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Abstract—Orthogonal Frequency Division Multiplexing

(OFDM) is a well-known technique used in modern wide

band wireless communication systems. Coherent OFDM

systems achieve its advantages over a multipath fading

channel, if channel impulse response is estimated precisely

at the receiver. Pilot-aided channel estimation in wide band

OFDM systems adopts the recently explored compressive

sensing technique to decrease the transmission overhead of

pilot subcarriers, since it exploits the inherent sparsity of

the wireless fading channel. The accuracy of compressive

sensing techniques in sparse channel estimation is based on

the location of pilots among OFDM subcarriers. A sufficient

condition for the optimal pilot selection from Sylow sub-

groups is derived. A Sylow subgroup does not exist for most

practical OFDM systems. Therefore, a deterministic pilot

search algorithm is described to select pilot locations based

on minimizing coherence, along with minimum variance.

Simulation results reveal the effectiveness of the proposed

algorithm in terms of bit error rate, compared to the existing

solutions.

Keywords—channel estimation, compressive sensing, minimum

coherence, minimum variance, pilot pattern.

1. Introduction

Orthogonal Frequency Division Multiplexing (OFDM) is

a multi-carrier modulation technique used in wideband

wireless communication systems due to its high spec-

tral efficiency [1]. In OFDM systems, each subcarrier has

a narrow bandwidth which ensures signal robustness against

frequency selectivity caused by the multipath delay spread.

Although coherent, non-coherent and partially coherent de-

tection techniques are deployed in OFDM systems, coher-

ent detection attracts wider interest, as it supports a higher

date rate than the other schemes. Coherent communication

in OFDM systems allows arbitrary signal constellations for

high data rates, but efficient channel estimation strategies

are required for detection and decoding of information at

the receiver. The channel can be estimated in the receiver

using the pilot-aided method, where the receiver makes use

of the known transmitted symbols, also known as pilots in,

a set of predetermined subcarriers of the OFDM system, or

by learning the statistics of the information bearing signals

which are referred to as a blind technique. As such an ap-

proach involves more complex signal processing and com-

putationally expensive operations to ensure efficient blind

methods, pilot-aided methods evoke considerable interest

in the recent technologies which are capable of tracking

the channel based on coherence time whose duration is in

the order of one OFDM symbol [2].

The majority of research concerned with pilot-aided chan-

nel estimation is devoted to the selection of pilot locations.

Equally spaced pilot locations become the optimal selec-

tion when the maximum likelihood (ML) rule is employed

in the receiver, which is computationally expensive [3], [4].

Further, several investigations show that many wideband

OFDM systems tend, in practice, to have their wireless

channel dominated by a relatively small number of coef-

ficients, i.e. most channel coefficients are nearly zero and

do not contribute significantly, and the number of effec-

tive channel coefficients is relatively much lower than the

channel delay spread (length of the channel impulse re-

sponse). The sparseness of the channel leverages the appli-

cation of sparse signal processing techniques in the frame-

work of compressive sensing (CS) [5] for channel estima-

tion problems, which can drastically reduce the number of

pilots required to estimate the channel, thereby increasing

bandwidth efficiency. CS recovery algorithms, such as l1

norm minimization, orthogonal matching pursuit and iter-

ative thresholding, have been adopted for sparse channel

estimation, which enables efficient reconstruction of the

sparse channel with less pilot overhead than in the case

of conventional methods [6]. However, there is no gen-

eral theory on the optimal pilot selection for sparse chan-

nel estimation using CS techniques, such as the optimal

equally spaced pilots for conventional channel estimation

methods.

A few works of literature deal with the design of a pilot

pattern for sparse channel estimation. Deterministic pi-

lot selection [7] is proposed for OFDM systems with the

number of subcarriers N being a prime. A pilot gener-

ated randomly can be updated by sequentially evolving to-

wards a global optimizer with offline channel data, as dis-

cussed in [8]. Pilot design for under water acoustic chan-
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nels, based on cluster pilot design and data subcarrier as

additional observation for channel estimation, is described

in [9]. The tree-based backward pilot generation [10] iter-

atively removes a subcarrier from N subcarriers of OFDM

systems in a backward direction to generate a pilot pattern.

Optimum pilot generation by minimizing coherence of the

DFT submatrix and cross entropy optimization, to place

the pilots at an optimal location, is described in [11], [12].

The first subcarrier is fixed as the first pilot, and the remain-

ing pilot locations are sequentially assigned by minimizing

the variance of the multiset formed using the current pi-

lot location set [13]. Statistic serial, parallel and iterative

group shrinking was proposed [14] for minimum coherence.

Three greedy deterministic pilot search algorithms [15] are

stated based on minimizing coherence through a straight-

forward search.

The remainder of this paper is organized as follows. Sec-

tion 2 deals with the OFDM system modeling framework

and formulates the estimation problem of sparse channel

impulse response. In Section 3, optimal pilot design from

the Sylow subgroup is analyzed. The proposed determin-

istic pilot search algorithm is presented in Section 4. The

simulation results shown in Section 5 reveal the perfor-

mance of the proposed algorithm’s pilot pattern in sparse

channel estimation of wideband OFDM systems and, fi-

nally, conclusions are provided in Section 6.

The notations used in this paper are: /0, \, |, -, (.)T , (.)H ,

(.)−1, ‖.‖, 〈.〉, ⊗, ⊕, b.c, d.e, and O(.) meaning: empty,

exclusion, divide, does not divide, matrix transpose, con-

jugate transpose, matrix inverse, norm of a vector, inner

product of a vector, modulus, multiplication modulo, addi-

tion modulo, floor of a value, ceiling of a value and order,

respectively.

2. Problem Statement

In this section, we describe the system model for pilot-

aided sparse channel estimation in an OFDM system

with the canonical discrete time channel model. Assume

that information is transmitted through an OFDM sym-

bol that consist of N subcarriers and has a cyclic pre-

fix length of N/4. Among N subcarriers, Np subcarriers

are used to transmit pilots with locations represented as

[p1, p2, . . . , pNp ], where 1 ≤ p1 < p2 . . . < pNp ≤ N
and Nd = N − Np subcarriers transmit information. The

transmitted and received pilot symbols on pilot sub-

carrier locations are x = [x(p1), x(p2), . . . , x(pNp)]
T and

y = [y(p1), y(p2), . . . , y(pNp)]
T respectively. Then the fre-

quency domain sparse channel estimation of a pilot-aided

OFDM system at the receiver can be modeled as:

y = Ah+n , (1)

where A = X .FNp×L is a sensing matrix. X is a diago-

nal matrix of transmitted pilot symbols X = diag
{

x(p1),
x(p2), . . . , x(pNp)

}
and FNp×L is a discrete Fourier subma-

trix constructed by selecting first L columns and Np rows

stated by pilot locations [p1, p2, . . . , pNp ] from a standard

Fourier matrix N ×N.

FNp×L =
1√
N




1 ω p1 . . . ω p(L−1)
1

1 ω p2 . . . ω p(L−1)
2

. . . .

. . . .

. . . .

1 ω pNp . . . ω p(L−1)
Np




(2)

where ω = e−j 2π
N and n = [n(1), n(2), . . . , n(Np)]

T is the

Additive White Gaussian Noise (AWGN) vector with zero

mean and variance σ 2
n . h = [h(1), h(2), . . . , h(L)]T is the

discrete channel impulse response vector with L coeffi-

cients. The multipath wireless channel gives rise to mul-

tiple attenuated and delayed copies of transmitted signal

at the receiver, due to the number of scatters in the sur-

rounding environment. We consider a transmission over

such a multipath wireless channel with L resolvable paths

(coefficients), and each path has a complex path gain αi
and a delay spread τi. The time domain baseband channel

model is given by:

h(τ) =
L

∑
i−1

αiδ (τ − τi) , (3)

where δ (.) is a Dirac delta function. The equivalent dis-

crete channel model can be represented as:

h(n) =
L

∑
i−1

αiδ
(
(n− τi)Ts

)
, (4)

where Ts is the sampling interval which holds a very small

value compared to the maximum delay spread for practical

wide band wireless channels. In such cases the impulse

response h is dominated by relatively few resolvable paths

over the maximum paths L, and these channels are often

termed as sparse channels. Assuming the frequency do-

main channel impulse response h is having ‖h‖0 ≤ k � L,

then the multipath wireless channel is termed as k sparse

channel.

The reconstruction of channel impulse response h at the

receiver is essential for coherent detection. The competent

pilot aided channel estimation for today’s wireless systems

involves either linear or nonlinear techniques. Conventional

pilot-aided methods typically depend on linear reconstruc-

tion techniques with the resulting sensing matrix A of Np
rows and L columns, such that Np > L. Considering the

inherent sparsity of the wireless channel, the number of

pilots Np is kept lower than maximum channel coefficients

L, i.e. Np < L, then system will become an underdeter-

mined system, but improves the system data rate. Thus,

linear reconstruction methods do not provide an accurate

solution. CS-based methods provide a nonlinear way to

reconstruct these under determined systems by exploiting

the sparsity of the channel. However, the reliable and effi-

cient reconstruction of sparse vector h by using CS recovery
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techniques is based on proper selection of Np rows for the

sensing matrix A from the Fourier matrix, i.e. selection of

pilot locations in subcarriers.

3. Optimal Pilot Analysis

Proper selection of the pilot pattern influences the sparse

channel estimation of OFDM systems using CS reconstruc-

tion algorithms. Indeed, sparse vector h is guaranteed for

nonlinear reconstruction by CS if A satisfies the Restricted

Isometry Property (RIP).

A sensing matrix A satisfies the RIP of order k if there

exists a constant δ such that:

(1−δ )‖h‖2
2 ≤ ‖Ah‖2

2 ≤ (1δ )‖h‖2
2 , (5)

for any k sparse vector. The minimum of all constants δ
satisfying the above condition is called the isometric con-

stant δk. But there is no algorithm to check the RIP, since

it involves combinatorial computation complexity. Other

than RIP, the widely used condition that guarantees the re-

construction of the sparse vector is coherence [16].

Coherence µ of a sensing matrix A, is the largest absolute

inner product between any two columns am and an of A:

µ(A) = max
1≤m<n≤L

∣∣〈am, an〉
∣∣

= max
1≤m<n≤L

∣∣∣∣∣
Np

∑
i=1

∣∣x(pi)
∣∣2ω pi(n−m)

∣∣∣∣∣ . (6)

Let c ∆
= n−m then

µ(A) = E max
1≤c≤L−1

∣∣∣∣∣
Np

∑
i=1

ω pic

∣∣∣∣∣ ,

where energy of pilot E is treated as one.

Now ω = e−j 2π
N = e−jθ , where θ = qπ

N .

Then coherence will be:

µ(A) = max
1≤c≤L−1

∣∣∣∣∣
Np

∑
i=1

e−jcpiθ

∣∣∣∣∣

= max
1≤c≤L−1

(
Np +

Np

∑
i=1

Np

∑
j=i+1

2cos
(
c
(
(pi−p j)mod N

)
θ
) 1

2

µ(A) = max
1≤c≤L−1

(
Np +Hc(P)

)1
2 , (7)

where

Hc(P) =
Np

∑
i=1

Np

∑
j=i+1

2cos
(
c
(
(pi−p j)mod N

)
θ
)

. (8)

A different pilot pattern leads to a different sensing ma-

trix A. The objective function Q for selecting an optimal

pilot pattern P is to minimize the coherence of A:

Q = arg min
A

µ(A) . (9)

A pilot pattern yields minimum coherence µ(A) if

cos
(
c(pi − p j)θ

)
holds minimum for all values of c in

Eq. (8). If the most of angles c(pi − p j)θ are occu-

pied in the 2nd and 3rd quadrant, then the cosine angle

holds minimum. However, for some specific settings, the

optimal pilot can be generated from the Cyclic Difference

Set (CDS).

Definition for CDS: For the given (N, Np), if λ is an in-

teger where λ =
Np(Np−1)

N−1 and Np < N, then CDS is de-

fined as a set of Np distinct components selected from

N denoted as (p1, p2, . . . , pNp) satisfying that any integer

x(1 ≤ x ≤ N −1) repeats λ times in the set:

{x = pi − p j(mod N) |1 ≤ i 6= j ≤ Np} , (10)

and the corresponding difference multiset D =
{

ad
}N−1

d=1 ,

where ad is the number of pairs (pi, p j) in pilot indices

set P such that d = pi − p j(mod N) |1 ≤ i 6= j ≤ Np, d =
1, 2, . . . , N−1. The mean and variance σ 2

P of the difference

multiset are defined as:

mean =
1

N −1

N−1

∑
i=1

adi , (11)

σ2
P =

N−1

∑
i−i

(ad −mean)2 . (12)

The pilot selection satisfying the definition of CDS is surely

the optimal choice for minimum coherence, since the resul-

tant Discrete Fourier Transform (DFT) submatrix achieves

the Welch bound. The sufficient condition for CDS to be

optimal pilot selection is:

L ≥
⌈

N
2

⌉
. (13)

Nevertheless, for many pairs of N and Np, there is no CDS.

Moreover the channel impulse response length L is less

than the cyclic prefix of the practical OFDM system.

In the present work for some specific settings, the optimal

pilot selection from a p-Sylow subgroup is analyzed and

conditions are obtained for a subgroup to act as an optimal

pilot selection.

Definition for p-Sylow: Let (G, .) be a group and p be

a prime number. If (G) = pam, where p - m, then a sub-

group of order pα is called the p-Sylow subgroup of G.

Existence of the p-Sylow subgroup is guaranteed. If (G, .)
is an abelian group, then the p-Sylow subgroup is unique.

Let S⊆G. The subgroup of G generated by S is the smallest

subgroup of G containing S and is denoted by (S). (S) is

the set of finite products of elements of S and its inverses.

For any subgroup H of an abelian group (G, .) and for any

a ∈ G, aH = {a.h |h ∈ H} denotes the coset of H in G.

Now, for a given (N, Np), the optimal pilot selection that

can be generated from a subgroup is analyzed. If N and Np
satisfy the conditions stated in the following theorem, then

the p-Sylow subgroup will be an optimal pilot selection.
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Theorem 1: For a given (N, Np), if (N +1) is a prime num-

ber q and for some prime p and Np = pα for some integer

α such that pα |N, pα+1 - N with Np(Np−1) = λN, where

λ is an integer and if P is the unique p-Sylow subgroup of

the group (G, ⊗) under multiplication mod(N +1), then P
is a CDS and P is the optimal pilot selection for (N, Np) for

L ≥ N
2 provided given p1, p2, p3 p4 ∈ P, there exist p′1, p′2

such that:

(p1 + p2)− (p3 + p4) ≡ (p′1 − p′2)mod(N +1) , (14)

where G = {1, 2, . . . , N}.

Proof : Let F = {0, 1, 3, . . . , N} and λ = 1. Then (F, ⊕, ⊗)
is a field where ⊕ and ⊗ are the addition (N + 1) and

multiplication mod(N + 1) respectively. Let P = (p1, p2,
p3, . . . , pNp) be the unique p-Sylow subgroup of (G, ⊗).

Let S ∆
= (pi−p j)mod(N + 1), pi 6= p j}, where r ∈ {1, 2,

. . . , N}. Clearly, S is non empty and O(S) ≤ Np(Np−1) =
N. Let (S) be the subgroup of (F, ⊕) generated by S. Now,

we show that (S) is closed under ⊗.

Let x, y ∈ (S). Suppose x = s1 + s2, where s1, s2 ∈ S. Then

x = {(p1 − p2)+(p3− p4)}mod(N +1), where pi ∈ P.

Similarly y = {(p′1 − p′2) + (p′3 − p′4)}mod(N + 1), where

p′i ∈ P.

Using the given condition, we can find p′
i p′j in P such that

x.y = (p′i − p′j)mod(N +1) for some p′i, p′j ∈ P. Hence (S)
is a subring of F. Since F has no proper subring, (S) = F.

Now we show that (S)\{0}= S. Let y(6= 0) ∈ (S) and let

y = x1 + x2 where x1, x2 ∈ S.

Let x1 =(p1−p2)mod(N+1) and x2 =(p3−p4)mod(N+1).
Then:

x1 + x2 = {(p1 + p2)−(p3 + p4)mod(N +1)

= (p′1−p′2)mod(N +1), for some p′1, p′2 ∈ P ,

= x3, for some x3 ∈ S ; thus (S)\{0}= S.

Hence, S = 1, 2 . . . N. Therefore, P is also a CDS and the

optimal pilot selection. For any integer λ 6= 1 the proof is

similar.

Corollary: For a given (N, Np) if N is a prime number

q and for some prime p and for some integer α such that

pα |q− 1, pα+1 - q− 1 with Np(Np − 1) = λ (N − 1) and P
is the unique p-Sylow subgroup of (G, ⊗), under multi-

plication mod (N) where G = 1, 2, . . . , N −1 such that P
satisfies the condition given in theorem 1 then P is the

optimal solution.

For the case (N, Np) where (N + 1) is a prime, Np pilots

will be selected from 1, 2, 3, . . . , N whereas in the case

(N, Np), where N is a prime, Np pilots will be selected

from 1, 2, 3, . . . , N −1.

The optimal pilot selection for an OFDM system from

p-Sylow satisfies the definition of CDS for some specific

pairs of (N, Np). It is no longer an optimal pilot selection

for a practical OFDM system with channel length L <
⌈N

2

⌉
.

For example, {1, 7, 9, 10, 12, 16, 26, 33, 34} is a 3-Sylow

subgroup which is a CDS for (37, 9). It has the coher-

ence µ = 2.6458 for all range of L ≥
⌈N

2

⌉
. But if L =

11 <
⌈ N

2

⌉
there exist a set which is neither a subgroup

nor a CDS {1, 4, 7, 10, 13, 22, 28, 31, 34} having coher-

ence µ = 2.1196 less than obtained by p-Sylow subgroup

and CDS. Practical OFDM systems will have a N
4 long

cyclic prefix which is usually much larger than the length

of the channel. Therefore, it is necessary to explore a pilot

search algorithm suitable for wideband OFDM systems.

4. Pilot Search Algorithm

This section describes the deterministic procedure for se-

lecting the pilot locations for a given (N, Np, L). Optimal

Np subcarrier selection from N subcarriers of an OFDM

system by exhaustive search among all possible NCNp DFT

submatrices is humanly impossible because of its compu-

tational complexity. Here, a deterministic approach is pro-

posed that couples variance and coherence minimization to

meet the near-optimal pilot selection. The algorithm starts

by assigning the first pilot location and selects the remain-

ing locations, one by one, so that a difference multiset of

selected pilot locations achieves minimum variance. The

minimum variance pilot pattern will not lead to minimum

coherence for small L. Therefore, the algorithm updates

every candidate of the selected pilot pattern for minimum

coherence from all pilot subcarrier candidates. If the candi-

date pilot subcarriers are considered to range from 1 to N,

there is a possibility for the pilot search algorithm to choose

pilot subcarriers close to each other. It decreases the effi-

ciency of the pilot pattern in channel estimation [15]. By

defining the neighboring optimal distance for pilot subcarri-

ers, the algorithm will not choose the closest subcarriers. In

the proposed algorithm index set Is defined to contain can-

didate pilot subcarrier locations at optimal distance. The

optimal distance of pilot subcarriers for the given N and L
is c =

⌊N
L

⌋
.

The proposed algorithm is summarized as Algorithm 1.

Initially, the first pilot location is assigned as number one.

Next, the second pilot location is selected from the subset

P̂y generated using P̂y−1 ∪ n|n ∈ {Is} \Py−1 for minimum

variance. By repeating this, we obtain the pilot pattern

P = [p1, p2 . . . , pNp ]. The minimum variance calculation

for subset P̂y = {Py(1), Py(2), . . . , Py(n)} for each update is

given by Eqs. (15)–(19).

Let Py = [p1, p2, . . . , px], where x ≤ Np and y = 1, 2, . . . , n.

Then:

mean =
1

N −1

N−1

∑
i=1

adi , (15)

where ad is a element of D =
{

ad
}N−1

d=1 defined as number of

pairs (pi, p j) in selected pilot location set Py such that d =
pi − p j(mod N) |1 ≤ i 6= j ≤ x, where d = 1, 2, . . . , N −1,

and variance

δ 2
Py =

N−1

∑
i=1

(adi −mean)2 . (16)
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Algorithm 1: Pseudocode for proposed algorithm

Input: N, Np, L, t
Initialize: Itemp = /0, IP = /0, Pc = /0, c =

⌊N
L

⌋

Is = {1, 1+ c, 1+2c, . . . , N}: ‖Is‖ = M
For m = 1, 2, . . . , M, P1 = Is(m)
Generate subset P̂2 by P1 ∪n|n ∈ {Is}\P1
Obtain I = [P2(1), P2(2), . . . , P2(t)] according to Eq. (17)

For y = 3, 4, 5, . . . , Np,

For x = 1, 2, . . . , t, Py−1 = I(x)
Generate subset P̂y by Py−1 ∪n|n ∈ {Is}\Py−1
Obtain I = [Py(1), Py(2), . . . , Py(t)] according

to Eq. (17)

Itemp ⇐ [Itemp, I]
End for x

Obtain I from Itemp according to Eq. (17)

End for y
For z = 1, 2, . . . , t

PNp , z = I(z)
For y = Np, Np−1, . . . , 1

P′
Np,z = [p1,z, p2,z, . . . , py,z = /0, . . . , pNp,z]

For x = 1, 1+ c, 1+2c, . . . ,≤ N
If x /∈ PNp,z

P̂ = [p1,z, p2,z, py,z = x, . . . , p+Np,z]
End if

End for x
Obtain P′

Np,zfrom P̂ according to Eq. (19)

End for y
Ip(z) = P′

Np,z
End for z
Obtain Pc(m) from Ip according to Eq. (19)

End for m
P = arg min

P
µ(A)Pc

Output: pilot pattern P.

To achieve a greater degree of accuracy, instead of selecting

a pilot pattern with the least variance, we select t sets of

pilot patterns (group selection) having a minimum variance

in every pilot location update. The t sets are selected with

least σ 2
Py

among n updated set P = [Py(1), Py(2), . . . , Py(n)]
as:

I = [Py(1), Py(2), . . . , Py(t)] , (17)

where y = 2, 3, 4, . . . , Np and Py(1) = Py(i), Py(2) =
Py( j) . . . |0 ≤ σ 2

Py(i)
≤ σ 2

Py( j) ≤ . . . .

The procedure is repeated for every one of the values from

index set Is as first pilot location. The resulting t sets of

pilot pattern obtained from the first loop is:

I = [PNp(1), PNp(2), . . . , PNp(t)] , (18)

where PNp(i) = [p1,i, p2,i, . . . , pNp,i]. All t selected pilot

patterns are updated for minimum coherence. Every n-th

entry of a pilot pattern PNp can be updated by selecting

the best form Is \ {PNp( j) | j = 1, 2, . . . , Np, j 6= n}. From

the resulting pilot location collection set P, select a pilot

location with minimum coherence as:

P ⇐ arg min
P

µ(A)P(i), i = 1, 2, 3, . . . . (19)

5. Simulation Results

The theoretical distance between the pilot locations is ver-

ified practically by simulating the proposed algorithm for

Table 1

Coherence of a pilot pattern generated with various

distances selected between pilot subcarriers

N Np L Distance µ

256 16 50

1 4.6868

3 4.8937

4 4.4308

5 4.3887

6 10.8125

Table 2

List of pilot patterns generated for various (N, Np, L),
using the proposed algorithm

N Np µ Pilot pattern L

6 2.6131 1, 5, 9, 17, 33, 45 15

64 6 2.6131 1, 13, 29, 33, 37, 53
16

9 2.5326 1, 5, 13, 21, 29, 33, 37, 49

73 9
2.7284 1, 11, 12, 14, 17, 26, 42, 47, 65 37

2.7201 1, 9, 13, 17, 21, 29, 33, 53, 57 18

128

6 2.8840 5, 21, 49, 53, 61, 113

30

9 3.1350 5, 21, 37, 41, 45, 49, 73, 113, 121

12 3.2558
1l, 29, 33, 41, 45, 49, 53, 69, 81, 85,
105, 113

14 3.3785
1, 5, 9, 17, 25, 29, 37, 61, 65, 69, 81,
105, 109 121

12 4.1823
1, 6, 21, 41, 81, 146, 151, 156, 176, 201,
211, 246

13 4.3591
1, 6, 31, 41, 46, 81, 86, 141, 151, 206,
211, 226, 236

16 4.3887
1, 6, 16, 21, 26, 41, 46, 51, 66, 121, 126,
156, 181, 191, 211, 221

23 4.8822

1, 6, 11, 21, 26, 31, 36, 46, 66, 71, 81,
86, 106, 116, 136, 141, 151, 156, 181,
196, 206, 226, 236 50

12 4.0496
1, 29, 73, 77, 93, 97, 101, 109, 129, 141,
153, 161, 165, 201, 217, 245

16 4.4308
1, 29, 73, 77, 93, 97, 101, 109, 129, 141,
153, 161, 165, 201, 217, 245

1, 13, 49, 57, 61, 73, 77, 93, 117, 121,
24 4.8550 141, 145, 149, 161, 169, 177, 181, 189,

193, 201, 217, 225, 233, 253

512

1, 6, 11, 16, 21, 26, 31, 36, 51, 66, 71,

90

81, 91, 101, 126, 171, 176, 181, 191, 216,
40 6.8674 221, 236, 266, 271, 276, 291, 296, 306,

351, 376, 381, 396, 401, 411, 421, 446,

461, 481, 486

27 6.3813

1, 16, 21, 46, 56, 76, 81, 106, 111, 151,

93186, 201, 206, 211, 251, 256, 286, 301,
326, 371, 411, 421, 471, 481, 486, 491,
501

1024 16 4.4653
1, 21, 41, 101, 141, 161, 221, 261, 321,

50341, 421, 601, 621, 661, 761, 801
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various distances. Table 1 proves that the minimum dis-

tance that should be maintained between the pilot locations

is
⌊N

L

⌋
which is 5 for N = 256 and L = 50.

The pilot patterns generated using the proposed algorithm

for various pairs of (N, Np, L) are presented in Table 2.

The results show that if N is a prime, coherence of

the proposed algorithm’s pilot pattern meets the Welch

lower bound and prove the effectiveness of the proposed

algorithm. For example, (N, Np, L) = (73, 9, 37) coher-

ence of the proposed algorithm’s pilot location achieves

the Welch bound 2.8284. Comparison of coherence ob-

tained by the proposed algorithm with algorithms used

in practice for various (N, Np, L) values is presented in

Table 3.

Table 3

Comparison of coherence obtained by the proposed

algorithm and by existing pilot search algorithms

N Np L Algorithm µ

Stochastic serial search [12] 4.7021

256 16 60 Greedy deterministic [13] 4.8630

Proposed algorithm 4.4308

Tree based backward with 11 branches [8] 4.9189

256 16 50 Greedy deterministic [13] 4.5261

Proposed algorithm 5.8757

256 13 50
Mahdi-Khosravi & Saeed-Mashhadi [11] 5.8757

Proposed algorithm 4.3591

An QPSK OFDM system is constructed with 256 sub-

carriers and 16 of them are used as pilot subcarriers for

pilot-aided channel estimation. A discrete sparse channel h
is realized with 5 dominant coefficients, randomly placed

over the maximum of 50 channel coefficients. A typical

discrete channel realization is shown in Fig. 1. The chan-

Fig. 1. Typical channel impulse response with 5 dominant coef-

ficients over the maximum discrete channel length.

nel estimation performance of the pilot pattern generated

using the proposed algorithm is evaluated at the receiver

based on the knowledge of the sensing matrix A and the

received pilots vector y using greedy iterative orthogonal

matching pursuit (OMP) [17]. The normalized mean square

error (MSE) associated with channel vector h and estimated

channel ĥ is calculated by:

MSE =

∥∥h− ĥ
∥∥2

2∥∥h
∥∥2

2

. (20)

MSE comparison for channel estimation using the pro-

posed and different pilot selection algorithms, compris-

ing, in practice, over 105 iterations for each signal to

Fig. 2. MSE performance comparison for channel estimation with

pilot patterns generated using different schemes for (N, Np, L) =
(256, 16, 50).

Fig. 3. Detection performance of OMP using proposed and

different pilot schemes for (N, Np, L) = (256, 16, 50).
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noise ratio (SNR), is plotted in Fig. 2. The equally spaced

conventional pilots and random pilots suggested for the

sparse channel are also considered for comparison pur-

poses. Equally spaced pilots are not optimized to min-

imum coherence and there is no benefit in using them

for sparse channel estimation and for random pilot gen-

eration, which is difficult for practical systems. We ob-

serve that the proposed pilot pattern significantly im-

proves the performance of MSE compared to existing

schemes used in practice, with reduced coherence. Detec-

tion performance of the sparse reconstruction algorithm

gives the percentage of cases of exact recovery of the

sparse channel from the received pilots. The comparison of

sparse channel detection performance of OMP is presented

Fig. 4. BER performance comparison of channel estimation for

pilot patterns generated using different schemes for (N, Np, L) =
(256, 16, 50).

Fig. 5. Typical channel impulse response with 6 domi-

nant coefficients over the maximum discrete channel coefficients

L=60.

Fig. 6. MSE performance comparison of channel estimation for

pilot patterns generated using different schemes for (N, Np, L) =
(256, 16, 60).

Fig. 7. Detection performance of OMP using proposed and

different pilot schemes for (N, Np, L) = (256, 16, 60).

in Fig. 3. Transmitted data detection performance is shown

in Fig. 4 as Bit Error Rate (BER). Performance of the pro-

posed pilot search algorithm is also evaluated for a chan-

nel with 6 dominant coefficients spread over the maxi-

mum length of 60 in an QPSK OFDM system channel

estimation to verify the robustness of the proposed algo-

rithm. Figure 5 represents a typical channel implementation

for L = 60.

MSE channel estimate, detection performance of the

channel estimation algorithm and BER of detected data

are given in Figs. 6–8, respectively, for L = 60 and show

the effectiveness of the proposed pilot search algorithm

compared to pilot search algorithms used in practice. The

running time of the proposed algorithm required to gen-

erate pilots with the length of 16, for the channel length
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Fig. 8. BER performance comparison of channel estimation for

pilot patterns generated using different schemes for (N, Np, L) =
(256, 16, 60).

of L = 50 and 60, is 111 and 188 s over 256 subcarriers,

respectively.

6. Conclusions

In this paper, we investigated pilot selection for pilot-aided

sparse channel estimation in wide band OFDM systems.

Sufficient conditions are derived to guarantee that p-Sylow

is the optimal pilot pattern for some (N, Np, L). We have

proposed a deterministic procedure to select the pilot pat-

tern for given (N, Np, L). If N is a prime, then the pro-

posed algorithm achieves the Welch bound, confirming its

effectiveness. Simulation results show that the pilot pattern

generated using the proposed scheme significantly improves

the key metrics of wireless systems, including MSE and

BER, compared to the existing methods with minimized

coherence.
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