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Abstract—The paper presents a novel hybrid spectrum sens-

ing method used in cognitive radio and presents a hybrid de-

tector (HD) which improves the sensing performance. The

proposed HD takes advantage of the energy detection (ED)

principle and a method based on Covariance Absolute Value

(CAV), as well as on Cyclic Autocorrelation Function (CAF).

The paper shows the limitations of using ED, resulting from

the uncertainty of spectral density of noise power estima-

tion, known as the SNR wall. The paper describes a system

model and presents simulation results for the OFDM signal of

a WiMAX-based communications system. The simulation re-

sults refer to an ideal environment with well-known param-

eters, and to an environment with uncertain spectral density

of noise power estimation.

Keywords—Covariance Absolute Value, Cyclic Autocorrelation

Function, hybrid detector, noise uncertainty, OFDM, SNR wall,

WiMAX.

1. Introduction

Cognitive radio systems [1], [2] are an effective solution

to the problem of spectrum scarcity, providing dynamic

spectrum access to frequencies that are temporarily not

used by primary users (PU). Spectrum sensing is one of

the basic tasks of cognitive radio which must be carried

out to enable communications. It relies on monitoring

wide-band spectrum and finding the channels not occupied

by PU (licensed) users, which can be used by secondary

users (SU).

There is a lot of research dealing with optimization of spec-

trum sensing. A common approach is to increase efficiency

of hybrid architecture detectors, based on a combination of

various detection methods [3], [4]. The structure of a hy-

brid sensing model depends on the spectrum recognition

scenario used. A two-phase system which uses energy de-

tections (ED) in the first phase could be an example of the

simplest and fastest method of sensing. It enables reliable

detection of strong signals, using a relatively small num-

ber of samples. In other cases, if the detected energy level

does not allow for accurate ED estimation, another, more

accurate method can be used.

ED is characterized by low computational complexity and

simple implementation [5]. Unfortunately, it is sensitive

to the uncertainty of spectral density of noise power es-

timation [6], [7]. Therefore, the second phase of the hy-

brid detector (HD) uses a method that does not require this

parameter. These methods most often use distinctive fea-

tures which let us distinguish noise from modulated signals.

However, they are usually complex or require many sam-

ples to ensure high detection reliability. Examples of meth-

ods that can be used in the second HD phase include the

following: matched filter, cyclostationary features detector,

eigenvalue-based sensing detector, wavelet-based sensing

detector or covariance-based detector.

The results of HD research show, inter alia, superiority of

the hybrid method [8], [9]. However, these papers refer

to an ideal scenario in which the uncertainty of spectral

density of noise power estimation is considered. In real

systems it is not possible to accurately estimate noise vari-

ance, which results in restrictions affecting the use of ED.

Any measurements are characterized by finite accuracy and,

thus, uncertainty. In the case of ED, this uncertainty in re-

lation to the measurement of the spectral density of noise

power is revealed as the so-called SNR wall [10].

When noise is affected by uncertainty, the existing approach

turns out to be too idealistic. For this reason, the paper

shows an analysis of HD efficiency in an environment with

uncertainty associated with spectral density of noise power

estimation.

The remaining parts of this paper present two hybrid sens-

ing methods (HDCAV and HDCAF) using ED and CAV or

ED and CAF, respectively. A system model for which sim-

ulations have been carried out is characterized. The results

of the study for the WiMAX system are presented for two

cases: the ideal case of an environment with well-known

conditions, as considered in the literature so far, and for an

environment with uncertainty related to spectral density of

noise power estimation.

2. Hybrid Detector

A two-phase hybrid detector is proposed, combining the

advantages of ED and CAV or CAF sensing approaches

(Fig. 1).

For each channel, first the presence of PU is determined in

the ED detection phase. Although this method is sensitive

to good noise uncertainty, its undoubted advantage is the
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Fig. 1. Hybrid detector block diagram.

high speed of detection and accuracy at high SNR values.

The decision about PU signal presence H1 is taken only

when the energy of the received signal (T1 = TED) is higher

than the first phase detection threshold (λ1 = λED) calcu-

lated for the assumed probability of a false alarm (Pf a).

If the decision cannot be made using ED, CAV or CAF,

the second phase of hybrid detection is used as a more

accurate approach. The decision about PU signal presence

is taken when decision statistic T2 is greater than the second

phase threshold λ2. Otherwise, a decision about PU signal

absence H2 is made. Depending on the detector used in the

second phase (CAV or CAF), here T2 = TCAV and λ2 = λCAV ,

or T2 = TCAF and λ2 = λCAF .

2.1. ED Method

The decision rule for the energy detector can be expressed

by [5], [11]:

TED =
1

NS

NS−1

∑
n=0

|y(n)|2 , (1)

where: y(n) is the received signal, NS is the number of

signal samples.

The detection threshold for the assumed Pf a value is ex-

pressed as:

λED = σ 2
η

(

Q−1(Pf a)
√

2NS +NS

)

, (2)

where: σ 2
η is noise variance, Q(t) is the Q function given

by:

Q(t) =
1√
2π

+∞
∫

t

e−
u2
2 du . (3)

Equation 2 can be used in an ideal environment, for which

it is possible to estimate the noise variance with a high

level of accuracy. Under real conditions, the uncertainty

of measurement needs to be taken into consideration [10],

assuming that the actual variance of noise is within the

uncertainty interval such as:

σ2 =

〈(

1
ρ

)

σ2
η ;ρσ2

η

〉

, ρ > 1 , (4)

where ρ is parameter that quantifies the uncertainty degree.

Considering the uncertainty associated with spectral density

of noise power measurements, the detection threshold is:

λED = ρσ 2
η

(

Q−1(Pf a)
√

2NS +NS

)

. (5)

The time (represented by number of samples NS) required

to the channel state corresponds to the probability values

assumed and is expressed as [10]:

N ≈ 2
(

Q−1(Pf a)−Q−1(Pd)
)2

(

SNR−
(

ρ − 1
ρ

))2 . (6)

Equation 6 shows that the required number of samples

reaches infinity when the decreasing SNR reaches a value

comparable to the area of approximated spectral density

of noise power uncertainty. Figure 2 shows the number

of samples needed to obtain the assumed probabilities in

the SNR function [10]. Depending on the accuracy of the

spectral density of noise power estimation expressed as un-

certainty (x = 10logρ), the SNR wall level is achieved at

lower SNRs, but as the limit approaches, the number of

samples necessary to maintain the required credibility in-

creases rapidly.

Fig. 2. Number of samples as a function of SNR, depending on

the uncertainty of spectral density of noise power estimation.

The detector cannot provide a reliable decision if the signal

power level is lower than the uncertainty associated with the

spectral density of noise power measurement. SNR wall as
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function of uncertainty is expressed by Eq. 7 and shown

in Fig. 3:

SNRWall =
ρ2−1

ρ
. (7)

Fig. 3. SNR wall as a function of noise uncertainty.

2.2. CAV Method

CAV is based on differences between noise and signal auto-

correlation. The autocorrelation of received signal is [12]:

φ(l) =
1

NS

NS−1

∑
n=0

y(n) · y(n− l), l = 0,1, . . . , L−1 , (8)

where NS is number of signal samples, L is the smoothing

factor.

Statistical covariance matrices Rx of the entire signal and

noise can be estimated using an R̂x matrix symmetric and

Toeplitz formed for L consecutive signal samples:

R̂x(NS) =











φ(0) φ(1) . . . φ(L−1)
φ(1) φ(1) . . . φ(L−2)

...
...

. . .
...

φ(L−1) φ(L−2) . . . φ(0)











. (9)

Based on the symmetric property of the autocorrelation

matrix, T1 and T2 ratios are expressed as follows:

T1 =
1
L

L

∑
n=1

L

∑
m=1

|rnm| , (10)

T2 =
1
L

L

∑
n=1

|rnn| , (11)

where rnm and rnn are R̂x matrix elements.

The decision statistic for CAV is:

TCAV =
T1

T2
, (12)

and detection threshold λCAV is calculated as:

λCAV =

(

1+(L−1)

√

2
NSπ

)(

1− Pf a

Q

√

2
NS

)−1

. (13)

2.3. CAF Method

According to [13], the complex x(t) process with the av-

erage zero value is cyclostationary in a wide sense, if its

autocorrelation function (varying in time domain) is peri-

odic with the repetition period Tf and can be represented

as a Fourier series:

Rxx(t,τ) = ∑
α

Rα
xx(τ)ej2παt

, (14)

where values are added by integral multiplies of the ba-

sic frequency α = k
Tf

, k = 1, 2, 3 . . .. The Fourier series

coefficients depending on the time lag have the following

form:

Rα
xx(τ) = lim

T→∞

1
T

T
2

∫

− T
2

Rxx(τ)e−j2παt dt (15)

The Rα
xx(τ) function is called the cyclic autocorrelation

function (CAF) [14], and the CAF Fourier transform:

Sα
xx( f ) =

∞
∫

−∞

Rα
xx(τ)e−j2π f τ dt (16)

is called the spectral correlation density function.

One can see that CAF is discrete in terms of frequency and

continuous in terms of time lag.

For non-cyclostationary CAFs processes, Rα
xx (τ) = 0,

∀α 6= 0. Each non-zero value of the α parameter, where

Rα
xx(τ) = 0, is called the cyclic frequency.

CAF for the OFDM signal has the following form [15]:

Rα
xx =

A
TS

sin(πNS∆ f τ)

sin(π∆ f τ)
ej2π

(

f0+∆ f
NS−1

2

)

×

×
∞

∫

−∞

e−j2π(αn− f )G( f )G(αn− f )d f ,

(17)

where G( f ) is the Fourier transform of a rectangular pulse

shape, A is the variance of symbol sequence, Ts = Tu +Tg
is the symbol duration, Tu = 1

∆ f is the useful symbol du-

ration, ∆ f is the subcarrier spacing, and Tg is the guard

interval duration. The detection threshold λCAF is:

λCAF = tg · 1
2

π
(

1−Pf a CAF
)

. (18)

3. System Model

In cognitive radio, the sensing of the primary user’s signals

is directly connected with the cognitive system scenario. In

this paper the WiMAX (IEEE 802.16-2004 [16]) was as-

sumed as the licensed system with its parameters specified

in Table 1. The following detection parameters were also

assumed:

• probability of a detection Pd = 0.9,

• probability of a false alarm Pf a = 0.1,

• uncertainty associated with spectral density of noise

power estimation x = ±1 dB.
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For the HD second phase using the CAF, detection of

a single CAF peak is used (α = 0 and τ = Tu). This case

is similar to [17], and the difference lies in other decision

statistics.

Table 1

Parameters of the licensed system used

Parameter Value

Bandwidth 3.5 MHz

OFDM symbol duration 80 µs

OFDM useful symbol duration 64 µs

Cyclic prefix ratio 1/4

FFT size 256

The decision statistics for proposed CAF is:

TCAF =

∣

∣

∣

∣

∣

Rα
x

Rα
y

∣

∣

∣

∣

∣

, (19)

where: Rα
x is the empirical CAF of the OFDM signal,

Rα
y is the empirical noise CAF. TCAF test is a simple ratio

test between Rα
x and Rα

y evaluated for α = 0 and τ = Tu.

The test compares characteristic points of CAF for OFDM

signals and noise.

The question that remains open is how to acquire noise

samples for the test. One of the solutions proposed in liter-

ature is to take data from a rarely used channel. American

channel 37 reserved for radio astronomy is a good example

here. Another proposal is to use samples from the tested

channel, provided that a previous decision has been made

that there is no emission in the PU channel.

4. Simulation Results

The aim of the simulations was to check the efficiency of

HDCAV and HDCAF methods in comparison to other avail-

able techniques, i.e. ED, CAV, CAF. Three metrics were

used to evaluate the sensing efficiency:

• sensitivity of the sensing Pd,

• reliability of the sensing Pf a,

• sensing time.

HD sensing should significantly increase efficiency. How-

ever, insertion of the uncertainty of noise variance into the

scenario may significantly worsen the results. For this rea-

son, the proposed hybrid detectors were first tested for the

ideal case, i.e. in an environment that did not take into

account the uncertainty of spectral density of noise power

estimation. Then, the tests were repeated for an environ-

ment with such uncertainty.

To determine the dependence of Pd on SNR with the as-

sumed number of samples, the probability of a false alarm

was set at 10% (Pf a = 0.1).

Figure 4 shows a comparison of HDCAV performance with

ED and CAV sensing techniques for N OFDM signal sym-

bols versus SNR for the ideal case. For 10 OFDM sym-

Fig. 4. Probability of detection vs. SNR for HDCAV without

the influence of uncertainty of spectral density of noise power

estimation.

bols, HDCAV reaches Pd = 90% for SNR lower by at least

0.8 dB, and for 50 symbols, it is 2 dB referring to the best

of of the two single methods (ED). The hybrid detection

scheme considered achieves better results than detectors

based on exclusively on ED or CAV.

Fig. 5. Probability of detection vs. SNR for HDCAV with the

influence of uncertainty of spectral density of noise power esti-

mation.

Figure 5 shows the same comparison as presented in Fig. 4,

but with the uncertainty of noise variance. In this situation

the results are considerably worse. For 10 OFDM sym-

bols, HDCAV reaches Pd = 90% for SNR lower by almost

0.6 dB, and for 50 symbols, it is 0.25 dB referring to the

best of the two single methods (CAV). The uncertainty

of noise variance leads to significant deterioration of the

HD detection performance. One can see that the biggest

gain from the use of HD is achieved for short signals.

So, the longer the signal, the more dependent HD perfor-

mance becomes on the method used in the second phase of

detection.

Figure 6 shows the comparison of HDCAF performance with

the ED and CAF sensing techniques for N OFDM signal

symbols versus SNR for the ideal case. For 10 OFDM sym-
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Fig. 6. Probability of detection vs. SNR for HDCAF (without

the influence of uncertainty of spectral density of noise power

estimation).

bols, HDCAF reaches Pd = 90% for SNR lower by 0.7 dB,

and for 50 symbols, it is 1.7 dB referring to the best of

the two single methods (ED). Also, in this case, HD shows

better detection parameters than other methods. For HD,

the assumed Pd = 0.9 is reached at lower SNR values than

for the other methods.

Fig. 7. Probability of detection vs. SNR for HDCAF with the

influence of uncertainty of spectral density of noise power esti-

mation.

Similarly, Fig. 7 shows the performance of the same detec-

tors as in Fig. 6, with the uncertainty of noise variance. In

this scenario, the results are much worse. For 10 OFDM

symbols, HDCAF reaches Pd = 90% for SNR lower by al-

most 0.6 dB referring to the best of the two single methods

(ED). However, for 50 symbols, HDCAF is worse than the

best of the two single methods (CAF) by 0.15 dB. It can

be seen that for the environment with the uncertainty of

spectral density of noise power estimation, the gain from

the use of HDCAF is achieved just for a short signal obser-

vation time.

In order to compare the presented detectors, the receiver

operating characteristic (ROC) curves were determined (for

HDCAV – Fig. 8, Fig. 9, and for HDCAF – Fig. 10, Fig. 11).

It can be noticed that for the ideal case (Fig. 8), HDCAV
is significantly better than the other single detectors.

HDCAV reaches Pd = 90% for Pf a lower than 6.5%, com-

pared to the better of the single methods (ED). According to

the theoretical assumptions, introduction of HD increases

reliability sensing due to minimizing Pf a.

Fig. 8. ROC curves for HDCAV (without the influence of uncer-

tainty of spectral density of noise power estimation).

Fig. 9. ROC curves for HDCAV (with the influence of uncertainty

of spectral density of noise power estimation).

Figure 9 shows the ROC curves taking into account the

uncertainty of the noise variance effect. In this case, the

results are much worse. HDCAV reaches Pd = 90% for Pf a
lower by at least 2.5%, compared to the better of the single

methods (CAV).

In the ideal case (Fig. 8), the detection threshold for the first

phase based on ED (λ1 = λED) was calculated from Eq. 2,

which did not account for the uncertainty of noise variance.

That is why the results show HD superiority compare to

other methods. However, by analyzing the ROC curves

after taking into account the uncertainty (Fig. 9), one may

notice that ED and SNR wall have a great impact on the

reliability of HD.

Considering hybrid detection based on CAF in the second

phase, one can see that for the ideal case (Fig. 10), HDCAF
is also better than other single detectors. HDCAF reaches

Pd = 90% for Pf a lower than 6%, compared to the better
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of the single methods (ED). This time, the introduction of

HD (by minimizing Pf a) also increases the reliability of

sensing.

Fig. 10. ROC curves for HDCAF (without the influence of un-

certainty of spectral density of noise power estimation).

Fig. 11. ROC curves for HDCAF (with the influence of uncer-

tainty of spectral density of noise power estimation).

Figure 11 shows the ROC curves taking into account the

uncertainty of the noise variance effect. In this case the

results are much worse. For the conditions under consid-

eration, HDCAF does not reach Pd = 90%. But generally,

HDCAF allows for decreasing Pf a by 3% comparing to the

better of the single methods (CAF).

This time, the weak performance of ED in an environment

with the uncertainty of spectral density of noise power es-

timation results in the fact that HDCAF is useless and the

SNR wall has too big an impact on the reliability of HD.

To compare both HD solutions in terms of detection time,

the results achieved were presented and compared with the

number of samples.

The simulation results show Pd vs. sensing time, expressed

in the number of samples for HDCAV and HDCAF in Figs. 12

and 13, respectively. The results have been presented just

for an environment with the uncertainty of spectral density

of noise power estimation, in order to show how consider-

able a reduction of sensing time is possible with the HD

method.

Figure 12 shows that for –5 dB SNR, Pd = 90% can be

achieved for a number of samples lower by at least 400,

which represents a reduction of sensing time by 26%.

For –10 dB SNR, Pd = 90% can be achieved 1600 signal

samples faster (17% less time).

Fig. 12. Probability of detection vs. sample numbers function

for HDCAV (with the influence of uncertainty of spectral density

of noise power estimation).

Fig. 13. Probability of detection vs. sample numbers function

for HDCAF (with the influence of uncertainty of spectral density

of noise power estimation).

In Fig. 13, simulation results for HDCAF show that for –

5 dB SNR, Pd = 90% can be achieved for a number of

samples lower by at least 4000 (13% reduction of sensing

time). For –10 dB SNR, HDCAF does not reach the required

level of Pd for the taken number of samples considered in

the simulations. It can be concluded that HDCAF is slower

than HDCAV – it requires more samples.

5. Conclusions

The HD allows for the increase of sensing efficiency in cog-

nitive radio, especially in comparison to individual meth-

ods, i.e. ED, CAV or CAF. By taking into account two
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extreme cases: the ideal and the worst ones (with 1 dB

uncertainty of spectral density of noise power estimation),

it is possible to conclude that the more accurate the esti-

mation of SNR, the higher the HD gain. And even in the

worst scenario, HD makes it possible to detect the signal

quicker (even by 26%), at the same time lowering Pf a and

increasing Pd.
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