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Abstract—Rapid escalation of wireless communication and

hands-free telephony creates a problem with acoustic echo in

full-duplex communication applications. In this paper a simu-

lation of model-based acoustic echo cancelation and near-end

speaker extraction using statistical methods relying on non-

negative matrix factorization (NMF) is proposed. Acoustic

echo cancelation using the NMF algorithm is developed and its

implementation is presented, along with all positive, real time

elements and factorization techniques. Experimental results

are compared against the widely used existing adaptive algo-

rithms which have a disadvantage in terms of long impulse re-

sponse, increased computational load and wrong convergence

due to change in near-end enclosure. All these shortcomings

have been eliminated in the statistical method of NMF that

reduces echo and enhances audio signal processing.

Keywords—adaptive algorithms, convergence, echo cancelation,

non-negative matrix factorization (NMF).

1. Introduction

In the era of wireless communication, widespread use of

hands-free telephony has been observed. This results in dis-

turbances from acoustic echo and associated noise, which

decreases the quality of speech [1]. Echo is a phenomenon

in which a delayed and distorted original signal is re-

flected to its source. Echo in audio speech occurs when

the sound is reflected from nearby objects, walls or from

the floor. If these reflections are of a short duration and

arrive in a very short time, they are referred to as [2] re-

verberations or the spectral distortion. Whereas if the same

sound arrives back within a few tens of milliseconds, it is

heard as a distinct reflected sound known as acoustic echo.

In a telephony system, two types of echo may be distin-

guished: network echo [3], [4] and acoustic echo [5]–[7].

Network echo is mostly created along telephone lines due

to an impedance mismatch between public switched tele-

phone networks. The phenomenon of acoustic echo occurs

mostly in hands free communications. Earlier work in the

area of echo cancelation (EC) focused primarily on network

echo cancelation. With advances in wireless communica-

tion technologies, cancelation of acoustic echo has captured

attention of users. Figure 1 shows a scenario of acoustic

echo affecting a teleconferencing system.

Fig. 1. Generation of acoustic echo.

Acoustic echo [8] occurs when audio from the far-end

speaker comes arrives at the near-end enclosure via a loud-

speaker and is picked up by the near-end microphone via

both direct and indirect paths. To remove the echo, echo

cancelers are developed which detect and remove the echo

generated. In order to calculate the adaptive filter tap, var-

ious algorithms, such as least mean squares (LMS), nor-

malized LMS and recursive LMS are employed. The main

features of these algorithms are that they offer fast con-

vergence, but at the cost of computational complexity ob-

served with an increase of the number of filter taps. Also,

any change in near-end enclosure may lead to wrong con-

vergence, and additional filters may then be required for its

removal [9]–[11].

Acoustic echo cancelation (AEC) and extraction of near-

end signal is a challenging process, as the proposed method

should emulate the inherent ability of the human auditory

system, known as computational auditory scene analysis

(CASA) [12]–[14].
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In this paper, we extend the concept from the conventional

method, to model-based statistical pattern recognition. This

is motivated by the fact that in the spectral domain, distinct

speakers have distinct patterns. To separate these features,

machine learning and matrix factorization methods are ap-

plied. The main theme is to use, in advance, prior infor-

mation from the sources, and to first train the model for

each source, and then separate signals from a given mix-

ture. Hence, such an approach is known as model-based

near-end speaker extraction and echo cancelation. Model-

based source separation can be a probabilistic model, or

a matrix factorization-based method. The former method

uses the Bayesian approach, while the latter uses such tech-

niques as non-negative matrix factorization (NMF). In this

paper, model-based methods of AEC, relying on matrix

factorization-based methods, are proposed. It is shown that

the proposed method outperforms the classic echo cance-

lation method.

The paper is organized as follows: Section 2 is devoted

to problem formulation and contains a brief description of

LMS, NLMS, RLS and NMF methods. The model-based

AEC and near-end speaker extraction method is presented

in Section 3. Algorithmic steps and their implementation

are shown in Section 4. Performance analysis and experi-

mental results are shown in Sections 5–6. Simulation re-

sults are discussed in Section 7. Section 8 summarizes the

paper.

2. AEC and Near-End Speaker

Extraction

The process of generating acoustic echo can be described

with the use of a linear framework. Let us denote the

signal coming from the far-end speaker as x(n), where n
is a sample index. Let this excite a linear system whose

impulse response is given by h(n). h(n) is actually a super-

imposition of impulses, with each of them corresponding

to an echo. In the near-end enclosure, echo is produced

due to various propagation paths between the loudspeaker

and the microphone. Let it be represented by d(n), a linear

convolution of x(n) with h(n), expressed as:

d(n) =
Lh−1

∑
i=0

h(i)x(n− i) , (1)

where i denotes the sample index and Lh denotes the length

of the echo path impulse response. In a vector form, it can

be expressed as:

d(n) = hT x(n), x(n)

=
[

x(n), x(n−1), . . . , x(n−Lh +1)
]T

, (2)

where T denotes the matrix’s transpose operation symbol.

The output of the near-end microphone signal or the far-end

user’s signal y(n) is:

y(n) = d(n)+u(n)+w(n) = (3)

=
Lh−1

∑
i=0

h(i)x(n− i)+u(n)+w(n) = (4)

= hT x(n)+u(n)+w(n) , (5)

where u(n) denotes the desired near-end speech signal and

w(n) denote the noise sources (Fig. 2).

Fig. 2. Linear framework for hands-free communication.

The aim of acoustic echo cancelation is to present a clear

near-end speech signal u(n) to the far-end speaker, con-

taining no echo and noise components, i.e. d(n) = 0 and

w(n) = 0.

2.1. LMS Algorithm

The LMS algorithm, derived by Widow and Hoff [15],

is one of the most efficient adaptive filtering algorithms.

This algorithm has the property of adjusting the coefficients

of a filter to reduce MSE between the desired signal and

output of the filter. It is used for updating the taps of the

adaptive filter during each iteration:

w(n+1) = w(n)+ µe(n)x∗(n) , (6)

where x(n) is the input vector of time-delayed input values,

w(n) is the weight vector at time n, and µ is the step-

size parameter that controls the immediate change of the

updating factor. Its value has an impact on the performance

of the LMS algorithm. When µ is low, it takes a long

time for the algorithm to converge and a high value of this

factor causes the algorithm to diverge, leading to LMS in-

stability.

2.2. NLMS Algorithm

The step-size parameter used in the LMS algorithm is

normalized in the case of normalized least mean squares
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(NLMS) [16] algorithm. In NLMS [17], [18], µ for com-

puting the update is given by:

µ(n) =
β

c+‖x(n)‖2 , (7)

where µ(n) is the step-size parameter at sample n, β is

a normalized step-size (0 < β < 2), and c is the smallest

positive constant.

2.3. RLS Algorithm

The Recursive Least Square (RLS) algorithm has a fast

convergence rate [30] and is widely used in EC, channel

equalization, speech enhancement and radar applications.

In this algorithm [25], we consider the following:

• x(n) is the discrete time array M×1 array input vec-

tor,

• y(n) = wHx(n) is the output signal,

• d(n) is the desired signal,

• w is the M×1 complex weight matrix.

2.4. NMF Algorithm

Non-Negative Matrix Factorization (NMF) [19] is a linear-

based decomposition technique subject to the constraints

of non-negativity of the data being decomposed. It actu-

ally decomposes the data of a non-negative matrix into two

non-negative matrices and a residual matrix which does not

necessarily have to be non-negative. A given data matrix

A ∈ R
M×N
+ , it can be decomposed into two non-negative

matrices B ∈ R
M×K
+ G ∈ R

K×N
+ , K < N and a residual

matrix E ∈ R
M×N
+ representing the approximation to the

error [20], [21].

It is an optimization problem which aims to minimize

the cost function C(.) with respect to B and G. This

cost function measures the divergence between A and BG.

A = BG+E, A≈ BG . (8)

It is an optimization problem which aims at minimizing

some cost function C(.) with respect to B and G. This cost

function measures the divergence between A and BG.

One of the cost function measures is the Euclidean dis-

tance [22]:

DED(A, B, G) =
1
2

∥

∥A−BG
∥

∥

2
. (9)

The following multiplicative update rules are followed to

balance convergence speed and complexity:

bi j← bi j

[

AGT ]

i j
[

BGGT ]

i j

, gi j← gi j

[

BT A
]

jk
[

BT BG
]

jk

, (10)

here [.]i j indicates that the given operations are performed

on an element-by-element basis.

The second cost function in use is the generalized ver-

sion of Kullback-Leibler divergence, also known as I-diver-

gence [23], [24]:

DKL(A‖B,G) = ∑
ik

(

aik log
aik

[BG]ik
− vik +[BG]ik

)

. (11)

This cost function is not symmetric in A and BG. It actu-

ally quantifies in bits that how close A is to BG. Its value

equals zero if the distributions match exactly, and infinite

if there is no match at all.

3. Model-based AEC and Near-end

Speaker Extraction Method

The model-based statistical pattern recognition technique

was first proposed in [25]. In the spectral domain there

is a distinct pattern of speech signals spoken by differ-

ent speakers. Due to this regular and distinct pattern of

speech signal, matrix factorization methods can be applied

to differentiate between these speakers. The NMF [26]

approach is formulated in the short-time Fourier transform

domain [27], [28]. The near-end microphone signal y(n) of

the mixture signal is decomposed into two bases of spec-

tral features. First, training on the magnitude spectra of

many speakers is performed offline. This trained data can

be called on as and when required. The other bases are

created during operation and testing. These bases are con-

tinuously updated by the incoming far-end signal x(n) and

are actually specific to the far-end signal. Now, NMF is em-

ployed that minimizes the cost function. This cost function

minimizes divergence of the trained vectors to the test vec-

tors. Once the optimal vector is identified, echo reduction

is conducted by performing an inverse transformation for

the identified vectors, using the phase information received

from the mixture signal.

The model of the acoustic echo which is mostly used in EC

and given in the literature [29]–[32] is:

|Y ( f , k)|= |D( f , k)|+ |U( f , k)| , (12)

where |Y ( f , k) is the STFT of y(n), f is the discrete fre-

quency, k is the frame index and |.| is the magnitude of

the complex value. For STFT of y(n), hanning window of

length N is used that advances in the steps of m. Similarly,

|D( f , k)| and |U( f , k)| represent the d(n) and u(n) com-

ponents of the mixture signal in the STFT domain. Such

a model strictly follows non-negativity and linearity of the

sample of the speech signals. This allows for easy imple-

mentation of NMF for EC.

4. Algorithm Implementation

The pseudocode of the algorithm for NMF-based AEC and

near-end speaker extraction approach described above is

presented as Algorithm 1. It comprises three stages: train-

ing, testing and reconstruction. Training is done for the
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Algorithm 1: Algorithm pseudocode for NMF-based AEC

and near-end speaker extraction

1. Process the incoming far-end signal x(n)

Find STFT: X( f , k)
|X( f , k)|, k is the frame index

From X( f , k), d( f , k) is created

Calculate the NMF of D( f , k) and form the basis

Bd(k) Gd(k)
2. Process the speaker independent near-end signal u(n)

Find STFT: U( f , k)
|U( f , k)|, k is the frame index

Calculate the NMF of U( f , k) and form the basis

Bu(k) Gu(k)
3. Concatenate the basis of steps 1 and 2 to form

composite basis B(k) = [Bu Bd(k)]
4. Process the mixture signal y(n)

Find STFT: Y ( f , k)
|Y ( f , k)|, k is the frame index

For i = 1 to φ (restricted NMF updates) +ψ (unre-

stricted NMF updates) do

(φ and ψ are the number of iterations)

For φ iterations, composite basis B(k) is fixed

and g(k) is updated as

g(k)← g(k)
B(k)

[

y(k)
B(k)g(k)

]

B(k)T 1+δ
, δ is a positive

regularization factor

y(k) can now be expressed as:

y(k)=B(k)g(k)+e(k)=[Bu Bd(k)]
[

gu(k)
gd(k)

]

+ e(k)

For ψ iterations, both composite bases [Bu Bd(k)]
and g(k) are updated

B(k)← B(k)

[

y(k)
B(k)g(k)

]

g(k)T

1g(k)T +δ
End for

û(k) = Bugu(k)
5. Near-end speaker extraction

û(k)∠Y ( f , k)

Fig. 3. Block diagram presenting AEC and near-end speaker

extraction using NMF.

far-end speaker and for the near-end speakers. From the

training phase, the base vectors Bd and Bu for far-end and

near-end speaker signals are obtained. These bases are

concatenated to form composite bases B = [BuBd ]. The

composite base is derived during testing. Testing is done

online for the incoming mixture signal. A block diagram

presenting AEC relying on the NMF algorithm is shown in

Fig. 3.

5. Performance Analysis

Spectrograph plot is a three-dimensional (3D) visual analy-

sis of an acoustic signal, in which horizontal axis represents

the time domain, the vertical axis represents frequency and

Fig. 4. Spectrogram of extracted near-end signal using NMF at

ENR equal to: (a) –1 dB and (b) –5 dB. (For color pictures visit

www.nit.eu/publications/journal-jtit)
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the third dimension is amplitude at a frequency and time

indicated by the color. Figure 4a shows the spectrogram

of a near-end signal extracted using the NMF algorithm at

ENR –1 dB. Figure 4b shows the spectrogram of a near-end

signal extracted using the NMF algorithm at ENR –5 dB.

In Figs. 4a-b, the top picture shows the spectrogram of

a clean near-end signal, the middle image shows a mixed

signal and the bottom picture shows a near-end signal re-

constructed using NMF. Comparing the NMF algorithm at

ENR –1 dB and ENR –5 dB, one may notice, visually,

that a better reconstructed near-end speech signal is seen

at ENR –5 dB, compared to ENR of –1 dB. This is due

to the reduction in echo from –1 to –5 dB, and, hence, to

better near-end speaker extraction.

5.1. Simulation Setup

During Matlab simulation, it was assumed that incoming

far-end speech signals are segmented into 64 ms frames

with a 50% overlap between the adjacent frames. The effect

of background noise and local noise has been neglected.

Room impulse response (RIR) is generated using the mirror

image method with the room size of 10.4 × 10.4 × 4.2 m.

The reflection coefficient of the wall is selected as 0.8.

Room parameters, such as volume, absorption, reflections

from the walls, construction materials present in the room

and distance between sources and the receiver, are all taken

into consideration while generating RIR. Between the clean

speech signal and RIR, convolution is done by considering

the fixed distance between the source and the microphones.

For audio recorded by several speakers, sampling is per-

formed at 25 kHz. The experiment is conducted using

audio data obtained from the GRID corpus database. Ta-

ble 1 shows all choices of sentences from GRID [33]. The

corpus consists of high-quality audio recordings of around

1000 sentences spoken by each of 34 talkers (18 males,

16 females).

Table 1

Possible choices in the sentences

Com-
Colors

Prepo-
Letters Numbers Adverbs

mands sitions

Bin (b) Blue (b) At (a) A–Z 1–9 and Again (a)

Lay (l) Green (g) By (b) exclud- zero (z) Now (n)

Place (p) Red (r) In (i) ing W Please (p)

Set (s) White (w) With (w) Soon (s)

Results are obtained by calculating echo to near-end signal

ratio (ENR), which is the power ratio between the echo

signal and the near-end signal. It is measured by varying

the distance between the microphone and the source by

keeping the source fixed and moving the microphone to

various positions to generate different ENR values.

5.2. Performance Evaluation

This section gives experimental results that are conducted at

different ENRs: –1, –3, – and –5 dB. The Mean Opinion

Score (MOS) [34] obtained by evaluating the quality of

speech after EC using the proposed NMF method, and its

comparison with LMS, NLMS and RLS, are plotted in

Fig. 5. As ENR decreases from –1 to –5 dB, MOS in-

creases. Also when decreasing the ENR for all methods

mentioned, MOS obtained using the NMF method proposed

has the highest value.

Fig. 5. MOS at different ENRs for LMS, NLMS, RLS and NMF.

5.3. Perceptual Evaluation of Speech Quality

Speech quality is evaluated using perceptual evaluation of

speech quality (PESQ), and results with different ENRs

are shown in Fig. 6. In this method the test signal and the

corresponding reference signals are taken as input, and a set

of features is extracted from both signals. They are then

compared in perceptual space [35] by time-aligning these

signals. Then, the speech signal is analyzed on a sample-

by-sample basis for both the reconstructed output signal and

the reference signal, after time-aligning it individually. This

is done to compensate for any time shifts that can occur

Fig. 6. PESQ at different ENRs for LMS, NLMS, RLS and

NMF.
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during processing. Then, the perceptual model incorporates

a time frequency analysis procedure.

The experiment performed using test and reference signals

is divided into 32 ms frames. The overlapping rate of the

successive frames is 50%. Signals are transformed into the

frequency domain using STFT. Linear frequency scale is

transformed to the Bark scale for finer frequency resolution

at lower rather than higher frequencies. From the perceived

audio, audible differences in both domains are subtracted

and accumulated over time. These are then weighted based

on whether the distortion is additive in nature or whether

the signal is missing. PESQ describes the audio quality

using the scale of 1 (bad) to 5 (excellent). A higher PESQ

value shows that the algorithm used is better suited to con-

duct echo cancelation [35]. From Fig. 6 it can be seen

that NMF has a PESQ value that is approximately equal to

or higher than all other methods, indicating a better per-

ceptual similarity between clean and reconstructed signals.

As ENR decreases from –1 to –5 dB, PESQ increases for

the individual methods. Also, comparing the NMF method

proposed for EC with LMS, NLMS and RLS, the PESQ

value is the highest using NMF. Performance measured

at ENR –5 dB obtained using NMF is found to be bet-

ter than at ENR –1 dB.

5.4. Echo Return Loss Enhancement

Echo return loss enhancement (ERLE) measures the

amount of additional signal loss applied by the echo can-

celer. It is defined as the ratio between send power in one

direction and the power of a residual error signal obtained

after the echo is canceled, i.e. in the steady state. It is

usually measured in decibels:

ERLE = 10log
E

(

x2(t)
)

E
(

e2(t)
) , (13)

where x(t) is the send signal and e(t) = û(t)− u(t) is the

residual error signal obtained after processing.

Fig. 7. ERLE vs. ENR for LMS, NLMS, RLS and NMF.

ERLE depends on the size of the adaptive filter and the

algorithm which is designed to remove the echo. ERLE

provides information about the behavior of the echo can-

celer convergence factor. The echo canceler system’s input

signal is an audio signal which is non-stationary in nature.

In the case of adaptive filters, it is difficult to change the

step size at a fast rate, which makes its implementation

difficult. The NMF algorithm-based EC method presented

herein overcomes those shortcomings. Figure 7 shows plots

of ERLE at different ENRs. Results obtained for ERLE

using NMF are higher than in the case of LMS, NLMS

and RLS. As ENR decreases from –1 to –5 dB, the echo

in the signal also decreases, thus the result obtained for

ERLE increases. At a given ENR, statistical NMF-based

EC methods produce better results. A higher ERLE in-

dicates that speech if affected by lower echo rates. For

example, at –3 dB, LMS produces ERLE 5, while NLMS 6

and RLS 7.2. The proposed NMF approach offers the result

of 8.9, which is very high compared to other values. This

clearly indicates that NMF has the least echo and, hence,

clear audio is achieved.

5.5. Log Spectral Distortion

Log spectral distortion (LSD), also known as log spectral

distance, measures the distance, in decibels, between the

two spectra. It is proved in [35] that it is well suited for

evaluation of algorithms. It is determined by the RMS

value of the difference between log spectra of the original

clean audio signal x(n) and the signal that has to be eval-

uated y(n), which is the outcome of the processing of the

signal.

Let S(ω) and Ŝ(ω) represent two power spectra. Then,

d(S, Ŝω) is the distance measure. LSD is given by:

d(S, Ŝ)P = (dp)
P =

π
∫

−π

[

logS(ω)− log Ŝ(ω)
]P dω

2π
. (14)

For p = 1, the above equation defines the mean absolute

LSD and for p = 2, defines the LSD root mean square,

Fig. 8. LSD vs. ENR for LMS, NLMS, RLS and NMF.
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which has applications in many speech processing systems

and finally at p = ∞, the equation reduces to peak LSD.

The lower the LSD value, the better the performance. Fig-

ure 8 shows LSD plots at different ENRs. At a given ENR,

LSD results obtained for NMF are lower than for LMS and

NLMS algorithms. At ENR –5 dB, there is less echo and

thus the results obtained are better than at ENR –1 dB.

5.6. Comparison of Experimental Results

Table 3 illustrates comparisons between the proposed NMF

method used for echo cancelation and LMS, NLMS and

RLS algorithms using MOS, LSD, ELRE and PESQ at dif-

ferent ENRs. One may notice that NMF provides better EC

and near-end speaker extraction. The proposed algorithm

utilizes both restricted and non-restricted NMF, which re-

sults in a clean audio signal.

Table 2

Comparison of experimental results

LMS NLMS RLS NMF

ENR = –1 dB

MOS 2.1 2.6 2.7 2.8

LSD 1.75 1.70 1.65 1.61

ELRE 4.83 5.98 6.2 8.72

PESQ 2 2.35 2.40 2.42

ENR = –3 dB

MOS 2.3 2.8 2.9 3.0

LSD 1.70 1.67 1.60 1.58

ELRE 4.98 6.01 7.10 8.90

PESQ 2.21 2.51 2.51 2.52

ENR = –4 dB

MOS 2.5 3.0 3.1 3.2

LSD 1.66 1.60 1.58 1.55

ELRE 5.03 6.92 7.9 9.11

PESQ 2.48 2.76 2.74 2.74

ENR = –5 dB

MOS 2.8 3.1 3.2 3.5

LSD 1.61 1.58 1.55 1.50

ELRE 5.31 7.03 8.01 9.18

PESQ 2.78 2.81 2.9 3.02

6. Conclusion

This paper proposes a method of AEC and near-end speaker

extraction using statistical NMF methods and compares it

against classic LMS, NLMS and RLS methods. The re-

sults obtained with the use of the proposed NMF technique

for AEC indicate that it can be implemented in real-time

scenarios. Moreover, the proposed method paves the way

for it to be implemented in real time scenarios using multi-

resolution NMF, by taking into consideration spatial cues

and reverberations. It is expected to achieve better results

and to offer more accurate EC.
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