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Abstract—The paper presents a new algorithm to deter-

mine the shortest, non-crossing, rectilinear paths in a two-

dimensional grid graph. The shortest paths are determined

in a manner ensuring that they do not cross each other and

bypass any obstacles present. Such shortest paths are applied

in robotic chip design, suburban railway track layouts, rout-

ing traffic in wireless sensor networks, printed circuit board

design routing, etc. When more than one equal length non-

crossing path is present between the source and the destina-

tion, the proposed algorithm selects the path which has the

least number of corners (bends) along the path. This feature

makes the path more suitable for moving objects, such as un-

manned vehicles. In the author’s scheme presented herein,

the grid points are the vertices of the graph and the lines

joining the grid points are the edges of the graph. The ob-

stacles are represented by their boundary grid points. Once

the graph is ready, an adjacency matrix is generated and the

Floyd-Warshall all-pairs shortest path algorithm is used iter-

atively to identify the non-crossing shortest paths. To get the

minimum number of bends in a path, we make a modification

to the Floyd-Warshall algorithm, which is constitutes the main

contribution of the author presented herein.

Keywords—Floyd-Warshall algorithm, rectilinear non-crossing

shortest paths, rectilinear obstacles.

1. Introduction

The problem of non-crossing shortest paths is well re-

searched and several algorithms are described in literature,

i.e. [1]–[3]. In general, the shortest paths reduce the time

and cost of communication. Non-crossing paths are es-

sential in VLSI chip track layouts, printed circuit board

routing, robotic motion control [4], [5], etc.

Obstacles are natural and common in graphs represent-

ing geometrical/geographical scenarios In a printed circuit

board layout, the components act as obstacles for the rout-

ing paths. Similarly, in transportation layouts, obstacles and

prohibited zones are very common. In such a situation, we

have to find optimal paths which avoid the obstacles and by-

pass them to reach the destination. Several algorithms have

been presented to find the shortest paths in the presence of

obstacles, which are modeled as rectangles, rectilinear poly-

gons and general polygons [6]–[11]. In this paper, a new

method to bypass the obstacles without touching them is

presented.

Bends or corners are unavoidable in graphs which have ob-

stacles and other physical constraints, or when a direct link

fails. The presence of bends along the paths reduces veloc-

ity of moving objects and increases energy consumption. In

physical implementation, the cost of such paths is higher as

well. Therefore, the author’s aim is to ensure a minimum

number of bends.

Let us consider a scenario where several shortest paths of

equal length exist between a pair of nodes in a rectilin-

ear graph. Among these shortest, equal paths, the path

that has the lowest number of bends is called the recti-

linear minimum bend shortest path (MBSP) [6]. First, we

find the MBSP between a given source-destination pair.

If more than one such MBSP is present, we take one of

them. The objective is to find MBSPs between K dis-

tinct source-destination pairs. This results in K distinct

MBSPs, one for each source-destination pair. Addition-

ally, the paths should be distinct, disjoint and non-crossing.

In the proposed method, each source-destination pair con-

tributes a single optimal path. We have K such paths cor-

responding to K such pairs. This is not the same as the

first K-shortest paths for a single source-destination pair.

When obstacles are present in the graph, the paths should

not touch the obstacles but should avoid and bypass them.

The given region where the paths have to be determined

is discretized by a uniform square grid of a suitable size.

Then, the constrained paths are determined on the undi-

rected graph using the well-known Floyd-Warshall algo-

rithms from the graph theory.

Even though multi-criteria optimization methods [12], [13]

can be used to solve this MBSP problem, they are more

complex and experience difficulty in getting the best

weights for combining multiple criteria into a single one.

The weights depend on the size and layout of the graph.

The paper provides a comparison of the proposed method

with the bi-criteria optimization method.

2. Basic Symbols Notations

and Assumptions

The geometric region under consideration is represented

by a square mesh grid which covers the entire region as

shown in Fig. 1. A planar graph G(V,E) is constructed
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Fig. 1. Grid graph numbering scheme: width in terms of grid

points = W = 10, height in terms of grid points = H = 8.

from the grid. The grid points are the vertices (nodes) of

the graph and the grid lines are the edges of the graph.

The number of grid points along width of the graph is W ,

and that along the height is H. Thus, the total number of

vertices (grid points) represented by n is, n =W H. The total

number of links would be (W −1)H +(H−1)W .

2.1. Node Numbering

The n nodes of the graph are numbered from 1 to n,

column-wise, starting from the bottom left corner, as shown

in Fig. 1. After numbering a column from its bottom to

top, the next column is numbered further from its bottom

to top, and so on. In each column, as we traverse from

its bottom to top, the node numbers increase by one for

each successive node. On the other hand, along each row,

the node numbers increase by H as we traverse successive

nodes from left to right. Thus, in Fig. 1, as we traverse

from left to right, along any row, the node numbers in-

crease by 8, successively. Here H = 8. The node numbers

act as node IDs. A horizontal or a vertical line segment

is denoted by the beginning and ending of that segment.

Thus, for example, in Fig. 1, segments 2→ 10 and 80→ 8
are horizontal segments, whereas, 1→ 2 and 80→ 73 are

vertical segments. The minimum length of a horizontal line

segment, in terms of the difference between its end node

IDs, is H. For example, for the line segment 2 → 10,

the length is 10−2 = 8 = H. This property applies to all

horizontal segments. Since the minimum length is H, an

important characteristic of horizontal segments is that they

have lengths greater than or equal to H. For vertical seg-

ments, the minimum and the maximum lengths (in terms

of the end node differences) are 1 and H−1, respectively.

For example, for the minimum vertical segment 1→ 2, its

length is 2− 1 = 1. For the maximum vertical segment

73→ 80, the length is 80−73 = 7 = H−1. Thus, for ver-

tical segments, the maximum length is H−1 which means

the lengths are less than H. These properties are essential

to check for the existence of bends (corners) along a path,

as described later. The vertex set V of the graph is {1 : n}.

2.2. Node Connectivity and Edge Weights

4-connectivity for all the nodes (vertices) is used. This

means that each non-border node is connected to its 4 im-

mediate neighbors: north, south, east and west. The four

corner nodes of the graph have 2 connections each. Non-

corner border nodes have 3 corners each. Thus, the graph

is a one-hop network. The nodes which are more than one

hop are not connected directly at all. The weights (effective

distances) for the connecting edges are taken as one. In this

paper, the terms weight and length are used synonymously.

Thus, the length of an edge is the same as the weight of

that edge. The weights for the edges between directly un-

connected nodes are set to infinity. All edge weights are

positive. Thus, an edge weight of ∞ means no direct con-

nection. Therefore, the elements of the adjacency matrix

are either 1 or ∞.

2.3. Adjacency Matrix

The adjacency (connectivity) matrix of the graph is repre-

sented by A. The size of matrix A is n× n. The element

A(i, j) of the adjacency matrix gives the weight of the edge

(link) between node i and node j. The diagonal elements

of A are taken as ∞, to prevent self-loops. The graph is

an undirected graph. Therefore, A(i, j) = A( j, i) and A is

symmetric. An edge can allow the flow in either direction.

When i and j are connected A(i, j) = 1, else, A(i, j) = ∞.

The number of 1s in row i of A gives the number of edges

leaving node i, and the number of 1s in column i gives

the number of edges entering node i. Since our graph is

a 4-connected grid graph, the maximum number of 1s in

a row or column is 4. As an example, consider a 3×3 grid

graph of nine nodes represented by G, as:

G =









3 6 9

2 5 8

1 4 7









.

The corresponding adjacency matrix A will be:

A =

1 2 3 4 5 6 7 8 9








































































1 ∞ 1 ∞ 1 ∞ ∞ ∞ ∞ ∞
2 1 ∞ 1 ∞ 1 ∞ ∞ ∞ ∞
3 ∞ 1 ∞ ∞ ∞ 1 ∞ ∞ ∞
4 1 ∞ ∞ ∞ 1 ∞ 1 ∞ ∞
5 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞
6 ∞ ∞ 1 ∞ 1 ∞ ∞ ∞ 1

7 ∞ ∞ ∞ 1 ∞ ∞ ∞ 1 ∞
8 ∞ ∞ ∞ ∞ 1 ∞ 1 ∞ 1

9 ∞ ∞ ∞ ∞ ∞ 1 ∞ 1 ∞

.

In general, in A, the rows, as well as the columns of the

corner nodes, have 2 ones, those of the non-corner border

nodes have 3 ones and those of the inside nodes have 4 ones.
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Thus, the nodes are characterized by direct connectivity,

immediately along north↔south and east↔west axes. The

nodes have no immediate diagonal connectivity. This is an

important requirement to ensure the non-crossing property

of the shortest paths. Because of this 4-connectivity, all

connected paths from the source node to the destination

node have to be rectilinear.

2.4. Objective

Given the source-destination node pairs (si−ti) for i = 1
to K, the main objective is to find K shortest paths P(si, ti)’s
which are disjoint, having a minimum number of bends and

which do not touch any obstacles present in the graph.

3. Properties of Paths

A simple path from the source node s to the destination

node t is a series of connected edges from s to t through

the intermediate nodes without any loops. Hereafter, for

brevity and convenience, we refer to simple path(s) by

the term path(s). Let the sequence of intermediate nodes

along a specific path from s to t be, v1,v2, . . . ,vm. Then,

the entire path including s and t is represented by P(s, t),
such as:

P(s, t) = [ s,v1,v2, . . . ,vm, t] . (1)

P(s, t) is an array of nodes. With m intermediate nodes,

the size of the array is m+2, which is same as the number

of nodes in P(s, t). The length of the path is the sum of

the edge weights along the path from s to t. From Eq. (1),

one can see that the number of edges connecting s to t
is m+1, that is one less than the size of the array P(s, t).
In this case, the weights of all the connecting edges are

1s. Therefore, the total weight of the path is m + 1 itself.

The total weight of the path is also called the length of the

path or path length. When the path length is short, then the

corresponding travel cost is also lower.

3.1. Shortest path

When there are several paths from s to t, that path which has

the minimum path length is the shortest path. The number

of shortest paths can be more than one. Then, the path

lengths of these are minimum and equal.

3.2. Rectilinear property of paths

Our graph is a square grid graph and all the edges are

either parallel to x axis or y axis. Since a path is a chain

of edges, the edges making up the path are parallel to the

Cartesian coordinates. Then the path is rectilinear, because

each edge of the path is either parallel to x or y, i.e. each

edge is either vertical or horizontal.

3.3. Non-crossing Property of Paths

To understand the non-crossing property of the paths, we

introduce a theorem on the non-crossing constraint.

Theorem 1. In a square grid graph, node-disjoint paths

do not cross each other. Proof. In the presented scheme,

all paths are rectilinear. Consider two paths P(s1, t1) and

Q(s2, t2), where the source and the destination nodes s1,

t1, s2, t2 are all disjoint. Let EP(a,b) be any edge that be-

longs to P(s1, t1) and similarly let EQ(c,d) be any edge that

belongs to Q(s2, t2). Now, consider the geometrical inter-

section of edges EP(a,b) and EQ(c,d). When both of them

are horizontal or both of them vertical, they are parallel

Fig. 2. Obstacles bounded by grid points marked by shaded areas.
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and cannot meet each other. Therefore, the condition for

the intersection is that one of them has to be horizontal

while the other one vertical. In our grid graph, vertical and

horizontal edges meet only at nodes (see Fig. 1). Hence, the

two edges can meet only at one of the nodes. This node is

obviously the common node for both the edges. Therefore,

the condition for the intersection of EP(a,b) and EQ(c,d)
is that they should have a common node or the paths should

not be disjoint. On the other hand, if EP(a,b) and EQ(c,d)
are node-disjoint, they cannot meet each other. Since the

paths are made up of a series of edges, if the edges of

the respective paths cannot meet, then the two paths also

cannot intersect. This argument can be extended to all

possible paths. Therefore, if paths are node-disjoint, they

cannot intersect each other. Based on Theorem 1, determi-

nation of non-crossing paths boils down to that of finding

node-disjoint paths.

3.4. Representation of Obstacles in the Graph

Obstacles are those regions in the graph which should

be avoided by the paths. The paths should not touch the

obstacles and have to bypass them if necessary to reach

the destination. In this grid graph, the boundaries of the

obstacles are marked by the grid points (nodes of the

graph), as shown in Fig. 2. Since obstacle boundaries are

represented by the grid points of the square grid graph,

the obstacles are rectilinear polygons. The obstacle can

be in the form of polylines, as shown by the line in

Fig. 2. We can also specify certain grid points as obsta-

cles. Then, all points along the line and the isolated obstacle

points are excluded or made inaccessible while finding the

shortest paths.

3.4.1. Exclusion (or marking out) of a specific node

Exclusion of a specific node is done by setting the weights

(distances) of all incident edges of that node to infinity.

Then, the edges entering or leaving that node have ∞ as

their weight. Therefore, the shortest path algorithm will

exclude that node, because if included, the total length

(weight) would become ∞. Let the node to be excluded

be J, where J ∈ {1 : n}. Then the weights of all incident

edges leaving J are given by the elements of row J of

the adjacency matrix A. Similarly, the weights of incident

edges entering J are given by the elements of column J
of A. Therefore, the elements of row J and column J have

to be set to ∞. Before setting the elements to ∞, matrix A is

saved in a temporary matrix Atemp, which can be used to

restore J as explained later. Thus, the exclusion operation

is carried out as:

Atemp = A , (2)

A(J, :) = ∞ . (3)

Here, the colon notation is used to represent all elements of

row J. Similarly the weights of incident edges entering J
are set to ∞ as:

A(:,J) = ∞ , (4)

Here, A(:,J) represents all the elements of column J. Thus,

use of Eqs. (3)–(4) alters the adjacency matrix A such

that node J is excluded or marked out while searching

for the shortest path. Nodes belonging to the obstacles

are permanently marked out. But in our method, certain

nodes are marked out temporarily in the present itera-

tion, to be restored in the later iterations as will be ex-

plained later.

3.4.2. Inclusion or mark-in of a node that was excluded

earlier

Inclusion or mark-in of node J which was marked out ear-

lier is done by restoring the elements of row J and column J
from A as:

A(J, :) = Atemp(J, :) , (5)

A(:,J) = Atemp(:,J) . (6)

3.5. Node-disjoint K Shortest Paths

Determination of node-disjoint shortest paths is a well-

known NP-complete problem [6]. To overcome this, Yen’s

iterative method [7] is used, which is sufficient for engi-

neering applications. Given K distinct source-destination

node pairs (si, ti) for i = 1 to K, we first find the shortest

path from s1 to t1. Then, the nodes along the first short-

est path are made inaccessible for the next iteration, by

setting the weights of all incident edges of those nodes to

infinity (marked-out operation), as given by Eqs. (2)–(3).

Next, we find the second shortest path. Again, make the

involved nodes inaccessible by setting the relevant incident

edge weights to infinity (marked-out operation) and so

on, until we determine K shortest disjoint paths. In this

method, the next iteration will exclude those nodes which

have been already covered by the previous paths. We use

Floyd-Warshall all pairs shortest path algorithm for deter-

mining the individual shortest paths. The reason for using

this algorithm is described later.

3.6. Bends in a Path

Consider a path P(i, j) from source i to destination j. Let k
be an intermediate node along the path, as shown in Fig. 3.

Symbol, k (lowercase) is used for intermediate nodes in

the Floyd-Warshall algorithm. This k is different from the

uppercase K which represents the number of shortest paths.

Now, P(i,k) and P(k, j) are the two segments of P(i, j)
joined at node k. The two segments can be perpendicular,

as in Fig. 3a, or collinear (no bend), as in Fig. 3b.

3.6.1. Checking for a bend at k

For the existence of a bend in a path, one line segment

should be horizontal and the other one has to be vertical

and vice-versa. As explained earlier, the condition for the

segment P(i,k) to be horizontal is, its end node difference

abs(i− k) should be greater than or equal to H. That is,

abs(i− k) ≥ H. The condition for segment P(k, j) to be
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Fig. 3. Two possible paths from node i to node j via k.

vertical is, abs(k− j) < H. These two conditions can be

expressed as:

{

abs(i− k)≥ H , if P(i,k) is horizontal

abs(k− j) < H , if P(k, j) is vertical
. (7)

Constraint (7) gives the condition for P(i,k) and P(k, j)
to be perpendicular. They can also be perpendicular when

P(i,k) is vertical and P(k, j) is horizontal. This condition

can be expressed as:

{

abs(i− k) < H , if P(i,k) is vertical

abs(k− j)≥ H , if P(k, j) is horizontal
. (8)

If either constraint (7) or (8) holds true, then P(i,k) and

P(k, j) are perpendicular. Constraints (7) and (8) are com-

bined using OR logic and the combined logical constrain

is written as:

G =
(

abs(i− k)≥ H && abs(k− j) < H
)

||
(

abs(i− k) < H && abs(k− j)≥ H
)

. (9)

Here, && is the logical AND operator, || is the logical OR

operator and G is a logical variable. P(i,k) and P(k, j) are

perpendicular if G given by Eq. (9) is true, else they are

collinear. In Fig. 3, G = true for the path shown in Fig. 3a

and G = false for the path shown in Fig. 3b.

4. Modified Floyd-Warshall Algorithm

The main contribution of this paper is the modification of

the Floyd-Warshall all pairs shortest path algorithm to take

care of the 90◦ bends (corners) along the paths.

4.1. Basic Principle

Consider two different paths P(s,a, t) and Q(s,b,c,d,e, f , t)
from source s to destination t, as shown in Fig. 4. Here,

P(s,a, t) has one bend at a, while Q(s,b,c,d,e, f , t) has

5 bends at b,c,d,e, f .

Fig. 4. Two different paths having the same length, but different

number of bends.

In the square grid graph of Fig. 4, every connecting edge

has a weight 1 and the paths are rectilinear. Therefore, the

lengths of the two paths are the same and equal 8, even

though the number of bends in each path is different. In this

case, the shortest path algorithm can choose either path P
or path Q, with equal preference. But our objective is to se-

lect P against Q, because of a lower number of bends in P.

To achieve this objective, corner weights are introduced in

addition to edge weights.

4.1.1. Corner weights

We assign a very small weight (compared to the edge

weight) ε to each corner (or bend). Thus, the corner weight

is represented by ε . Now, while calculating the total length

of a path, both the edge weights and the corner weights are

added. This total length is called the augmented length of

a path. A very low corner weight is chosen, so that while

comparing two paths of different total edge weights, it does

not play any significant role. On the other hand, while com-

paring two different paths of equal total edge weight, the

corner weights play a decisive role.

4.1.2. Selection of corner weight εεε

Let the possible estimated maximum number of bends (cor-

ners) along a lengthy path in the graph be denoted by mnb.

Then the total corner weight would be mnb · ε . This value

should be less than one hop weight, so that the addition of

corner weight does not affect the relative weights of paths
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under comparison. Therefore, ε should be chosen such that,

mnb · ε < 1. That is, choose ε as:

ε =
1

mnb
(10)

Thus, ε depends on the size and layout of the graph.

4.1.3. Augmented path length

The total length of a path considering both the edge weights

and corner weights is defined as the augmented path length

(APL). Thus for a given path:

APL = “sum of edge weights along the path”

+ “sum of corner weights along the path” .

Therefore, a rectilinear path with a lower number of

corners will have a lower APL. For example, in Fig. 4, the

APL of path P(s,a, t) is 8 + ε , because it has one corner,

whereas that of path Q(s,b,c,d,e, f , t) is 8 + 5ε , because

it has 5 corners.

Algorithm 1: Floyd Warshall all pair shortest path

[D,Next] = FWAPSP1(A,H,n)

1: For each edge (u,v)

2: D[u][v]← A[u][v]; // A[u][v] is same as A(u,v).

3: Next[u][v]← v;

4: End for

5: For k = 1 to n

6: For i = 1 to n

7: For j = 1 to n

8: If D[i][ j] > D[i][k]+D[k][ j]

// update for minimization

a: D[i][ j]← D[i][k]+D[k][ j];

b: Next[i][ j]← Next[i][k];

// Modification to check for a 90◦ bend

c: G = (abs(i− k) >= H && abs(k− j) < H)

||(abs(i− k) < H && abs(k− j) >= H;

If (G==true)

D[i][ j]← D[i][ j]+ ε ;

End if

// Modification end

9: End if

10: End for // j

11: End for // i

12: End for // k

Since APLs take care of both the edge weights and corner

weights, we use APLs instead of just edge weights, in the

shortest path algorithm. Then the algorithm determines the

shortest paths with minimum number of bends.

4.2. Floyd-Warshall Algorithm with Corner Weights

The modified Floyd-Warshall algorithm is given as Al-

gorithm 1. On input, it takes adjacency matrix A, graph

height H, number of nodes n and corner weight value ε .

On output, it gives the shortest path length (distance)

D matrix and Next matrix. Algorithm 1 is named as

Floyd Warshall all pair shortest path (FWAPSP1), and it is

written in the form of a function.

Algorithm 2: Function FWAPSP2

[F,Next] = FWAPSP2(D,H,n)

1: For each edge (u,v)

2: F[u][v]← D[u][v]; // [u][v]

3: Next[u][v]← v;

4: End for

5: For k = 1 to n

6: For i = 1 to n

7: For j = 1 to n

8: If F [i][ j] > F [i][k]+F[k][ j]

// update for minimization

a: F [i][ j]← F[i][k]+F[k][ j];

b: Next[i][ j]← Next[i][k];

// Modification to check for a 90◦ bend

c: G = (abs(i− k) >= H && abs(k− j) < H)

||(abs(i− k) < H && abs(k− j) >= H;

d: If (G==true)

F[i][ j]← F [i][ j]+ ε ;

End if

// Modification end

9: End if

10: End for // j

11: End for // i

12: End for // k

D matrix gives the minimum APL connected paths between

all pairs of nodes. In Algorithm 1, we see that the update

of D[i][ j] and Next[i][ j] (steps 8a and 8b) occur before the

augmentation of D[i][ j] by the corner weight ε . Therefore,

matrix D and Next will not fully and truly reflect the overall

connectivity of the paths taking the APLs into account.

Hence, we have to recalculate new D and Next, based on

D[i][ j]’s instead of A[i][ j]’s. Even though, the Next matrix

calculated from FWAPSP1 is not directly used further, it

is retained as a formality. The recalculation of matrices D
and Next is implemented in Algorithm 2. On input, it takes
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connectivity matrix D, graph height H and n. On output, it

gives updated shortest path length (distance) F matrix and

Next matrix.

Checking for a bend in the path at k, an intermediate node

between i and j, is straightforward in the Floyd-Warshall

algorithm compared to Dijkstra, because both the terms on

the RHS of step 8a (update for minimization) of FWAPSP1

or FWAPSP2 are an addition of two sub-paths P(i,k)
and P(k, j). Therefore, the constraint term G, as given by

Eq. (9) can be easily constructed, but, in Dijkstra, it is not

the case.

4.3. Main Algorithm

The objective is to determine K number of rectilinear non-

crossing shortest minimum bend paths (RNMBP) in the

presence of rectilinear obstacles. The main algorithm uses

Algorithm 1 and 2 to implement RNMBP. Initially, the

given obstacles are marked out in the adjacency matrix A.

Algorithm 3: RNMBP

1: Get the matrix A for the given graph with obstacles

marked out, use Eqs. (2) and (3)

2: Find the K shortest paths for the given (s, t)

ignoring the non-crossing property using unmodified

Floyd-Warshall algorithm

3: Get the sorted (s, t) pair based on the

lengths of the shortest paths obtained in step 2

4: Atemp = A // store A for the future use

5: Set i = 1 // start with the first pair

6: Mark out (s, t) nodes for indices greater than i as

obstacles. // we do not want the present path to pass

// through those higher indices (s, t) nodes

7: Get D using, [D,Next] = FWAPSP1(A,H,n).

// the return value Next is not used

8: Get Next using, [E,Next] = FWAPSP1(D,H,n)

9: If E(si, ti) = ∞ go to step 12

// this path not exists

10: Reconstruct the path P(si, ti)

11: Mark out all the nodes along this path.

12: Mark in (restore) the marked out (s, t) node pairs

using Atemp

13: Increment i for the next iteration as i = i+1
14: If i > K exit, Else go to step 6

15: Exit

4.3.1. Order of processing

In a graph, a longer path creates more obstacles for the

succeeding paths than a shorter path. Consider the example

of two paths shown in Fig. 5.

The longer line is between 3–38 nodes and the shorter one

is between 24–22. If the longer line is drawn first as in

Fig. 5a, it covers the entire graph horizontally. Therefore,

the second shorter line cannot be drawn without cross-

ing the first line. Hence the non-crossing property can-

not be satisfied. On the other hand, if the shorter line is

first, the obstacle created is small and the second longer

line can be drawn satisfying the non-crossing property, as

shown in Fig. 5b.

Fig. 5. The effect of order of preference.

Therefore, among the K shortest paths to be determined,

we process them in the increasing order of their lengths.

Initially, the shortest lengths of all K paths are determined

considering the non-crossing (node disjoint) property. Then

the corresponding (s, t) pairs are sorted in the increasing

order of their lengths. Then, the sorted (s, t) list is processed

one after another, as described in Subsection 3.5.

Now, P(si, ti) for i = 1 to K gives the K shortest non-

crossing minimum bend paths. Since algorithm RNMB uses

the modified Floyd-Warshall algorithm, the time complexity

is O(n3). The path reconstruction function has a complex-

ity of O(n).

4.4. Experimental Results

Several examples are solved using RNMBP. Because of

the limited space, all results are not presented.

Example 1. Here, W = 17, H = 13 and K = 7. The

total number of nodes n = 17× 13 = 221 and ε = 0.001,
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Fig. 6. Seven non-crossing shortest paths identified by RNMBP.

which corresponds to mnb = 1000. The (s− t) pair set is

taken as:

(s− t) ={ (78−187),(189−56),(127−152),

(195−18),(82−25),(154−138),(1−100) }

This example has no obstacles.

The shortest paths are found using RNMBP. The 7 non-

crossing paths are shown in Fig. 6. The full path and the

lengths are shown in Table 1.

Example 2. This is an example with rectilinear obstacles.

Here, W = 17, H = 13 and K = 2. The total number of

nodes n = 17× 13 = 221 and ε = 0.001. The (s− t) pair

set is taken as:

(s− t) = {(1−73),(164−196)}.

The two shortest paths avoiding the obstacles are found

using RNMBP and are shown in Fig. 7.

Fig. 7. Two non-crossing shortest paths avoiding obstacles identified by RNMBP.
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Table 1

Nodes along the path and path lengths

i (si− ti) Nodes along the full path
Path

length

1 127–152 [ 127 140 153 152 ] 3

2 154–138
[ 154 167 166 165

164 151 138 ]
7

3 189–56
[ 189 176 163 150 137 124

111 98 85 72 59 58 57 56 ]
13

4 82–25
[ 82 81 81 68 55 42 29 30 31

32 33 34 35 36 37 38 38 25 ]
17

5 1–100

[ 1 2 3 4 5 6 7 8 9 10 11

12 13 13 26 39 52 51 50

49 48 48 61 74 87 100 ]

25

6 78–187

[ 78 77 77 90 103 103

116 129 142 155 168 181

194 207 206 205 204 203

202 201 200 200 187 ]

22

7 195–18

[ 195 208 221 220 219 218

217 216 215 214 213 212

211 210 210 197 184 171

158 145 132 119 106 93 80

80 67 54 41 28 15 16 17 18 ]

33

The total length of all paths = 120

In Fig. 7, the paths do not touch the obstacles. The RNMBP

algorithm can be modified so that the paths may touch the

obstacle boundaries but should not cross them.

5. Comparison with Other Methods

In the proposed RNMBP algorithm, minimization of the

number of bends, as well as the length of a path, is done

simultaneously using the modified, well-known Floyd-War-

shall algorithm, whereas in [6], the authors determine the

shortest staircase-path first and then use the push-and-

drag method to reduce the number of bends. The algo-

rithm given by [6] is relatively more complex than the

presented method wherein pushing and dragging are not

required.

In the proposed algorithm, the obstacles are taken care

of by simply marking out (excluding) the corresponding

boundary nodes. In [6], an extra graph called the boundary

graph is created, which unnecessarily increases complexity.

In [7], track graphs are created to take care of obstacles.

In [8], induced points and multiple paths are generated be-

fore getting the final path. In [9], extreme points and edges

of the obstacles are determined first. In this case, addi-

tional processing of the obstacles is not required. In Lee’s

algorithm [10], wave-front propagation is used throughout

the graph until the target node is reached which is a te-

dious process. In [11], a visibility graph is created to take

care of the obstacles. There is no need to create additional

graphs here.

In the next step, a time complexity comparison with bi-

objective optimization is researched. Let us consider an

example, where K = 7 and ε = 0.001. The width W = 10
and height H is varied from 20 to 60 in steps of 5. There-

fore, n = W ×H varies from 200 to 500 in steps of 50.

The problem is solved using the bi-objective optimization

(BiOO) method [13], as well as RNMBP. The length of

the path and the number of bends along the path are ex-

pressed by functions L(x) and B(x), respectively, where x
is the binary decision vector [13]. The scalarized objective

function F(x) is taken as:

F(x) = λ ·L(x)+(1−λ ) ·B(x) , (11)

λ is set at 0.5 to give equal weightage to both criteria. The

BiOO (minimization of F(x)) is carried out using binary

integer programming. The time taken by BiOO, as well as

RNMBP, for different values of n (total number of nodes

in the graph) is shown in Fig. 8.

Fig. 8. Time taken versus the number of nodes.

From Fig. 8, we see that the RNMBP method takes sub-

stantially less time compared to the BiOO method. Of

course, the times taken are machine-dependent and are rel-

ative only.

6. Conclusions

A new algorithm is presented to determine K shortest non-

crossing minimum bend paths in the presence of obstacles,

in a square grid graph. A simple and novel technique is

adopted to minimize the number of bends in the shortest

path by introducing corner weights and augmented path

lengths in the modified Floyd-Warshall algorithm. Obsta-

cles and non-crossing requirements are handled by mark-

ing out the respective nodes. Our RNMBP algorithm has

a time complexity of O(n3) and is simple to implement.

Even then, its task completion time is substantially lower

than that of the BiOO method.
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