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Abstract—The failure rate of sensor nodes in Heterogeneous

Wireless Sensor Networks is high due to the use of low

battery-powered sensor nodes in a hostile environment. Net-

works of this kind become non-operational and turn into dis-

joint segmented networks due to large-scale failures of sensor

nodes. This may require the placement of additional high-

power relay nodes. In this paper, we propose a network par-

tition recovery solution called Grey Wolf, which is an opti-

mizer algorithm for repairing segmented heterogeneous wire-

less sensor networks. The proposed solution provides not

only strong bi-connectivity in the damaged area, but also

distributes traffic load among the multiple deployed nodes

to enhance the repaired network’s lifetime. The experiment

results show that the Grey Wolf algorithm offers a con-

siderable performance advantage over other state-of-the-art

approaches.

Keywords—connectivity restoration, meta-heuristics, relay node

placement, wireless sensor networks.

1. Introduction

Heterogeneous wireless sensor networks (HWSNs) em-

ploy different types of nodes which differ from each other

in terms of capabilities, load assigned to the nodes and

coverage areas. HWSNs attract a large number of appli-

cations in the field of health, defense, agriculture, forest

monitoring, etc. Moreover, HWSNs are well capable of op-

erating in harsh and hostile environments without human

intervention. However, it is a challenging task to simul-

taneously maintain coverage and connectivity in a harsh

environment [1], [2].

It is a hard fact that sensor nodes (SNs) are more suscep-

tible to failure in a harsh scenario and may drain battery

power within a short span of time if unnecessary loads

are assigned to them. Therefore, HWSNs require energy-

constrained algorithms to perform operations in harsh en-

vironments. Segmentation or network partition is a classic,

well-known problem affecting HWSNs. In a segmented

network, SNs may not be able to communicate with other

sensor relay nodes. This is a distributed problem, where

computation is to be performed in different parts of the sys-

tem and results need to be aggregated for the final action

to be taken.

Restoration of lost connectivity in distributed, disconnected

HWSNs is an example of diffusing computation, where it

starts at one node of the distributed system and slowly

transfers towards other parts. On the other hand, seg-

ments may be created by using relay nodes (RNs) due to

large-scale failures of SNs (i.e. battery power exhausted)

or due to a natural disaster. RNs are more powerful than

SNs in terms of communication range and reserved battery

backup. Therefore, relay node placement (RNP) in HWSNs

is a cost effective and best-suited method to solve the

network partition problem, simultaneously offering a fault

tolerance mechanism. The relay node placement problem

(RNPP) is NP-hard [3], [4]. RNs are expensive. Hence,

a large number of RNs may increase the overall cost of

a network. Each and every position of RNs in 2D renders

different optimized solutions. The solution with a mini-

mum RN count could be considered as an optimized solu-

tion for RNPP.

There are many techniques to solve RNPP in HWSNs.

However, meta-heuristics are recognized as best-suited

methods.

Meta-heuristics are problem independent and stochastic in

nature to solve NP-hard and optimization problems. Some

popular meta-heuristics include Particle Swarm Optimiza-

tion (PSO) [5], Ant Colony Optimization (ACO) [6], or Ge-

netic Algorithm (GA) [7]. A meta-heuristic may produce

a promising solution for a given set of problems besides

that it may also give the worst solution for another set. It

totally depends on the choice of the meta-heuristic made

based on the problem at hand. Therefore, there is a need to

find a relevant metaheuristic approach which can produce

favorable results for the selected set of problems.

All meta-heuristics performed the search process that was

divided into two different phases: exploration and ex-

ploitation. Global searching is called exploration and lo-

cal searching is known as exploitation. Exploration covers

the whole solution space by diverging search agents in dif-

ferent directions. Exploitation is a local search and cov-

ers only a specific part of the solution space by converg-

ing towards a candidate position. Meta-heuristics can be

classified into three various classes: swarm intelligence-

based (SI), physics-based, and evolutionary algorithms

(EAs) [8].
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To solve RNPP, we use the Grey Wolf Optimizer (GWO)

as a swarm intelligence-based technique enabling to find

the optimal location of probable RNs. It is based on the

hunting behavior of grey wolves.

The paper is organized as follows. Section 2 shows the

related work concerned with RNPP. The system model and

the problem statement are discussed in Section 3. Section 4

is completely devoted to GWO explanation. The proposed

solution is described in Section 5. Section 6 discusses the

pseudo code. Some well-established proposed solutions are

compared with proposed solution in Section 7. Finally, the

paper is concluded in Section 8.

2. Related Work

RNPP-related techniques used for repairing segmented

HWSNs can be classified into two different categories,

based upon the behavior of RNs within the network. The

first category of approaches is related to the deployment of

static RNs in the damaged portion of HWSNs. The second

category is used for the deployment of mobile relay nodes

which can relay data received from a group of sensor nodes

or from nearby neighboring RNs to the base station (BS),

which may be either mobile or stationary. The mobility of

BS can be taken into consideration for improving transmis-

sion efficiency.

2.1. Deployment of Static Relay Nodes

Recently, Lee et al. [9] tackled RNPP by deploying RN

using Steiner Points (SPs) and the convex hull approach.

During the first phase, they find a convex hull on all disjoint

segments, where each segment is represented by a repre-

sentative node. Each representative node denotes the whole

segment area as a single point in 2D. In the second phase,

they proposed to find minimal sub-Steiner trees for every

three neighboring terminal nodes. This procedure is fol-

lowed repeatedly until two terminal nodes are left.

In [10], Lanza-Gutierrez et al. proposed six different

multi-objective meta-heuristics (ABC, firefly algorithm,

evolutionary algorithm with NBI-Tchebyff approach, non-

dominated sorting genetic algorithm-II, strength pareto-

evolutionary algorithm 2, variable neighborhood search).

They evaluated all proposed solutions based on three ob-

jectives (average sensitivity area, network reliability, aver-

age energy cost) using the six meta-heuristics referred to

above. Each objective is bound with an objective function

that is being used as input for the meta-heuristics at hand.

The concept of the local search approximation algorithm is

introduced by Ma et al. [11] and is also known as LSSA.

They proposed a novel, connectivity aware, approximation-

based approach for two-tiered HWSNs. They formed, with

the help of a local search, a local set cover for different

groups of sensor nodes. After that, they calculated a set

cover for RNs based on the local set cover. They extended

the same for the double relay node set cover.

The authors of [12] solve RNPP in static hybrid HWSNs

with the help of PSO and integer, planning the average

path length between sensors. They improve the efficiency

of relay deployment because of a restricted search space of

the integer, instead of the real number. Efficient deployment

of RNs and BS may enhance the efficiency of the proposed

solution.

Lloyd et al. [13] have proposed a solution to solve 1-tier

as well as 2-tier RNPPs. Their proposed solution is used

to find the optimal path for the single tier, and for RNs

between every pair of sensors. The second approach is pro-

posed for a 2-tier RNPP. Time complexity for the 1-tier so-

lution proposed is shown to be a 7-approximation, and for

2-tier it is shown as (4.5+ε)-approximation and (5+ε)-ap-

proximation.

The authors of [14] proposed a game theory-based approach

for RNPP. This approach is supposed to have a complete

knowledge about the network (the number of failed nodes,

the number of segmented parts and location of partitioned

segments). Each segment is used as a player in the game in

which each node is used as a payoff function. Game theory

is a centralized approach. Therefore, each partition must

know about the payoff function of all other partitions. At

last, each player shares their payoff results to restore lost

connectivity within the segmented network.

2.2. Deployment of Mobile Nodes

Mobility in HWSNs may be divided into two categories:

batch movement and succeeding movement. In batch move-

ment, a group of nodes moves towards another group of

nodes for re-connection. The basic idea behind batch move-

ment is to join two partitions by moving towards each

other [15]. Succeeding movement is related to the move-

ment of one or few RNs, performed in an awkward fash-

ion, in order to repair the segmented network, e.g. [16]

restore connectivity by succeeding movement of RNs to

repair wireless sensor and actor networks (WSANs). The

authors of [17] try to identify a node the removal of which

may lead to network partition. After identification, the sug-

gested algorithm starts connectivity restoration of the par-

titioned WSN. Wang et al. [18] introduced mobility in RNs

as well as in BS and try to increase network lifetime in dif-

ferent environments, e.g. static network, WSN with a single

mobile sink, and WSN with mobile RN.

The main advantage of deployment of mobile RNs is the

ability to collect/send data from/to a large number of sen-

sors. Mobile RNs in HWSNs enhance coverage, connec-

tivity, fault tolerance and lifetime of the network. Akkya

et al. [19] deployed mobile agents to re-connect segmented

partitions of HWSNs. They proposed a mathematical

model for deployment of RNs for a minimum traveling dis-

tance. The proposed solution is evaluated based on time

required to reconnect the partitioned network and the to-

tal distance traveled by mobile RNs. The authors of [20]

deploy mobile agents to receive/send sensed data from/to

sensor/BS. The proposed solution saves energy of SNs by

using mobile RNs to transmit the data to BS.
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The authors of [21] proposed an algorithm to control the

mobility of nodes to reduce energy consumption. The idea

behind controlled mobility is based on covering the dam-

aged part of WSN. The mobile RN restores connectivity in

the no-connectivity area. Since moving a node for a long

time may drain its battery power at a fast rate the proposed

solution minimizes the maximum travel distance.

3. System Model and Problem Statement

In this paper, a flat structure of HWSN is considered on

which SNs are deployed throughout a specific predefined

area by using any node deployment strategy. Here, random

deployment is taken. Sink node/BS is positioned at a pre-

defined location to receive aggregated data. All network

traffic flows towards BS to get useful information related to

the environment being observed. When a large number of

SNs fail, a number of disjoint, partitioned segments may be

created. Figure 1a shows a segmented HWSN with seven

disjoint segments and the damaged area. Thus, proposed

approach is proposes to place RNs inside the damaged area

to restore lost connectivity. Initially, one RN is assigned to

every segment as a representative node which is denoted

by Segi. Thus, there is a need to deploy at least NSeg RNs

for every disjoint segment (suppose we have NSeg number

of the disjoint segment).

The problem of placing relay nodes in the segmented area

can be described as follows. Initially, segmentation is de-

tected, with NSeg number of disjoint segments. Initially, NSeg
is the number of RNs considered, with each of them work-

ing as a gateway node for their respective segment. For

simplicity, it is assumed that every segment has an RN for

the purpose of the experiment. That RN is denoted by Segi
where 0≤ i≤ NSeg. The range of RNs is considered to be

as required, and is denoted by the symbol Rr. The range of

RNs (Rr) may differ from the range of SNs (Rs) which is

usually Rr ≥ Rs. The proposed algorithm strives to find the

near to optimal position and the minimum count of RNs

by using the GWO meta-heuristic technique.

The research is based on the following assumptions:

• all SNs, as well as BS, are static,

• all RNs have an equal unit transmission range of Rr,

• HWSN uses its underlying routing protocol to relay

data from source to destination,

• X-Y coordinates of all nodes are considered in integer

space.

4. The Grey Wolf Optimizer

Grey wolves have a well-organized social hierarchy. Their

hunting strategy can be used for solving the optimization

problem. To complete the hunting process grey wolves

move forward in a planned manner. The authors of [22]

suggest various steps which are used by the wolves for

hunting. All these are listed below:

• track, trail and trace,

• keep an eye, surround and hassle the target until it

comes to rest,

• attack the prey.

In [8] authors give a model of all these procedures which

can be used to solve many optimization problems. Pre-

sented solution uses the same technique to restore lost con-

nectivity in a partitioned HWSN. As per the social hierar-

chy of grey wolves, solutions obtained from mathematical

modeling are categorized into three fittest solutions. Alpha

(α) is considered to be the best solution. Beta (β ) and

delta (δ ) will be the second and the third fittest solution,

respectively. The remaining solutions will be considered to

belong to the omega (ω) set.

4.1. Surrounding Prey

To model the surrounding phase, the following equations

are used to depict the behavior:

~D =
∣

∣~J · ~Pw(i)−~P(i)
∣

∣ , (1)

~P(i+1) = ~Pw−~K ·~D , (2)

where ~D indicates the distance between prey and wolf,
~J and ~K are the coefficient vector which is used to en-

circle the prey. Both of these play an important role during

hunting. ~Pw and ~P is the position vector of the wolf and

the prey, respectively, and i denotes an iterator.

The equation coefficient vectors ~J and ~K are given as fol-

lows:
~J = 2 ·~l1 , (3)

~K = 2~k ·~l2−~k , (4)

where vector~k is decreased from 2 to 0, and vectors ~l1, ~l2
are random vectors in [0, 1].

4.2. Attacking Prey

One of the best capabilities of grey wolves is to make an

estimation of the location of prey. Firstly, they encircle the

prey and then attack it. Alphas are the most dominating

wolves within the group and they steer the hunt. In the

case of NP-hard problems, the solution space is very large

and it is quite difficult to search for optimal solutions in

polynomial time. GWO always strive to find three fittest

or best solutions. Considering that alpha is the fittest, beta

is the second best and delta is the third best solution, the

following equations are used to show the behavior of alpha,

beta, and delta:

~Dα =
∣

∣~J1 · ~Pα−~P
∣

∣, ~Dβ =
∣

∣~J2 · ~Pβ−~P
∣

∣, ~Dδ =
∣

∣~J3 · ~Pδ−~P
∣

∣ , (5)

~P1 = ~Pα−~K1 · ~Dα , ~P2 = ~Pβ−~K2 · ~Dβ , ~P3 = ~Pδ−~K3 · ~Dδ , (6)

~P(i+1) =
~P1 + ~P2 + ~P3

3
. (7)

The pseudo code of GWO is shown as Algorithm 1.
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Algorithm 1. Grey wolf optimizer algorithm

1: procedure GWO(initial population)

2: Initialize the population of grey wolf agents ~Pd(d =
3: 1,2, . . . ,n)

4: Initialize all coefficient vectors~k, ~K and ~J
5: ~Pα ← First best possible solution

6: ~Pβ ← Second best possible solution

7: ~Pβ ← Third best possible solution

8: while (i <max number of iterations) do

9: for each search agent do

10: Update possible location of current search

11: agent by using Eq. (7)

12: end for

13: Update coefficient vectors~k, ~K and ~J
14: Calculate the fitness of all search agents

15: Update position vectors ~Pα , ~Pβ and ~Pδ
16: i← i+1
17: end while

18: return ~Pα . Return the best solution

19: end procedure

5. The Proposed Solution

We have considered a well-connected network in the sim-

ulation, which is converted into segmented portions after

a large-scale failure of SNs. It leads to the creation of

multiple, disjoint segments within the network. A 2D vec-

tor of the locations of disconnected segments is used as

population size for the proposed solution and generates the

probable location of prey. This is an iterative process and

each iteration has its own solution, because the number

of segments keeps changing continuously. The proposed

GAIN solution is mapped with the GWO algorithm, as: all

disconnected segments are treated as grey wolves. By us-

ing the current location of wolves, the probable location of

prey is found. The location of prey is continuously updated

with coefficient vectors, as discussed in Section 4. The ob-

served location of prey is used for relay node placement be-

tween different segments to recover lost connectivity. The

proposed solution is executed in different phases as shown

below:

• locate the position of initial RNs,

• neighbor discovery,

• populating RNs,

• termination phase.

In the first phase, RNs are considered as representative

nodes for all disjoints segments. Their locations are ob-

served as discussed in Subsection 5.1. The transmission

range of RNs (i.e. Rr) is considered to be the radius of the

circle made by the coverage field of any RN. Therefore, any

RN can cover a distance of 2Rr in all directions. The second

phase is concerned with finding the neighboring segments

with the help of the deployed RNs. In the third phase, the

proposed algorithm strives to populate RNs in the damaged

region by using different rounds. In each round, one best

RN position is returned by the presented solution. The cal-

culated location is abbreviated as the current relay node

location for the respective round. The relay placed at the

said location is called current relay. The current relay node

strives to find representative nodes within its range. Now,

nodes within the range of each other become neighboring

nodes. All connected nodes in the segment are denoted

by only one representative node for the simplicity of the

algorithm. In the fourth phase (i.e. termination phase),

the algorithm terminates when condition NSeg ≤ 2 is met,

where NSeg represents a number of disjoint segments in the

network. Finally, if only one segment is left, connectivity

has been restored successfully. If two segments are left,

then there is a need to populate some additional RNs on

the basis of the Euclidean distance between them, as dis-

cussed and shown in Eq. (8). The detailed description of

the proposed GAIN solution is described in the following

subsections.

5.1. Locate the Position of Initial RNs

Whenever the BS observes a sudden decrease in the amount

of information sensed from the deployed network, it iden-

tifies a large-scale failure of SNs. The proposed solution is

required to find relevant positions for populating representa-

tive nodes Segi where i represents the number of segments.

Considering all segments have their own representative RN

as a gateway for the segmented part, any communication

within the segments would be possible only through these

RNs. Figure 1a represents an example of a partitioned net-

work with its seven representative nodes denoted by Seg1 to

Seg7. The solution takes X-Y locations of all representative

nodes as an input and produces a relay count. In addition,

to identify the minimum distance between any two points,

GAIN uses Euclidean distance given by:

ED(x1,y1)(x2,y2) =
√

(x1− x2)2 +(y1− y2)2 , (8)

where ED(x1,y1)(x2,y2) denotes the Euclidean distance be-

tween two points (x1,y1) and (x2,y2).

5.2. Neighbor Discovery

In this phase, we consider a set of representative nodes

obtained from the first phase. After that, each segment

discovers its neighboring segments, as explained in Al-

gorithm 2. After placing initial RNs, some of the seg-

ments find other segments to be within their transmission

range and list those segments as their neighboring seg-

ments. Figure 1a shows an example of seven initial seg-

ments. Each segment is denoted by a single RN and it

is referred to as a representative node for all nodes of the

respective segment. Each representative RN is denoted by

Segi(x,y), where Segi is the segment number with its coor-

dinate (x,y). As calculated in the simulation, X-Y coordi-

nates of all segments are as Seg1 : (50,12), Seg2 : (79,23),
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Fig. 1. Representing initial two steps of GAIN: (a) showing

initial position of each segment Segi, and (b) showing neighboring

segments where Rr = 15 m.

Seg3 : (83,94), Seg4 : (65,88), Seg5 : (48,57), Seg6 : (27,54)
and Seg7 : (32,13). After the placement of representative

nodes within every segment, the proposed solution will in-

crease the communication range of the respective segments

due to the large communication range of RNs, albeit some

of the segments do not require additional relays to establish

communication between disjoint segments. The Euclidean

distance between two segments (representative nodes) can

be calculated as two points (x1,y1) and (x2,y2) in the X-Y

plane. These points will be the neighbors of each other

when these two points satisfy equality Rr ≤ ED(x1,y1)(x2,y2).

In this way, neighboring points will be combined into

a single segment which is shown in Fig. 1b. It can be ob-

served that Seg1 joins Seg7, Seg3 joins Seg4, Seg5 joins

Seg6 and Seg2 have no neighboring segment and converted

it into current segments CrSeg14 , CrSeg12 , CrSeg13 , CrSeg11 ,

respectively.

This step adds an extra boost to the proposed algorithm to

solve the network partition problem, and it is really helpful

in reducing the number of deployed RNs. It is observed in

the simulation that the total number of relay nodes would

be always greater than or equal to the initial number of seg-

ments. This relation can be shown as Count Relay≥ NSeg
where Count Relay denotes the total number of relays re-

quiring restoring connectivity within a disconnected WSN.

After completion of the neighbor discovery phase, some

of the segments combine with their neighboring segments

and the rest of them are termed as current segments. The

current segments are represented by CrSegi j , where i de-

notes the iteration number and j simply denotes the cur-

rent segment number. Each segment may or may not have

its neighbors, for e.g. Seg2 does not have any neighboring

nodes and segments Seg1, Seg4, Seg5 have one neighbor-

ing node, i.e. Seg7, Seg3, Seg6, respectively, as depicted in

Fig. 1b.

5.3. Populating RNs

The third step of the proposed solution is executed in

rounds. In each round, RN position is calculated and the

observed position is represented by RNi, where i denotes

the respective iteration number. The proposed GAIN solu-

tion generates a convex hull over the representative nodes

of the current segments CrSegi j . Due to the random and

stochastic nature of RNs, their positions come out of the

transmission range of all the segments. To remove this side

effect, we incorporate the convex hull algorithm that uses

the Graham scan algorithm [23]. The proposed solution

continuously checks whether the calculated point lies in-

side the convex hull or not. If it lies inside the convex hull,

then we proceed to the next iteration, otherwise the algo-

rithm discards the candidate position and puts it into the

Fig. 2. First iteration of placing relay node placement by GWO:

(a) shows a convex hull made by current segments, the first RN

RN1(63,56) and the discarded relay DR1(17,14), and (b) current

segment CrSeg3 is within the range of RN RN1.
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category of discarded RNs, represented by DR1, as shown

in Fig. 2a.

The first iteration scenario has been shown in Fig. 2b. Here,

one discarded RN position DR1(17,14), which lies outside

the convex hull and one accepted RN position RN1(63,56)
which lies inside the convex hull are shown. Sometimes

only one, and sometimes a higher number of executions

is required. Therefore, time-related complexity may be in-

creased. However, GAIN shows better results compared

with state-of-the-art solutions. The proposed algorithm

strives to find segments within the range of RN RN1. Again,

the solution uses Eq. (8), where coordinates (x1,y1) repre-

sent the position of the RNs and (x2,y2) shows the coor-

dinates of current segments. If any two current segments

satisfy relation ED(x1,y1),(x2,y2) ≤ 2Rr, then both of these

segments are considered within the range of each other.

The same scenario can be seen in Fig. 1b, which shows

that RN1 is within the communication range of current seg-

ment CrSeg13 , so these two segments combine into a single

segment.

Fig. 3. Second iteration of placing relay node placement by

GWO: (a) shows discarded relays DR2(17,16) and DR3(6,28)
and second RN RN2(55,21), and (b) RN RN2 combines current

segments CrSeg4 and CrSeg1

We obtain two discarded relays DR2(17,16) and

DR3(6,28), after the second iteration of the proposed so-

lution due to its random nature (as shown in Fig. 3a). In

the third attempt, GAIN is able to find a relevant position

for RN RN2(55,21) which lies inside the convex hull of the

respective current segments. The solution considers α as

the best solution, so it tries to produce an output which is

favorable for the first input in the population. But this side

effect can be removed by using the convex hull approach.

GAIN forces RNs to populate inward the damaged area.

Figure 3b shows that current segments Cr11 and Cr14 com-

bine into a single current segment Cr21.

Fig. 4. Third iteration of placing relay node by GWO: (a) lo-

cation of RN RN3(52,34) is found using GWO, and (b) RN RN3
combines current segments Cr1 and Cr3.

The proposed solution generates three current segments af-

ter the execution of the second iteration – Cr21, Cr22, Cr23.

In the third round, GAIN produces another RN position

RN3(52,34) which is able to communicate with current

segments Cr21 and Cr23 by satisfying equation Eq. (8) and

tries to restore lost connectivity as shown in Fig. 4a. Here,

RN3 will act as a gateway or bridge between both these

segments. Figure 4b represents only two current segments

Cr31 and Cr32. Therefore, it is considered as a terminating

condition.

5.4. Termination Phase

Termination phase is the last step of the proposed algorithm.

The solution always checks for the remaining number of

disconnected segments, because it is an iterative approach

and it reconnects segments in the same manner. If two or

fewer segments are left, the algorithm enters its termination
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Fig. 5. Termination condition because only two current segments

are left: (a) fourth RN RN4(57,73) has been placed manually, and

(b) RN RN4 combines both of the remaining segments.

phase. In the termination phase, it is considered that if one

segment is left only, then connectivity has been restored. If

two segments are left, then the algorithm finds the number

of RNs required for restoration of connectivity by using

the equation listed in the GAIN Algorithm 2 (lines 33–36).

The relevant positions of RNs can be found by using the

Euclidean distance between last two segments. Figure 5a

shows that RN RN4 has been placed between current seg-

ments CrSeg31 and CrSeg32 . The position is somewhere along

the line that joins these two segments. Figure 5b shows that

disconnected segments can communicate with each other

using RN RN4 as a bridge.

5.5. Discussion on Degree of Novelty

The proposed algorithm has the power to generate an ef-

ficient and well-connected network topology. GAIN pop-

ulates RNs in the inward direction of the damaged area.

This generates a simple and efficient topology. The final

topology generated is shown in Fig. 6. Some important

observations may be inferred from the resulting topology,

and are explained below:

• Connectivity is an important factor of any network

topology. It shows its ability to handle failures. If

network connectivity is high, then it can bear a large

number of failures, up to a threshold limit. The re-

Fig. 6. Resulting topology calculated with GAIN.

sulting topology shown in Fig. 6 indicates that nodes

on the edge of the network or terminal nodes are

characterized by high connectivity (bi-connectivity).

When a failure occurs, it does partition the network

due to its high degree of connectivity.

• Distributed traffic load is the backbone of any net-

work topology, because any network which has a cen-

tralized traffic load may suffer from continuous fail-

ures of the central part. Presented topology has no

central point of failure, however. Instead of central-

ized load shown in Fig. 6, it is characterized by traffic

load distributed among all nodes within the network.

Therefore, it helps enhance the overall lifetime of the

network.

6. Discussion on Pseudo Code of

Proposed Solution

In this section, we explain the pseudo code of the pro-

posed GAIN solution, which is shown in Algorithm 2. This

pseudo code is divided into different parts based on the

phases of GAIN. GAIN maintains a 2D array S for the co-

ordinates of representative nodes and an integer variable,

Count Relay to hold the total number of RNs. The integer

variable NSeg shows the number of disjoint segments within

the partitioned network. Lines 3–9 show the neighbor dis-

covery phase. Line 5 is the main part of the neighbor dis-

covery phase. If Segi and Seg j satisfy this condition, then

these two segments become the neighbors of each other.

The iterative process for populating RNs is shown in

lines 10–32. Line 12 computes the convex hull over the

representative nodes of current segments. Line 13 calcu-

lates the candidate position of RN for the current round.

Next, the solution checks for the position of the current

RN. If it lies inside the convex hull, then it is put into the

acceptable list. Otherwise, it is included in the list of dis-

carded RNs. The same scenario is depicted in lines 14–31.

Each candidate RN position has some segments within its

communication range. If these segments are in the range

of the current RN, then it is considered as a new segment, as
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Algorithm 2. GAIN pseudocode

1: procedure GAIN(Area, NSeg, Rr)

2: Initialize array S[NSeg][2] and Count Relay← 0;

3: for i← 0 to NSeg do

4: for j← i+1 to NSeg do

5: if Euclid Dist(S [i] [0] ,S [i] [1] ,S [ j] [0] ,
S [ j] [1])< 2Rr then

6: Join segment j-th with segment i-th and

remove it from array S.

7: end if

8: end for

9: end for . Discovery

10: while S have more than 2 points do

11: Initialize CrRelay [2];
12: CH← Compute a convex hull of all points in S

13: CrRelay← GWO(S);
14: if check CrRelay lie inside convex hull CH then

15: Count Relay++;

16: Initialize C Seg in Range← 0 and 2D vec-

tor Seg in Range;

17: for i← 0 to NSeg do

18: if Euclid Dist(S [i] [0] ,S [i] [1] ,
CrRelay [0] ,CrRelay [1])< 2Rr then

19: Seg in Range ← S [i] and

Count Seg in Range++;

20: end if

21: end for

22: if C Seg in Range==0 then Create a new

segment by using current relay

23: else

24: if C Seg in Range==1 then Add cur-

rent relay to respective segment

25: else

26: for i← 1 to Seg in Range.size() do

27: Join all segments together and

remove those from S instead of

of first one.

28: end for

29: end if

30: end if

31: end if

32: end while

33: if S have two point then

34: Temp ← (Euclid Dist(S[0][0],S[0][1],S[1][0],
S[1][1])−2Rr)/(2Rr);

35: Count Relay←Count Relay+Temp;

36: end if . To obtain the required number of RN to

connect last two segments

37: return Count Relay

38: end procedure

explained in line 22 of Algorithm 2. If the segments are in

the range of the current RN, then they are added to the list

of current RNs of the respective segment (line 24). If the

number of segments within the range of the current relay

exceeds one, then all these segments are joined together

and represented as a single segment (lines 26–27).

Algorithm 3 . Euclidean distance between two points in

X-Y plain

1: procedure Euclid Dist(x1,x2,y1,y2)

2: a←| x1− x2 |2
3: b←| y1− y2 |2
4: return

√
a+b

5: end procedure

For initiating the termination condition, we check the count

of remaining segments. If it is lower than 3, then the algo-

rithm enters the termination phase, implemented by means

of lines 33–36. These lines calculate the number of remain-

ing RNs requiring joining, by calculating the Euclidean

distance between them.

7. Performance Evaluation and

Comparison

In this section, the performance and effectiveness of GAIN

are discussed. Comparison with state-of-the-art algorithms

is also explained. The GAIN algorithm is implemented

and simulated in Java. The experiment results show that

the proposed solution identified the lowest count of RNs as

a number of segments increased. The total number of RNs

and the number of disconnected segments are proportional

to each other. So, these two factors are very important. Our

objective is to find the minimum number of relay counts.

Table 1 shows the parameters used in the simulation to

analyze its performance.

Table 1

Simulation parameters

Parameter Value

Area 1000×1000 m

Nodes 100–500

Total number of partition 5–9

Communication range of RNs 50–325 m

Number of placed RNs 5–45

7.1. Performance Metrics

For the purpose of the experiment, we have considered

a variable range of RNs with a fixed number of partitioned

segments. We have also taken a variable number of parti-

tioned segments for a variable range of RNs. The following

listed metrics are used to validate performance:

• Number of segments (NSeg) – a large value of (NSeg)
may increase the requirements related with connec-

tivity, which would result in a large number of RNs

required – Count Relay. As discussed earlier in Sec-

tion 5, the total count of relay nodes is always greater

than or equal to the number of partitioned segments.

Hence, this metric has a direct impact on the mini-

mum number of RNs.
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• Transmission range of RN (Rr) – a longer transmis-

sion range directly affects the total count of RNs.

Rr exerts a direct impact on performance. Our ex-

periment results show that a longer communication

range may be considered for getting better results.

The minimum number of RNs required to ensure

inter-segment connectivity is directly influenced by

inter-segment connectivity.

• Total count of RNs (Count Relay) – this parameter is

directly related to the deployment cost of the network,

as a minimum relay count is preferred. It shows

the estimated performance advantage of the proposed

approach in comparison with other algorithms.

7.2. Comparative Approaches

This section provides an overview of some well-known and

recently published algorithms. Considering the metrics de-

scribed above, our objective is to solve the network partition

problem and to propose an efficient approach to the issue

at hand. In this section a brief introduction of four other

RNPP solutions is discussed. The first algorithm generates

a convex hull and calculates the Steiner point for every

three neighboring nodes repeatedly, until two segments are

left (ORC [9]). The second algorithm uses the Steiner min-

imum tree with the minimum number of Steiner points to

find the location of RNs for restoration of global connec-

tivity in WSN (STP-MSP [24]). The third algorithm forms

the minimum spanning tree which is based on a single-

tiered RNP (MST-1tRN [13]). The last algorithm studies

the problem of the connected single cover, where each SN

is covered by a single RN (1CSCP [25]).

• ORC – this approach seeks to form the minimum

Steiner tree on the convex hull to populate RNs. It

is an iterative process and is completed in differ-

ent stages. Authors of ORC [9] proposed a heuristic

based on the convex hull and populated RNs inwards

from the boundary of the convex hull. In each itera-

tion, the convex hull is formed and Steiner points for

every set of three neighboring nodes are found con-

sidering Steiner points of the previous iteration as an

input for the next iteration to form convex hull. ORC

uses the k-LCA approach [26] to solve the Steiner

tree problem.

• STP-MSP – this algorithm follows the concepts of

the minimum spanning tree (MST) and the Steiner

tree point (STP). The combination of these two ap-

proaches results in a fully connected WSN. STP-MSP

considers P terminals which have no connectivity and

it strives to find an MST formed by these P terminal

nodes. Regarding a constant R, STP-MSP forms an

edge p1 p2 between two points p2 and p2 and inserts

d |p1 p2|
R − 1e a number of Steiner points, where R is

the transmission range of the relay.

• MST-1tRN – initially, the MST-1tRN algorithm uses

a set of sensor nodes, S = (s1,s2,s3, . . . ,sn) and some

other constants r and R as the range of SNs and RNs,

respectively. It strives to compute MST TS generated

by set S. It then tries to steinerize that MST to obtain

an (r,R)-constrained Steiner tree by populating RNs

on each edge of MST TS.

• 1CSCP – the 1CSCP algorithm is totally based on

the concept of the connected single cover problem.

It seeks to find the location of a minimum number of

RNs and ensures that each SN is covered by at least

one RN. RNs are placed so that a connected network

can be generated by using these RNs, and that BSs

be reachable. A connected network of RNs is called

a minimum connected single cover graph.

7.3. Simulation Results and Comparison

The simulations prove the concepts used in respective re-

search work. The GAIN algorithm is simulated in the Java

environment, with multiple configurations. Each configura-

tion has a different number of segments NSeg and a varying

transmission range of RNs Rr. All SNs are randomly placed

in the area of interest (i.e. 1000×1000 m). The transmis-

sion range of RNs varies from 50 m to 325 m and the

value of NSeg assumes 5, 6, 7 and 8. All experiment results

are taken into consideration, with their average equaling

30 individual results.

Fig. 7. GAIN vs. other algorithms. The lower figure is a mag-

nified version of the rectangle area in the upper chart.
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The performance of GAIN is studied with other four com-

parative algorithms in terms of the total RN count required

to restore lost connectivity of a partitioned WSN, for var-

ious ranges of RNs. For all results, shown in Fig. 7, NSeg
is taken as a constant value of 5. Figure 7a shows that

proximity is an important factor in a disconnect network.

It has been observed that the RN count decreases as the

range increases. While studying the impact of the large

value of Rr, it has been shown that the total count of RNs

is largely influenced by the value of Rr. The transmission

range of RNs Rr and the number of RNs required to re-

store connectivity are inversely proportional to each other,

which means that as range increases, the count of RNs de-

creases and vice-versa. The same relation can be depicted

in Figs. 7a-b. The performance of GAIN decreases slightly

compared to other algorithms for a low transmission range

of RNs, due to the random nature of GWO. It tries to find

an optimal location by considering all segments at a time.

However, in Steiner points-based algorithms, the candidate

RN location is found by considering only a few nodes at

a time. As seen in Fig. 7a, for the value of Rr from 50 to

150 m, GAIN produces a larger number of RN locations,

outperforming ORC. Generally, in a real time application,

the value of Rr is to equal 200 or more than 200. Hence,

Fig. 7a shows that for the transmission range of 150–325 m,

the proposed solution renders better results than ORC, STP-

MSP, MST-1tRN, 1CSCP in terms of the total RN count.

Figure 7b is a magnified version of Fig. 7a, showing the

results in greater detail. For a large value of Rr, GAIN

populates RNs inwards from the outer edge of the first con-

vex hull. At the outset, GAIN consistently outperforms all

other comparative algorithms, for a large value in the range

of 200–325 m.

In the subsequent simulation results, the range of RN is

considered to be a constant value, i.e. equals 200 m. Here

we simulate GAIN for various numbers of segments, to

see the impact of a large-scale failure, where the value of

NSeg increases by leaps and bounds. Figure 8a shows the

results of four different experiments, with the number of

segments varying from 5 to 8. GAIN consistently out-

performs other algorithms, because of a large transmission

range of RN. Meanwhile, it can be observed that as seg-

mentation increases by one, the required number of RNs

increases sharply. Apart from this, we also observed one

thing – GAIN can also restore connectivity for a large scale

failure, where the number of partitioned segments is large.

But other algorithms are not able to populate RNs in such

a large-scale type of failure.

Figure 8b shows the experiment results only for GAIN,

but with various numbers of disconnected segments con-

sidered. This figure depicts the relation between the num-

ber of segments and the range of RN. It can be concluded

that when the transmission range of RN is high, the num-

ber of segments does not affect the final count of RNs (i.e.

Count Relay). Despite the large value of NSeg GAIN con-

sistently maintains the minimum number of RNs. Instead of

this, when there is a slight change in the value of NSeg and

Fig. 8. Comparison of GAIN and other algorithms (Rr = 200) (a)

and comparison of GAIN results for varying numbers of seg-

ments (b). (For color pictures visit www.nit.eu/publications/

journal-jtit)

with a low value of Rr, the final count of RN Count Relay
increases quickly. This simulation is performed for three

different values of NSeg equaling 5, 6 and 7. At last, we con-

clude, based on the results of the experiments, that GAIN’s

performance is favorable in comparison with other com-

parative approaches, for a large value of Rr. GAIN shows

a below-benchmark performance for a low value of Rr, due

to the randomness of GWO.

8. Conclusion and Future Scope

Generally, HWSNs operate in a harsh and hostile environ-

ment, where SNs are more susceptible to failures. A large-

scale failure of SNs results in the creation of a partitioned

network. Disjoint segments are no more able to commu-

nicate with other. Therefore, we proposed the grey wolf

optimizer algorithm to repair the segmented heterogeneous

wireless sensor network and to restore lost connectivity

within the disjoint HWSN. The proposed approach oper-

ates in rounds, and in each round one RN position is re-

turned. If the candidate position is inside the convex hull,

then it is considered as an acceptable RN position, other-

wise we discard it. When the number of remaining seg-

ments falls below three, then the situation is considered to

be the terminating condition of GAIN. In the termination

phase, the position of RNs is calculated with Euclidean

equality.
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We evaluate the performance of GAIN and compare it with

other well-known algorithms of similar nature. The simula-

tion results have confirmed that our proposed solution out-

performs other algorithms and populates a minimum num-

ber of nodes for a large communication range of RNs. The

resultant topology shows a good connectivity with balanced

traffic loads. In the future, we will be working to test the

proposed solution on a real testbed.
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