
Paper A Comparative Study of PSO

and CMA-ES Algorithms on Black-box

Optimization Benchmarks
Paweł Szynkiewicz

Research and Academic Computer Network (NASK), Warsaw, Poland

https://doi.org/10.26636/jtit.2018.127418

Abstract—Numerous practical engineering applications can

be formulated as non-convex, non-smooth, multi-modal and

ill-conditioned optimization problems. Classical, determin-

istic algorithms require an enormous computational effort,

which tends to fail as the problem size and its complexity in-

crease, which is often the case. On the other hand, stochastic,

biologically-inspired techniques, designed for global optimum

calculation, frequently prove successful when applied to real

life computational problems. While the area of bio-inspired

algorithms (BIAs) is still relatively young, it is undergoing con-

tinuous, rapid development. Selection and tuning of the ap-

propriate optimization solver for a particular task can be chal-

lenging and requires expert knowledge of the methods to be

considered. Comparing the performance of viable candidates

against a defined test bed environment can help in solving such

dilemmas. This paper presents the benchmark results of two

biologically inspired algorithms: covariance matrix adapta-

tion evolution strategy (CMA-ES) and two variants of particle

swarm optimization (PSO). COCO (COmparing Continuous

Optimizers) – a platform for systematic and sound compar-

isons of real-parameter global optimization solvers was used

to evaluate the performance of CMA-ES and PSO methods.

Particular attention was paid to the efficiency and scalability

of both techniques.

Keywords—benchmarking, black-box optimization, CMA-ES,

global optimization, PSO, stochastic optimization.

1. Introduction

Many issues related to real-life problems require that the

optimal solution be calculated. Traditionally, optimization

problems are solved using deterministic solvers which nor-

mally assume that the objective function and the set of

admissible solutions are convex and known in an analytical

form. In practice, however, there are many problems for

which an algebraic model is missing. Either, we lack the

insight into the system to be optimized and the model is

entirely unavailable, or its analytical form is too compli-

cated and intractable to conventional optimization solvers.

In the latter case the load of mathematical and practical

knowledge fed into the optimization model usually results

in numerous formulas the solution of which can be ob-

tained only numerically. In general, problems for which

algebraic conventional optimization solver models are un-

suitable or entirely unavailable, are referred to as black-box

problems. Thereby we assume that the black-box can be

queried through a simulation, experimental measurements

or the so-called surrogate model to provide crucial perfor-

mance characteristics [1]–[5] for specified values of system

inputs. Practical applications in network system design,

cybersecurity, large scale systems modeling, optimization

and control, etc. are discussed in [6]–[11].

Let us consider the following black-box optimization prob-

lem:

min
x∈ℜdim

f (x)

subject to: xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , dim , (1)

where f is the real-valued, dim-dimensional function. In

general, f can be a non-convex, non-smooth, ill-condi-

tioned or multi-modal. It is assumed that in the above

problem the function values of the evaluated search points

x are the only accessible information. The search points to

be evaluated can be freely chosen. Hence, the search cost

is equal to the number of function evaluations executed in

order to reach the target solution.

This paper addresses issues associated with the black-

box optimization benchmarking (1) for the comparison of

two biologically-inspired global optimum calculation al-

gorithms, i.e., the covariance matrix adaptation evolution

strategy (CMA-ES) [12], [13] and particle swarm optimiza-

tion (PSO) [14]. CMA-ES and PSO have already proved

successful in solving various black-box problems. The aim

of the research was to examine how well CMA-ES and

PSO perform on both well- and ill-conditioned optimiza-

tion problems, and how strongly the efficiency of both al-

gorithms depends on the complexity of the problem and on

the prescribed accuracy of the solution.

All experiments were conducted with the use of the black

box optimization benchmarking (BBOB) test bed [15] that

provides numerous testing problems with various character-

istics, dimensions and degrees of complexity. These prob-

lems are divided into groups, each with specific character-

istics of the objective function, i.e., separable, moderate,

ill-conditioned, multi-modal and weakly structured multi-

modal functions.
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The remainder of this paper is organized as follows.

A short survey of black-box techniques is presented in

Section 2. A brief description of two bio-inspired algo-

rithms, CMA-ES and PSO in their local and global ver-

sions, is presented in Section 3. The overview of implemen-

tation, organization and usage of the benchmark COCO and

BBOB test bed platform is presented in Section 4. The ex-

perimental procedure and the performance measures are

presented in Section 5. The results of performance evalu-

ation of both optimization algorithms, conducted with the

use of various benchmarks, are presented and discussed in

Section 6. Finally, conclusions are drawn in Section 7.

2. Related Work

Many optimization techniques that could be employed for

solving the black-box optimization problem (1) have been

reported in literature. The overview of various techniques

is presented in [2]–[3], [16]–[18]. The algorithms can be

classified into the following groups: stochastic approxima-

tion techniques (gradient-based approaches), sample path

optimization, response surface methodology, determinis-

tic search methods, random search methods, heuristics and

metaheuristics.

A stochastic approximation is the well-known gradient

search method that is similar to the steepest descent gradi-

ent algorithm. The procedure requires a gradient estimation.

A computer simulation is performed to obtain estimates of

the gradient. It seems that the simulation outcome has to

contain gradient evaluations. The advantages and disadvan-

tages of this technique are discussed in detail in [5].

Stochastic gradient algorithms need a simulation run for

every iteration in order to calculate the gradient value (K it-

erations require at least K experiments). In the sample path

method [5], the original problem is converted into an ap-

proximated deterministic problem. The approximation of

the objective function f in (1) is calculated based on simu-

lations performed for a randomly generated set of indepen-

dent observations. Then, standard optimization algorithms

are applied to locate the optimal solution.

Response surface methodology [5], [16] is a sequential

strategy based on local approximation F(x,α (k)) of the per-

formance f in the neighborhood of x, where the parame-

ters α are calculated using simulations performed every

k-th iteration. Next, the minimal value of F(x,α (k)) is

calculated. The process is repeated until the acceptable

solution is found.

Standard deterministic search techniques [18], [19], i.e.

algorithms developed by Hook and Jeeves, Rosenbrock or

nonlinear simplex (as Nelder and Mead) or complex meth-

ods can be applied to solve non-differentiable simulation

optimization problems.

As the capabilities of modern computers increase, we

can observe a growing interest in the development of the

global optimization methods. Global optimization algo-

rithms are linked with the computation of a global solu-

tion of non-convex, non-smooth, ill-conditioned and multi-

extreme problems. The greatest challenge in the process of

designing such algorithms consists in deciding whether the

local optimum is a global one in the absence of any local

criteria. Over the past decades, numerous theoretical and

computational contributions, whose results are described

broadly in literature, helped solve such problems. Many

of the developed and widely recommended techniques are

based on random searches [5], [17], [18], [20]. Pure ran-

dom search, multi-start local search and controlled random

search methods belong to this category. Many algorithms

utilize random search and are biologically- or heuristics-

inspired by biology or physics. Genetic algorithms, evo-

lutionary strategies, simulated annealing, swarm optimiza-

tion are all of the heuristic nature [13], [14], [21]–[23].

Randomized search algorithms are regarded to be flexible,

robust and less demanding in terms of problem prop-

erties than deterministic methods. Unfortunately, efficient

stochastic algorithms require a large number of iterations

and objective function evaluations, especially for high di-

mension problems. Therefore, the efficiency and scalability

of solvers is often a key issue.

3. Description of Optimization

Algorithms

3.1. CMA-ES

The Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [12] is an evolutionary algorithm based on

Gaussian mutation and deterministic selection. Evolution-

ary strategies are stochastic search methods inspired by the

principles of biological evolution typically using a multi-

variate normal mutation distribution. They operate on a set

of search points. CMA-ES is considered to be one of the

best choices against ill-conditioned, non-convex black-box

optimization problems in the continuous domain. The gen-

eral algorithm to solve the black-box problem (1) is to

sample a numerous independent points from a given dis-

tribution P, evaluate these points based on their perfor-

mance measures f and update the distribution parameters.

All these steps are executed until the termination crite-

rion is met. In the CMA-ES algorithm, P is a multivari-

ate normal distribution that is a generalization of the one-

dimensional (univariate) normal distribution to higher di-

mensions. Hence, a random vector is said to be n-variate

normally distributed, if every linear combination of its

n components has a univariate normal distribution. Normal

distribution is a good candidate for randomized searches –

its entropy for the mean values, variances and covariances

given is the largest of all distributions in ℜn and the coordi-

nate directions are not distinguished in any way. Therefore,

in CMA-ES, a population of new search points (set of in-

dividuals) is generated by sampling a multivariate normal

distribution. In every iteration k new individuals xk
i ∈ ℜn

are calculated as:

xk+1
i = mk +σ k ×N

k
i (0, Ck), i = 1, . . . , I , (2)
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where mk and Ck denote the approximated mean value and

the n× n covariance matrix of the search distribution at

iteration k, σ k > 0 is the standard deviation – step-size at

the k-th iteration, N k
i (0, Ck) is a normal distribution with

the mean 0 and I is a population size. Hence, the mutation

is performed by a perturbation with a covariance matrix

which is iteratively updated to guide the search towards

areas with expected lower objective values.

After generation of the population of individuals, they are

evaluated on f (1), sorted and transformed according to (2).

Upon every iteration, all distribution parameters (mk, Ck,

σ k) are updated.

3.2. PSO

The particle swarm optimization (PSO) algorithm [14]

is a simple population-based stochastic optimization tech-

nique that emerged from the simulations of the behavior of

bird flocks and fish schools. At each iteration a set of points

(a swarm of particles) evolve their position in the search

space with a velocity vector associated with each particle

to find the global optimum. A new population of parti-

cles is generated from the previous swarm using randomly

generated weights and parameters specific to the algo-

rithm. Hence, both positions and velocities of the i-th par-

ticle xk
i ∈ ℜn (i = 1, . . . , I) are updated for every k iteration

(k = 1, . . . , K) according to the following rules:

xk+1
i = xk

i + vk+1
i , (3)

where xk+1
i and vk+1

i denote the position and the velocity

of the i-th particle at the k +1 iteration, respectively. The

velocity is updated as:

vk+1
i = wvk

i +ϕ1Uk
1 (xk

iopt
− xk

i )+ϕ2Uk
2 (xk

inopt
− xk

i ) , (4)

where w is the weighting parameter, ϕ1 and ϕ2 denote

weights of global and local information, U k
1 and U k

2 are

n × n diagonal matrices with elements randomly drawn

from a uniform distribution [0,1], xk
iopt

is the best posi-

tion of the i-th particle found so far and xk
inopt

is the best

position of all particles within the neighborhood of xk
i or

in the special case, within the swarm.

The first component in (4) makes a particle move in the

previous direction, the second one makes a particle return

to the best position calculated so far and the last component

makes a particle follow the best position in the current

iteration (within neighborhood or whole swarm). The main

disadvantage of the PSO algorithm is its sensitivity to a

velocity – if the velocity is too low the convergence speed

is low, if it is too high, the algorithm falls into the local

minimum.

In the research presented two versions of PSO with different

concepts of xk
inopt

in (4) were considered:

• Global-best PSO algorithm (PSO-glob) using a star

topology. Every particle compares itself with the

best-performing particle in the swarm.

Fig. 1. PSO variants and topologies: (a) star topology (PSO-glob)

and (b) ring topology (PSO-loc).

• Local-best PSO algorithm (PSO-loc) using a ring

topology. Every particle compares itself only with

its nearest-neighbors computed by applying the cho-

sen distance metric.

4. Implementation Overview

The COmparing Continuous Optimizers (COCO) [24]

benchmarking platform version 2.2.1 was used to evaluate

the performance of PSO and CMA-ES methods. COCO is

an integrated software environment that can be success-

fully used for systematic and sound comparisons of global

optimization solvers. It provides a set of benchmark func-

tions and tools for processing and visualizing results

of calculations. The COCO source code is available at

https://github.com/numbbo/coco. A detailed description of

the experimental procedure for conducting the experiments

using the COCO system is presented in [25]. The mea-

sures of performance assessment implemented in COCO

are described in [26].

The COCO platform offers Python language support to pro-

vide the implementation of optimization solvers. Therefore,

both CMA-ES and PSO algorithms implemented in Python

were adopted and incorporated in COCO. The CMA-ES

solver was taken from the pycma library [27], while the

PSO solver was taken from the pyswarms library [28].

The benchmark optimization problems were taken from the

black box optimization benchmarking (BBOB) [15] suite.

It provides numerous testing problems with various char-

acteristics, dimensions and complexities. All benchmark

functions to be minimized are divided into groups, each

with specific characteristics of the objective function, i.e.,

separable, moderate, ill-conditioned, multi-modal, weakly

structured multi-modal.

5. Experimental Procedure and

Performance Measures

Numerous experiments whose results are presented in this

paper were conducted. The experimental procedure was

executed within the COCO benchmarking platform, follow-

ing the best practices for the assessment of performance

7



Paweł Szynkiewicz

of optimization algorithms executed in a black-box sce-

nario [25]. The performance of the algorithms was mea-

sured based on the number of run times, i.e. objective

function evaluations, needed to reach one or several qual-

ity indicator target values. The details of the experimental

setup are presented below.

5.1. Experimental Procedure

The goal of each experiment was to find the global solution

of the problem (1) with the prescribed accuracy, i.e. the

point {x ∈ ℜdim : f (x) = ftarget} with ftarget defined as:

ftarget = fopt + εmin , (5)

where f (x) denotes the objective function, fopt = f (xopt),
where xopt is the solution of (1), and εmin = 10−8 is the

assumed precision. As mentioned above, the performance

assessment of each experiment was based on the num-

ber of the objective function evaluations. The evaluations

conducted by the algorithm were recorded for each target

f ε
target = fopt + ε that was reached for various precisions ε .

Precisions were chosen uniformly on the logarithmic scale

from the interval ε ∈ [10−8,102].

All benchmark problems, i.e. 24 noiseless unconstrained

optimization problems concerned with the minimization

of objective functions from the BBOB test suite Ω f =
{ f 1, f 2, . . . , f 24} were taken into consideration. Problems

were solved with the increasing number of decision vari-

ables (dimension), i.e. dim ∈ {2, 3, 5, 10, 20, 40}.

Every single setup, i.e. the problem of optimization of

a given benchmark function and the dimension of the prob-

lem, was executed over Ntrial = 15 independent trial runs.

The performance was evaluated over all trials.

Three solvers were used and compared: CMA-ES, global-

best PSO and local-best PSO. Additionally, the performance

of the considered methods was confronted with that of the

artificial algorithm labeled best2009. The scores of the

best2009 algorithm are based on the results reached by

solvers submitted to the COCO 2009 competition. For each

of the setups the best performing algorithm’s results were

incorporated.

The calculations were stopped after reaching the target

value of the objective function ftarget defined in (5) or

depleting the budget Maxiter for the number of objective

function evaluations equal to 3000 · (dim + 2), where dim
denoted the problem dimension for a given setup (trial).

5.2. Performance Measures

Two measures were used to evaluate the performance and

to compare the efficiency of CMA-ES and two variants

of PSO algorithms. The aim of the first measure – the

average running time (aRT ) – is to show the successful

performance of the tested techniques. Average runtime is

an estimation of the algorithm’s expected runtime expressed

in the number of objective function evaluations. The smaller

the value, the better [25].

aRT =
1

Nsuccess

Ntrial

∑
t=1

f evalst , Nsuccess ≤ Ntrial , (6)

where aRT denotes the average runtime for Ntrial relevant

trials for a given setup. f evalst is the number of objective

function evaluations performed in the t-th trial until the

target value ftarget was reached. Nsuccess is the number of

successful trials, i.e., trials where ftarget was reached.

The second measure – an empirical cumulative distribution

function (ECDF) [29] – was used to display the proportion

of problems solved within a given limit of objective func-

tion evaluations. In general, the purpose of the measure is

to show and compare the speed of convergence of specific

optimization algorithms [25].

Let us consider a subset of the available benchmarking

functions ω f ⊆ Ω f with a fixed number of dimensions dim.

We define S as the set of bootstrap executions, where each

element s ∈ S is denoted by a triplet s = ( fm, f ε
m,target , t),

fm ∈ ωt . f ε
m,target is the target solution with the required

precision ε . In this experiment, the solutions were calcu-

lated for 51 precisions chosen from [10−8,102]. t denotes

a trial index, t = 1, . . . , Ntrial .

Every triplet s corresponds to the number of function fm
evaluations performed by the optimization algorithm to

reach the target solution with f ε
m,target . This number is

denoted by Rs.

We calculate ECDF as follows:

F̂S(r) =
|{s | Rs ≤ r}|

|S|
, (7)

where the variable r denotes the number of function evalu-

ations, |S| is a number of all triplets from the set S. Hence,

F̂S(r) is the fraction of bootstrap executions for which the

target value of the objective function was reached after Rs
function evaluations, such that Rs ≤ r.
To provide a compact assessment of all tested algorithms,

taking into account both quality of the solution obtained and

efficiency of the optimization solvers, ECDF was computed

over subsets of multiple benchmark functions (ω f ). The

functions were grouped based on their characteristics. The

proposed groups are described in the Section 6.

6. PSO and CMA-ES Performance

Evaluation

Multiple experiments for 24 benchmark functions given

in [15], [30] were conducted. The results are presented

and discussed in this section.

6.1. CMA-ES and PSO Configuration Setup

The following values of parameters typical of the tested

methods were determined.
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Table 1

Number of particles in PSO for various problem

dimensions

Problem dimension (dim) Swarm size

dim ≤ 10 40

10 < dim ≤ 25 60

25 < dim ≤ 40 90

• The CMA-ES method was executed with the step size

of σ = 0.2.

• The hyperparameters of PSO solvers were consis-

tent across all tests. The following values were

used: inertial coefficient w = 0.9, acceleration coeffi-

cients c1 = 0.5, c2 = 0.3. For the local-best variation,

the Euclidean norm was used to measure the distance

between neighbors. The number of nearest neighbors

considered was equal to k = 2. The swarm size was

adapted to the size and complexity of the problem.

Hence, the number of particles was different for dif-

ferent tests (see Table 1).

6.2. Experimental Results

The global minima of 24 benchmark functions in the search

space [−5, 5]dim were calculated with the use of CMA-ES

and PSO methods. Test results were compared with the

reference solutions of best2009.

All experiments were performed on a unified hardware plat-

form: Intel Core i7-2640M CPU @ 2.80 GHz with 1 pro-

cessor and 4 cores.

The results, i.e. efficiency of all tested algorithms tested

for various test functions and problem dimensions are pre-

sented in Table 2 and Figs. 2, 3, 4. Different markers used

in all figures correspond to different algorithms:

• a circle – CMA-ES results,

• a square – PSO global-best results,

• a triangle – PSO local-best results.

Table 2

The average running time divided by the best aRT obtained for best2009; 24 benchmark functions (dim = 5), Ntrial = 15,

Maxiter = 21000. “–” denotes that the target solution was not reached.

Function
CMA-ES PSO-glob PSO-loc

ε = 100 ε = 10−2 ε = 10−5 ε = 100 ε = 10−2 ε = 10−5 ε = 100 ε = 10−2 ε = 10−5

f1 20 44 86 83 274 668 846 4361 –

f2 18 23 28 239 443 524 – – –

f3 21 – – 88 188 190 – – –

f4 – – – – – – – – –

f5 26 27 27 – – – – – –

f6 3.4 3.5 2.3 41 35 26 1343 – –

f7 3.1 2.4 2.5 60 – – – – –

f8 8.3 9.1 10 210 – – – – –

f9 3.9 5.7 6.2 131 40 5 – 710 – –

f10 3.3 3.5 3.2 – – – – – –

f11 6.6 1.7 1.5 – – – – – –

f12 12 14 6 1079 – – 1099 – –

f13 7.7 7.3 2.1 451 – – – – –

f14 5.3 7.6 6.8 23 44 – 295 – –

f15 7.9 – – 32 – – – – –

f16 2.6 1.1 1.3 26 – – 46 – –

f17 18 2.6 24 25 14 – 503 – –

f18 8.6 3 – 30 – – 374 – –

f19 741 0.4 1.2 9820 – – – – –

f20 19 2.9 2.7 18 – – 75 – –

f21 7.8 8.2 8.2 23 20 23 77 – –

f22 23 17 16 65 89 142 92 292 –

f23 7.2 1.1 0.99 39 – – 16 – –

f24 – – – – – – – – –
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Fig. 2. PSO and CMA-ES efficiency. The average running time divided by dimension (aRT/dim); 24 benchmark functions, ε = 10−8,

number of trials Ntrial = 15. Legend: © – covariance matrix adaptation evolution strategy, � – global particle swarm optimization,

4 – local particle swarm optimization. Slanted grid lines indicate quadratic scaling with the dimension.
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Fig. 2 – continued.
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Fig. 2 – continued.
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The table shows the average running time aRT (6) divided

by the respective best aRT obtained for best2009, each for

one of 24 benchmark functions and the problem dimension

of dim = 5. The plots in Fig. 2 show the average running

time aRT (6) as log10 value divided by the problem di-

mension, i.e. log(aRT )/dim, each for one of 24 benchmark

functions and various problem dimensions. The experi-

ments were conducted for the following number of deci-

sion variables dim ∈ {2, 3, 5, 10, 20, 40} for each function

and the prescribed accuracy of ε = 10−8. All tests were

executed Ntrial = 15 times. The meaning of the additional

symbols in all 24 plots are as follows:

• light symbols (circle, square, triangle) give the maxi-

mum number of function evaluations from the largest

trial divided by the problem dimension,

• black stars indicate a statistically better result com-

pared to all other algorithms.

The results obtained, as shown in Table 2 and Fig. 2, in-

dicate that PSO was unable to reach the target function

value ftarget for the problems with dim > 3 for most of the

benchmark functions. The best results were recorded for

the Sphere function, Fig. 2-1 – global-best PSO (PSO-glob)

was able to find the solution for a 20-dimensional problem.

In this case, the number of function evaluations decreased

until the number of dimensions reached 10, which sug-

gest that a better choice of the algorithm’s hyperparameters

could be made. For the Gallagher functions, Fig. 2-21, we

can observe that aRT grows on a nearly quadratic basis

until the number of dimensions is equal to 10. Local-best

PSO (PSO-loc) performed very poorly, reaching ftarget only

for Sphere and Gallagher functions with a small number

of dimensions.

As for CMA-ES, the results were much better. The method

succeeded in finding the target solution of 11 functions

from the benchmark set, even for dim = 40. In other cases

the results of CMA-ES were similar to PSO, e.g. they

failed completely for Lunacek bi-Rastrigin, Fig. 2-24. In

some cases like the Elipsoid function, Fig. 2-10, or Discus,

Fig. 2-11, the aRT was similar to the referential solu-

tions from best2009 (for bigger dimensions). However, in

general, CMA-ES did considerably better then both PSO

versions.

The goal of the second series of experiments was to test the

statistical significance of results. All benchmark functions

(f1–f24) listed in Fig. 2 were divided into 6 groups with

different characteristics:

1. Separable functions (f1–f5) – optimal value of

a given coordinate of the decision variable does not

depend on the choice of the remaining coordinates.

2. Moderate functions (f6–f9) – moderate dimension of

the decision variable vector.

3. Ill-conditioned functions (f10–f14) – different vari-

ables, or different directions in search space, show

a largely different sensitivity in their contribution to

the objective function value.

4. Multi-modal functions (f15–f19) – multiple minima

and maxima.

5. Weakly structured multi-modal functions (f20–f24) –

many solutions with similar values of the perfor-

mance measure.

6. All functions.

Multiple experiments for all functions, as well as PSO and

CMA-ES optimization methods were performed. The num-

ber of trials Ntrial = 15. Calculations were conducted for

51 values of ftarget with various precisions ε ∈ [10−8, 102].
Rank-sum test for a given target ftarget using, for each trial,

either the number of needed function evaluations needed to

reach ftarget (inverted and multiplied by −1), or, if the tar-

get was not reached, the best precision – ε-value achieved,

measured only up to the smallest number of overall func-

tion evaluations for any unsuccessful trial under considera-

tion. Problems with two dimensions were tested: dim = 5
(Fig. 3) and dim = 20 (Fig. 4). Both figures present the

cumulative distribution of the measure F̂S (7). The results

obtained for PSO and CMA-ES are compared with the ref-

erence solutions from best2009 (shown as a thick line with

diamond markers).

Figures depicting empirical cumulative distribution func-

tions (ECDFs) confirm that overall CMA-ES performs bet-

ter then both versions of the PSO method. For dimensions

smaller then 5 (Fig. 3), the differences in the optimiza-

tion of separable functions are not so significant, PSO-glob

performs rather well, compared to CMA-ES. On the other

hand, in the case of ill-conditioned functions, CMA-ES

hugely outranks PSO, with its performance nearly match-

ing the reference solution from best2009. A difference is

also noticeable for the larger dimensions, Fig. 4, especially

in the case of ill-conditioned and moderate functions. How-

ever, for the more demanding, multi-modal problems, the

results of all tested algorithms fall short compared to the

reference solution. PSO-loc clearly stands out as the most

ineffective of all tested methods.

As the final observation, it is worth mentioning that in

solving a given black-box problem, the choice of the proper

optimization algorithm and proper tuning of its parameters

are of crucial significance. In the presented experiments,

the best2009 solutions outclass, in all cases, the results

calculated by CMA-ES and PSO. This is to be expected, as

best2009 consists of the solutions of multiple algorithms,

each adjusted for a given set of problems.

6.3. Possible Improvements of CMA-ES

CMA-ES is a population-based stochastic technique. The

population size plays a big factor in the algorithm’s effi-

ciency, depending on the use case. With a default (small)

population size, CMA-ES is a robust and fast method in-

tended mainly for local search optimization. By increasing

the size of the population, the algorithm can be successfully

employed for more global search problems. Taking into ac-

count both of those principles, a modified version of this

13
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Fig. 3. Bootstrapped empirical cumulative distribution of the objective function evaluations divided by dimension ( fevals/dim), dim = 5,

ε ∈ [10−8,102].
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Fig. 4. Bootstrapped empirical cumulative distribution of the objective function evaluations divided by dimension ( fevals/dim),

dim = 20, ε ∈ [10−8,102].
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method, i.e. BI-POP CMA-ES was developed. It applies

two interlaced multistart regimes altering the size of the

population. One of them increases the population size by

the factor of two and starts with a higher initial step, while

the other decreases the population size and uses smaller

steps equal to σ in 2. The promising results of BI-POP

CMA-ES in global optimization are reported in literature,

i.e. [31].

7. Summary and Conclusion

The paper provides a short report on the efficiency and

availability of two biologically-inspired CMA-ES and PSO

methods that are designed to tackle non-convex and ill-

conditioned black-box optimization problems.

The worst performance was observed for the local version

of the PSO method. The global version was better in all of

the cases, while CMA-ES outranked both PSO methods.

This should not come as a surprise, as various modifica-

tions of the CMA-ES algorithm are currently considered

to be state-of-the-art in the field of black-box optimiza-

tion. The bare CMA-ES algorithm performs well, although

the numerous experiments confirmed that the reference

algorithm outclasses both PSO and the classic variant

of CMA-ES.

The final conclusion is that PSO techniques are very sensi-

tive to hyperparameters of the algorithms and tuning of

these parameters is a challenging task. A better choice

of the algorithm’s hyperparameters adapted to each func-

tion and dimension can seriously influence the final result.

Since the CMA-ES method does not require tedious pa-

rameter tuning, the choice of the strategy to be adopted

while setting the internal parameters is not left to the user.

Therefore, it is much more convenient then algorithms

such as PSO.

With the standard version of CMA-ES, there is room for

improvement. Modification of the original algorithm and

its adaptation to the optimization problem to be solved can

lead to better performance overall, making it a more re-

liable and versatile method. Therefore, we plan to com-

pare the performance of the original CMA-ES and BI-POP

CMA-ES mentioned in Subsection 6.3 in the future.
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