 1) set up with the number of FSUs decreased due

to the merging operation.
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Equation (4) can be simplified into the following:

k ≥ cm2
max ·m2 +

(

cm1
max −

(

cm2
max − cm2

min

)

·

⌊

m2

m1

⌋)

·m1 . (5)

Equation (5) must be maximized through all possible

sets C. Since cmx
max represents the maximum number of

mx-slot connections in one of the inputs or outputs, the

number of such connections in one input/output will never

be greater than
⌊

n
mx

⌋

. When cmx
max value is maximized, the

value of cmx
min is minimized. When we put cmx

max =
⌊

n
mx

⌋

and

cmx
min = 0 to Eq. (5) we get:

k ≥
⌊

n
m2

⌋

·m2 +

(⌊

n
m1

⌋

−

⌊

n
m2

⌋

·

⌊

m2

m1

⌋)

·m1 (6)

which gives number of FSUs in each interstage links.

4. Examples of Algorithm’s Operation

Let us present a few examples rendering the idea behind

the proof presented clearer. The first example for the 2×2
WSW1 switching fabric was already presented in Section 2.

Example 2. In this example the WSW1 switching fabric

has the following parameters: r = 2, n = 12, z = 2, m1 = 3,

m2 = 5, and the set of connection requests C is shown in

Fig. 7. All connections from the set of requested connec-

tions C can be represented by matrices Hm1 =
[

0 0
2 2

]

and

Hm2 =
[

1 1
0 0

]

. There are cm1
max = 4 and cm2

max = 2 permutation

matrices for Hm1 and Hm2 , respectively. The matrices that

do not contain one element 1 in each row and each column

can be merged together because it means that they represent

connections which are at different inputs and are directed

to different outputs. After decomposition, the number of

permutation matrices received from Hm1 and Hm2 that can-

not be merged with other matrices, is equal to cm1
min = 0

and cm2
min = 0, respectively. But this does not mean that all

of the permutation matrices can be merged together, and

this is because values of n
m1

, n
m2

, and
m2
m1

(or at least the

third value) are not integers. Generally, we can merge only
⌊

m2
m1

⌋

Pm1 matrices with one matrix Pm2 , since connections

in Pm2 occupy m2 FSUs, while connections in Pm1 – only

m1 FSUs. In the presented example, we have m2 = 5 and

m1 = 3, so
⌊

m2
m1

⌋

= 1 and only one Pm1 can be merged with

one Pm2 .

In the first step of Hm1 decomposition, we get Pm1
1 =

[

0 0
1 0

]

,

and Hm1
1 = Hm1 −Pm1

1 =
[

0 0
1 2

]

. The next permutation matrix

is Pm1
2 =

[

0 0
1 0

]

, and Hm1
2 = Hm1 −Pm1

2 =
[

0 0
0 2

]

. Finally, Hm1
2

can be decomposed into two equal permutation matrices

Pm1
3 = Pm1

4 =
[

0 0
0 1

]

.

For Hm2 , the first permutation matrix is Pm2
1 = Pm2

2 =
[

1 0
0 0

]

,

and the second permutation matrix is obtained from

Hm2
1 = Hm2 −Pm2

1 =
[

0 1
0 0

]

= Pm2
2 . When no merging op-

eration is performed, we need 22 FSUs in interstage links,

i.e. four Pm1 matrices, each uses three FSUs, and two Pm2

matrices occupying five FSUs each. When two Pm2 ma-

trices are merged with two Pm1 matrices, the number of

required FSUs is reduced to 16, as shown in Fig. 7.

Example 3. In this example, most connections in I1 are

m2-slot connections, and the rest of FSUs are used by

one m1-slot connection. In I2, all FSUs are occupied by

m1-slot connections This switching fabric with n = 12,

z = 2, m1 = 2, and m2 = 5, as well as the set of con-

nection requests C are shown in Fig. 8. Set C is repre-

sented by matrices Hm1 =
[

1 0
5 1

]

and Hm2 =
[

0 2
0 0

]

. The

number of permutation matrices for Hm1 is cm1
max = 6, and

for Hm2 is cm2
max = 2. After decomposition, for Hm1 we get

the following set of permutation matrices:Pm1
1 =

[

1 0
0 1

]

, and

Pm1
2 = Pm1

3 = Pm1
4 = Pm1

5 = Pm1
6 =

[

0 0
1 0

]

, while for Hm2 we

get two permutation matrices: Pm2
1 = Pm2

2 =
[

0 1
0 0

]

. We can

merge Pm2
1 with Pm1

2 and Pm1
3 , and Pm2

2 with Pm1
4 and Pm1

5 ,

to get number of FSUs in the interstage links k = 14 instead

of k = 22.

Example 4. In the fourth example, all connections in I1
are m2-slot connections, and in I2 we have one m2-slot con-

nection and the rest of FSUs are occupied by m1-slot con-

nections. This switching fabric with n = 11, z = 2, m1 = 2,

m2 = 5, and the set C are shown in Fig. 9. It can be rep-

resented by matrices Hm1 =
[

0 0
3 0

]

and Hm2 =
[

1 1
0 1

]

. The

Fig. 7. 2×2 WSW1 switching fabric with C ={(I1[1],O1[7],5); (I1[6],O2[4],5); (I2[1],O1[1],3); (I2[4],O1[4],3); (I2[7],O2[1],3);
(I2[10],O2[9],3)}, where all connections from input 1 are of size m2 and from input 2 are of size m1.
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Fig. 8. 2×2 WSW1 switching fabric with C ={(I1[1],O2[6],5); (I1[6],O2[1],5); (I1[1],O1[3],2); (I2[1],O1[1],2); (I2[3],O2[11],2);
(I2[5],O1[1],2); (I2[7],O1[5],2); (I2[9],O1[7],2); (I2[11],O1[11],2)}, where all connections from input 1 are of size m2 or m1, and

from input 2 are of size m1.

Fig. 9. 2×2 WSW1 switching fabric with C ={(I1[1],O1[1],5); (I1[6],O2[6],5); (I2[1],O1[6],2); (I2[3],O1[8],2); (I2[5],O1[10],2);
(I2[7],O2[1],5)}, where all connections from input 1 are of size m2 and from input 2 are of size m1 or m2.

number of permutation matrices for Hm1 is cm1
max = 3, and

for Hm2 is cm2
max = 2. After decomposition, the set of permu-

tation matrices obtained from Hm1 is Pm1
1 = Pm1

2 = Pm1
3 =

[

0 0
1 0

]

, while form Hm2 : Pm2
1 =

[

1 0
0 1

]

and Pm2
2 =

[

0 1
0 0

]

. In

this example, we can merge matrix Pm2
2 with matrices Pm1

1
and Pm1

2 . The number of FSUs in the interstage links is

k = 12 instead of k = 16 without merging.

5. Conclusions

In this article, we considered the rearrangeability of WSW1

switching fabrics for elastic optical network nodes. Up till

now, rearrangeable conditions for switching fabrics with

two inputs, two outputs, two connection rates, and when
n

m1
, n

m2
, and

m2
m1

are integers, have been given. We extended

these conditions to the case with any relations between

values of n, m1, and m2. We described also a few exam-

ples which show the operation of the proposed algorithms

and how merging operation results in reducing the required

number of FSUs in interstage links.

Acknowledgements

The work of Wojciech Kabaciński and Remigiusz Ra-

jewski was supported by the National Science Centre,

Poland (NCN) under grant UMO-2016/21/B/ST7/02257

(ERP: 08/84/PNCN/2257), and the work of Atyaf Al-Ta-

meemi was supported with funds of the Ministry of Sci-

ence and Higher Education for the year 2017 under grant

08/82/DSMK/8222.

References

[1] V. López and L. Velasco, Elastic Optical Networks. Architectures,

Technologies, and Control. Switzerland: Springer Int. Publishing,

2016.

[2] M. Jinno et al., “Spectrum-Efficient and Scalable Elastic Optical

Path Network: Architecture, Benefits, and Enabling Technologies”,

IEEE Commun. Mag., vol. 47, no. 11, pp. 66–73, 2009.

[3] ITU-T Recommendation G.694.1. Spectral Grids for WDM Appli-

cations: DWDM Frequency Grid, 2012.

[4] O. Gerstel et al., “Elastic Optical Networking: A New Dawn for the

Optical Layer?”, IEEE Commun. Mag., vol. 50, no. 2, pp. S12–S20,

2012.

[5] I. Tomkos et al., “A Tutorial on the Flexible Optical Networking

Paradigm: State of the Art, Trends, and Research Challenges”, Proc.

IEEE, vol. 102, no. 9, pp. 1317–1337, 2014.

[6] R. Proietti et al., “3D Elastic Optical Networking in the Temporal,

Spectral, and Spatial Domains”, IEEE Commun. Mag., vol. 53, no. 2,

pp. 79–87, 2015.

[7] P. Zhang et al., “Comparison of Node Architectures for Elastic Opti-

cal Networks with Waveband Conversion”, China Commun., vol. 10,

no. 8, pp. 77–87, 2013.

[8] Y. Chen et al., “Demonstration of Petabit scalable optical switching

with subband-accessibility for elastic optical networks”, in Proc.

The OptoElectr. and Commun. Conf. and Austral. Conf. on Optical

Fibre Tech., OECC/ACOFT 2014, Melbourne, VIC, Australia, 2014,

pp. 350–351.

[9] G. Danilewicz, W. Kabaciński, and R. Rajewski, “Strict-Sense Non-

blocking Space-Wavelength-Space Switching Fabrics for Elastic Op-

tical Network Nodes”, J. of Opt. Commun. and Netw., vol. 8, no. 10,

pp. 745–756, 2016.

16



Rearrangeability of 2×2 W-S-W Elastic Switching Fabrics with Two Connection Rate

[10] W. Kabaciński, M. Michalski, and R. Rajewski, “Strict-Sense Non-

blocking W-S-W Node Architectures for Elastic Optical Networks”,

J. of Lightwave Tech., vol. 34, no. 13, pp. 3155–3162, 2016.

[11] W. Kabaciński, M. Michalski, and M. Abdulsahib, “The Strict-Sense

Nonblocking Elastic Optical Switch”, in Proc. IEEE 15th Int. Conf.

High Perform. Switching and Routing HPSR, Budapest, Hungary,

2015 (doi: 10.1109/HPSR.2015.7483108).

[12] W. Kabaciński, R. Rajewski, and A. Al-Tameemi, “Simultaneous

Connections Routing in W-S-W Elastic Optical Switches with Lim-

ited Number of Connection Rates”, in Proc. 21st Int. Conf. on Opt.

Net. Design and Models ONDM, Budapest, Hungary, 2017.

[13] V. I. Neiman, “Structure et commande optimales des réseaux de
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