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Abstract—In this paper, a new technique for constructing low

density parity check codes based on the Hankel matrix and

circulant permutation matrices is proposed. The new codes

are exempt of any cycle of length 4. To ensure that parity

check bits can be recursively calculated with linear compu-

tational complexity, a dual-diagonal structure is applied to

the parity check matrices of those codes. The proposed codes

provide a very low encoding complexity and reduce the stored

memory of the matrix H in which this matrix can be eas-

ily implemented comparing to others codes used in channel

coding. The new LDPC codes are compared, by simulation,

with uncoded bi-phase shift keying (BPSK). The result shows

that the proposed codes perform very well over additive white

Gaussian noise (AWGN) channels.

Keywords—dual diagonal matrix, error correcting codes, girth,

Hankel matrix, low density parity check codes.

1. Introduction

The field of error correcting codes was developed by in-

troducing them into iterative decoding [1]. Nowadays, low

density parity check (LDPC) codes are considered to the

best solution, thanks to their considerable importance in er-

ror correcting performance and possibility to be represented

by a specific parity check binary matrix M ×N [2], [3].

The Tanner graph is a bipartite graph with two sets, i.e.

the columns and the rows are depicted as follows: columns

represent variable nodes, and rows represent check nodes.

The edge is a connection between these two sets [4]. A cy-

cle in the Tanner graph is defined as the path which starts

and ends at the same node. If a cycle of this graph is consid-

ered, the minimum length of such a cycle is called girth [4].

LDPC codes are classified into two classes: regular, if the

number of 1s in each row and column is constant, and

irregular, if it varies [5], [6].

In this context, we present a special class of LDPC codes

which benefit from low-complexity of decoding implemen-

tations due to the absence of cycle of length 4. Such a pro-

posed construction has the following advantages:

• the proposed method guarantees that the construct-

ing matrix avoids any cycles of length 4, which is

essential for decoding simplicity,

• this method uses the permutation matrix, which

makes the implementation easier, i.e. reduces the

number of logical gates required and uses simple shift

registers,

• a dual diagonal structure is applied to the parity

check matrix of those codes, which ensures that par-

ity check bits can be recursively implemented with

linear computational complexity [7], [8].

The remainder of this paper is organized as follows. In

Section 2, a description of the Hankel matrix and several

conditions required to avoid a girth of length 4 is given.

Section 3 presents the encoding concept and shows the

advantages of the proposed construction of LDPC codes.

Section 4 discusses the simulation results and, finally, Sec-

tion 5 is devoted to conclusions.

2. Proposed Construction of Matrix

Girth is one of the most important keys that affect the per-

formance of LDPC codes [1], [9]. Recent research indicates

that small cycles affect the decoding complexity of these

codes. Therefore, research on the construction of LDPC

codes with a comparatively large girth, e.g. greater than 4,

is still valuable for practical applications [6].

Let H be the parity check matrix M ×N size, where M is

the number of rows and N is the number of columns. It

can be represented in the following form:

H = [H1 H2] . (1)

H2 is a dual diagonal matrix of size M×M, which ensures

that parity check bits can be recursively calculated with

linear computational complexity [7], [8]. The proposed

matrix H1 is of the square type, with M ×M size and can

be constructed as follows.

First, we use the Hankel matrix [10] where its elements

(indexes) are:

ai, j = i+ j−1 , (2)

where i, j are the numbers of rows and columns respec-

tively.

The structure of the Hankel matrix of size m×m [2] is:

Ha =













1 2 . . . m

2 3 . . . m+1
...

...
. . .

...

m m+1 . . . 2m−1













, (3)
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with M = m× (m−1) and m restricted to an even number,

greater than 2.

Next, by applying the process of symmetry in relation to

an ascending diagonal m of matrix Ha a new Hb matrix is

obtained:

Hb =













1 2 . . . m

2 3 . . . m−1
...

...
. . .

...

m m−1 . . . 1













. (4)

We also construct matrix Hb having the elements of ai, j,1≤
i ≤ m and 1 ≤ j ≤ m, and defined by:

ai, j =

{

ai, j of Ha if i+ j ≤ m+1
a(m+1)−i,(m+1)− j otherwise

. (5)

An example is given to clarify the analysis, with m = 4,

Hb is:

Hb =













1 2 3 4
2 3 4 3
3 4 3 2
4 3 2 1













.

Each index of matrix Hb is assigned by sub-permutation

matrices of size (m− 1)× (m− 1), and all indexes with

a value equal to m are replaced by a zero matrix of size

(m−1)× (m−1).
For m = 4, the sub-permutation matrices are given as fol-

lows. The sub-matrix of index ‘1’ is an identity matrix.

‘1’ =







1 0 0
0 1 0
0 0 1







The sub-matrix of index ‘2’ is a sub-identity matrix per-

muted once to the right.

‘2’ =







0 1 0
0 0 1
1 0 0







The sub-matrix of index ‘3’ is a sub-identity matrix per-

muted twice to the right.

‘3’ =







0 0 1
1 0 0
0 1 0







The sub-matrix of index ‘4’ is a zero matrix.

‘4’ =







0 0 0
0 0 0
0 0 0







To avoid repeating the sub-matrices in matrix Hb, a choice

of their size was performed.

A new matrix noted Hc is obtained as:

Hc =





















































1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0 0 0 0 1





















































Many cycles of length 4 are included in Hc as depicted in

the Tanner graph and shown in Fig. 1: Now, we can easily

Fig. 1. The Tanner graph of Hc(12,3,3).

construct matrix H1 from Hc by applying the principle

of activation on matrix Hb and using only two indexes

(x and y) of matrix Hc.

The sum of these two indexes is equal to the index which

is situated on the ascending diagonal m, by applying:

x+ y = m , (6)

with x, y and m being the indexes of permutation matrices.

For example, when m = 4, there are two combinations. This

means that we can activate the indexes (x = 1 with y = 3),

which helps obtain matrix H1.

H1 =





















































1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 1





















































Hence, the matrix H can be represented as:
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H =























































1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1























































3. Encoding Concept

Gallager has shown that codes of column-weight-two have

a minimum distance increasing logarithmically with code

length, compared to a linear increase when the column

weight is at least three [1]. Despite the low increase in

minimum distance, these codes have shown good poten-

tial in some applications, such as partial response chan-

nels [11], [12] and also require less computation due to

column weight.

Although LDPC code performance is high, the hardware

implementation still remains a challenge due to the large

size and complex random (unstructured) row-column con-

nections [13]. This complexity has been reduced by using

structured codes [13]. However, the girth (smallest cycle)

has been reduced by using a constraint over row-column

connections [14]. It has been shown that if the girth in-

creases, the decoding performance is higher [15], [16].

LDPC codes are linear codes. Thus, they can be expressed

as the null space of a parity check matrix H [2]. Consid-

ered c as a codeword written as c = [d p], where d and p are

the data and parity bits respectively. The parity relationship

can be written as [17]:

HcT = 0T . (7)

In the proposed method, H is decomposed into H =
[H1 H2], such that:

[H1 H2][d p]T = 0T , (8)

H1dT = H2 pT , (9)

pT = (H−1
2 H1)dT , (10)

where H2 is the dual diagonal matrix and H1 is built de-

terministically, as seen above.

Based on the structure of H2 and Eq. (8), the parity check

bits p = {pi} can be easily computed from a given data

d = {di} and matrix H1 as in [18]:

p1 = ∑
j

h1
1 jd j , (11)

pi = pi−1 +∑
j

h1
i jd j mod2 , (12)

where h1
i j are the elements of H1.

In [18], a comparative study with an LDPC code defined

from a randomly generated parity check matrix [6] has

shown that if H is brought into [H2,H1], and H2 has a dual

diagonal structure, several advantages are obtained:

• there is no need of Gaussian elimination for the en-

coding process,

• H2 is always non-singular i.e. H2 is always invertible,

• if H1 is sparse, it requires very little memory to store

H in the encoder.

Besides the advantages cited above, there are two other

advantages offered by the proposed construction:

• H1 is effectively sparse, comprising largely 0s
(

M−w
M

)

and has a low density of 1s
(

w
M

)

where

w is the weight (number of ones in each column or

row) of H1, which ensures a very low encoding com-

plexity [19];

• The particularity structure of the obtained matrix H1
(can be built from identity sub-matrix only, with

some permutations) considerably reduces memory

usage.

4. Simulation Results

Monte Carlo simulations were used to estimate the bit error

rate (BER) of an LDPC code. Iterative belief propagation

and additive white Gaussian Noise (AWGN) were applied

as the decoding algorithm and channel, respectively. For

simulation purposes, we used the rate R = 1
2 and block

length N = 4324. This simulation is running for at least

1000 code words and the maximum iteration is 80.
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The performance of uncoded BPSK is presented with the

aim of comparing it with coded BPSK, using the new

LDPC code and other LDPC codes. The signal to noise

ratios (SNR) for the coded BPSK and the uncoded BPSK

are defined, as in [20], with the first one being:

SNR1 = 10log
Eb

2σ 2R
(13)

and the other one defined as:

SNR2 = 10log
Eb

2σ 2 . (14)

Figure 2 represents BER performance of the proposed

LDPC codes and of uncoded BPSK with N = 4324, j = 2
( j represents the weight of columns) and R = 1

2 .

Fig. 2. BER of the proposed LDPC codes and uncoded BPSK

with N = 4324, j = 2 and R = 1
2 .

From Fig. 2, we can observe that the new LDPC code

offers better performances compared to the uncoded BPSK

transmission. At BER= 10−3, the obtained gain is about

1.9 dB.

Table 1 shows the comparison of BER performance of the

proposed LDPC codes, with N = 4324, j = 2 with three

others codes: Random codes, GB-(Geometry Based) LDPC

and TS-(Turbo-Structured) LDPC codes [20].

Table 1

BER performance of the proposed LDPC codes with

Random codes, GB-LDPC codes and TS-LDPC codes.

BER

Proposed

LDPC

codes

Random

codes [20]

GB-

LDPC

codes [20]

TS-

LDPC

codes [20]

Eb/N0

10−3 2.5 3 3 3

10−4 4 4 4 3.8

From Table 1, it can be observed that the proposed codes

exhibit a performance gain of about 0.5 dB compared to

Random, GB-LDPC and TS-LDPC codes at BER of 10−3.

At BER of 10−4, the proposed LDPC codes provide the

same performance when compared to the unstructured Ran-

dom codes, GB-LDPC codes and offer a loss in gain of

about 0.2 dB when compared to the TS-LDPC codes. From

this, we can say that the proposed LDPC codes can reach

the error floor region, for long length. The results demon-

strate that the proposed LDPC codes, having a uniform

structure and low complexity when it comes to hardware

implementation (reduced logic gates and the use of sim-

ple shift registers), offer an error rate performance that

is slightly better than that of more complex unstructured

LDPC codes.

5. Conclusion

In this paper, we have presented a method of constructing

a parity check matrix of an LDPC code. The main advan-

tage of such a method is its ability to demonstrate how to

avoid girth of length 4 by using the Hankel matrix. Also,

a dual diagonal structure is applied to parity check matri-

ces, which ensures that parity check bits can be recursively

calculated with linear computational complexity
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