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Abstract—High order modulation (HOM) presents a key chal-

lenge in increasing spectrum efficiency in 4G and upcoming

5G communication systems. In this paper, two non-linear

adaptive equalizer techniques based on multilayer perceptron

(MLP) and radial basis function (RBF) are designed and ap-

plied on HOM to optimize its performance despite its high sen-

sitivity to noise and channel distortions. The artificial neural

network’s (ANN) adaptive equalizer architectures and learn-

ing methods are simplified to avoid more complexity and to

ensure greater speed in symbol decision making. They will be

compared with the following popular adaptive filters: least

mean square (LMS) and recursive least squares (RLS), in

terms of bit error rate (BER) and minimum square error

(MSE) with 16, 64, 128, 256, 512 and 1024 quadrature am-

plitude modulation (QAM). By that, this work will show the

advantage that the MLP equalizer has, in most cases, over

RBF and traditional linear equalizers.

Keywords—adaptive filter, channel equalization, M-QAM, MLP,

RBF, symbol decision making.

1. Introduction

Many key technologies for enhancing spectrum efficiency

are planned for 5G, such as new non-orthogonal access

scheme, generalized frequency division access, filter bank

multicarrier and universal filtered multicarrier [1], massive

multiple-input multiple-output and high order modulation

(HOM), e.g. 256 QAM [2]. 256 QAM (8 bits/symbol)

increases the maximum peak rate by 33% compared to

64 QAM (6 bits/symbol). Several studies are conducted

that are concerned with employing HOM. In [3], HOM

improves the system’s capacity in small cells. In [4], trans-

mission performance of HOM-based 256 and 1024 QAM

over OFDM is investigated with the impact on error vec-

tor magnitude (EVM). A practical FPGA implementation

of HOM is already done in [5], using the conventional

constant modulus algorithm and LMS equalizers. Even

though linear equalizers are widely used, they have poor

performance regarding HOM complexity and sensitivity to

distortions.

HOM offers better performance than lower order modula-

tion, but still has some external and internal impairments,

such as inter-cell interference (ICI) and sensitivity to mul-

tipath propagation effects (external), or thermal noise and

quality degradation caused by practical manufacturing con-

straints influencing the EVM (internal). Employing HOM

comes with the expense of a higher signal-to-noise (SNR)

requirement.

ANNs, being non-linear equalizers, are gaining importance

in channel equalization for their flexible architecture, opti-

mization and the learning process [6]. In this paper, multi-

layer perception (MLP) and radial basis function (RBF) are

considered for the simplicity of their architecture and for

their ease of use, and especially for their different learning

techniques, namely back-propagation, extended Kalman fil-

ter, genetic algorithm, and particle swarm optimization [7].

In the case of MLP, we will focus on the back-propagation

algorithm. RBF is based on the Euclidian norm. The equal-

ization problem is treated as a classification process that

tells to what sets the received symbol belongs, and makes

a decision. We will show the effectiveness of the devel-

oped MLP and RBF compared to conventional receivers

with HOM, by diminishing MSE and BER criteria.

In literature, many types of channels were presented. Dif-

ferent models and distributions were mathematically de-

veloped under two categories: channel with line of sight

(LOS), and channels with non-line of sight (NLOS). The

modeling of NLOS channels is a calculation of physical

processes (reflection, diffraction, scattering) affecting the

signal during transmission. Nakagami-m represents a gen-

eralized distribution that can be applied as a LOS or NLOS

channel. Rice and Rayleigh distributions are special cases

of Nakagami-m that can be considered as LOS and NLOS

channels, respectively [8]. They are mostly used for mod-

eling those channels. In this work, the Rayleigh fading

channel is used due to its good and fair approximations

of multipath fading in real life. Model generation will be

depicted in Section 4.

The equalizers were designed and trained by M-QAM sym-

bols (M is modulation order) over an Orthogonal Frequency

Division Multiplexing (OFDM) wave carrier in a noisy

Rayleigh flat-fading channel. Simulations are carried out

using an Intel Core i5 (2.2 GHz) 8 GB-RAM computer, in

the Matlab 2016 environment.

The paper is structured as follows. Section 2 presents the

basics of MLP and RBF equalizer designs. Section 3 de-
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scribes the model of the system used for the transmission

with HOM over the Rayleigh fading channel. Section 4

illustrates simulation results and presents the discussion.

The paper is concluded by Section 5.

2. MLP and RBF Equalizers Design

ANN equalizers are working with either real or complex

values. A real ANN has a simpler architecture and its train-

ing is fast and not difficult compared to a complex ANN.

The simplicity and speed we are striving to achieve are

reached by dividing complex modulated symbols into real

and imaginary parts, and treating them separately, one after

another. Then, the symbols are reshaped at the output in

a complex form. The strategy used in the learning process

is that total symbols are split randomly between learning

(70%), validation (15%) and test (15%), where each step

is evaluated with MSE. The architectures are designed to

be simple, in order to avoid computational complexity and

to minimize the decision time factor. In this case, three

layers are fixed: the input layer, the hidden layer and the

output layer. The input layer has one input for both real and

imaginary values. The hidden layer contains only one layer

of neurons (10 for MLP and 20 to 40 for RBF, depending

on M-QAM). The output layer has one output only.

2.1. MLP

MLP learning is assured by the back-propagation algorithm

(simple, fast, and depends on iterative laws). The cost

function (MSE) is minimized by adaptation of weight co-

efficients, through:

j(w) =
1
2

T

∑
p=1

n

∑
i=1

|yd(t)− y(t)|2 , (1)

where yd(t) is the desired output, y(t) is the output, n is the

number of iterations, and T is the dimension of the training

assembly. Weight adaptation (adjustments and updating) is

based on the iterative formula:

wk
i j(n+1) = wk

i j −µ
∂ j(w)

∂wk
i j(n)

, (2)

where µ represents the learning step and k is the number

of the hidden layer. The activation function is chosen to be

hyperbolic-tangent. An initial value of µ is fixed respecting

µ < 0.1. Its optimal value is determined gradually through

the evolution of the MSE error of MLP.

2.2. RBF

For RBF, the learning process is divided into two stages:

unsupervised nonlinear, where the parameters update tech-

niques are quite fast, and supervised linear problem solv-

ing at the output, with the advantage of dodging the lo-

cal minima issue, often experienced when employing MLP.

The training of RBF can be partitioned into three phases.

Firstly, one has to find centers Ci of the Gaussian radial

functions (activation function). Secondly, widths σi have

to be fixed. Finally, the network’s weights λ j between the

radial function and the output layers (Fig. 1) are deter-

mined. The simplified function that rules the RBF network,

without the independent term reported in formula (21)

in [9], is:

F(x) =
M

∑
j=1

λ j e
−‖x−c j‖2

2σ2
j +

d

∑
i=1

aixi , (3)

where ‖(.)‖ represents the Euclidean norm, x is the input

value, M is number of centers C j, d is the length of input

variables, ai are the coefficients of the linear terms, and

e(.) is the exponential function that represents the nonlinear

term.

Fig. 1. Simplified RBF structure for symbol decision making

with one input, one output and a hidden layer with an adequate

number of neurons.

Centers C j are adjusted and fixed utilizing competitive

learning (unsupervised) with the Euclidian distance calcu-

lations expressed by:

d2
(

xi,C j)=
(

xi −C j)T (
xi −C j)

=

√

D

∑
k=1

(

xi
k −C j

k

)2
, (4)

Ck (t +1) = Ck(t)+α(t)
(

xi −Ck
)

, (5)

where α(t) is the time adaptation factor, with 0 < α(t) < 1,

and σ j is calculated with:

σ =
dmax√

2M
, (6)

where dmax is the maximum distance between any couple

of centroids.

When C j and σ j are fixed, Eq. (3) becomes linear, and λ j
is estimated by the pseudoinverse.

Table 1 summarizes the architecture design and all pa-

rameters of MLP and RBF equalizers for all modulation

schemes.

For better performance and fair comparison, filter length of

LMS has 10wn coefficients, and its step µ is fixed for each
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M-QAM separately (Table 2). Similarly, RLS filter length

has 10wn coefficients, and λRLS = 0.9 for all M-QAM.

Table 1

Summary of ANN equalizers parameters

Parameters MLP RBF

Criterion function MSE MSE

Hidden layers 1 1

Hidden layer
10 20 . . . 40

neurons

Input layer
1 1

neurons

Output layer
1 1

neurons

Weights w Centroids Ci

Parameters Step µ Widths σi

Iteration n Weights λi

Algorithm Back-propagation Euclidian norm

Activation
Hyperbolic-tangent Gaussian

function

Learning Supervised
Supervised

+ unsupervised

Table 2

LMS parameters

M-QAM Step µ wn number

16 0.0039 10

64 0.0031 10

128 0.0021 10

256 4.54 ·10−4 10

512 3 ·10−4 10

1024 9.99 ·10−5 10

3. System Model

In the transmitter part, 300,000 sequences of a random sig-

nal x(n) are generated with zero-mean and unit variance,

and are supposed to be independent and identically dis-

tributed [10]. x(n) is modulated with HOM and shaped

with OFDM carriers. In M-QAM, we will have 300000/K
symbols, where K = log2(M) is the number of bits per

symbol. M = 16, 64, 128, 256, 512, 1024. After modula-

tion, the received signal can be expressed by:

ỹ(n) = x(n) ·H +η(n) , (7)

where x(n) is the signal emitted through H (H is the

Rayleigh flat-fading channel transfer function), and η(n)
is a complex additive white Gaussian noise generated with

the energy per bit-to-noise power spectral density ratio

Eb/N0 = 1 : 28 dB, depending on M.

The Rayleigh flat-fading channel H is considered as a mod-

eled finite impulse-response filter that can be obtained from

a random, uncorrelated, complex Gaussian processes.

In the receiver part, ỹ(n) in Eq. (7) is reconstructed by re-

moving the cyclic prefix, applying the fast Fourier transform

and converting parallel stream data to a serial form. After

OFDM demodulation, comes the delicate part of equaliz-

ing with the use of LMS, RLS, MLP and RBF at different

times, and calculating MSE of each of the above for differ-

ent M-QAM and different SNRs. Finally, the symbols are

demodulated to bits to calculate BER. Figure 2 represents

the model for symbol decision making for all equalizers

referred to in this paper.

4. Simulations and Results

All HOM schemes and their MSE values are depicted

in Figs. 3 and 4, where MSE values are expressed in terms

of multiple SNRs. LMS and RLS have excessive MSE

values in the order of 102 to 104. This shows that linear

equalizers have poor performance, particularly on low SNR

values.

MLP and RBF show great resistance to channel effects,

where MSE is in the order of 10−4 to 5 with 16, 64

and 128 QAM, and in the order of 5 to 102 for 256, 512

and 1024 QAM. In 16 and 512 QAM, MSE of MLP and

RBF are almost the same. In 64 and 128 QAM, MSE of

RBF is better, and in 256 and 1024 QAM, MSE of MLP

is better.

In terms of BER, we first lay out the theoretical BER of

every M-QAM. Here, the theoretical BER is considered as

a reference to measure the effectiveness of equalizers cou-

pled with signal degrading factors, such as SNR, channel

Fig. 2. Channel equalization model.
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Fig. 3. Effect of SNR on MSE of equalizers, with 16, 64, and 128 QAM. (For color pictures visit www.nit.eu/publications/

journal-jtit)

Fig. 4. Effect of SNR on MSE of equalizers, with 256, 512, and 1024 QAM.

type, and sensitivity of the modulation scheme used. The

theoretical BER is calculated via equation [11]:

Pb =
2√

M log2
√

M
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√
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∑
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
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
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(8)

φ =

(

(2i+1)

√

6log2 M
2(M−1)

Eb

N0

)

, (9)

where Pb is the BER and Q(x) is the Q function given by:

Q(x) =
1√
2π

∞
∫

x

e
−t2

2 d t

=
1√
π

∞
∫

x

e−z2
dz =

erfc(x)
2

, (10)

where erfc(x) is the complementary error function, which

is accessible in Matlab software.

With 16 QAM (Fig. 5), RLS and LMS are starting to di-

verge from the theoretical curve at 11 dB, at the same

Eb/N0 value a slight improvement is noticed in the case

of MLP and RBF. At Eb/N0 = 12 dB, an improvement

78



An Efficient ANN Interference Cancelation for High Order Modulation over Rayleigh Fading Channel

of 1 dB is observed for both. The two have identical per-

formance in this modulation scheme.

Fig. 5. Equalizer BER performance curves with 16 and 64 QAM.

With 64 QAM (Fig. 5), LMS performance is not good

enough for the theoretical curve, RLS and RBF are better

but start to diverge at 15 dB. MLP is performing as the

theoretical curve, and is the most suited for 64 QAM.

With 128 QAM (Fig. 6), LMS and RLS start to diverge

from 13 dB and 18 dB, respectively. MLP is performing

better than linear equalizers, gaining almost 1 dB, but RBF

is the most suited for this scheme of modulation by im-

proving by almost 2 dB compared to the theoretical curve.

With 256 QAM (Fig. 6), MLP and RBF are performing

Fig. 6. Equalizer BER performance curves with 128 and

256 QAM.

nearly the same as the theoretical curve. A slight improve-

ment is noticed on RBF performance compared to MLP.

RLS is better than LMS but starts to diverge at 18 dB.

With 512 and 1024 QAM, spectral efficiency is really high

(9 and 10 bits per symbol, respectively). As mentioned

before, they are sensitive to excessive noise and need more

SNR to be investigated compared to lower case modula-

tions. Their performance is shown in Fig. 7. At 512 QAM,

the two linear equalizers are diverging, RBF is trailing the

theoretical curve but diverges at 23 dB. MLP is performing

really good to gain 1.5 dB, and is better suited to 512 QAM

than others.

Fig. 7. Equalizer BER performance curves with 512 and

1024 QAM.

With 1024 QAM, MLP is more efficient than RLS, LMS

and RBF (Fig. 7) which are not trailing the theoretical

curve. RBF performance is poorer than that of LMS and

RLS. We tried to train it differently and expand the architec-

ture of RBF by adding more neurons (up to 40 neurons).

Unfortunately, there was no improvement. MLP is most

suited for this high spectral efficiency.

The developed neural equalizers show great resistance and

excellent robustness in terms of adaptation. Symbols are

appropriately equalized from the starting point with a bet-

ter BER, in most cases, than theoretical simulation. When

the channel is in a diminutive SNR state, MLP and RBF

equalizers do not suffer from any performance degradation,

and they are more appropriate for this type of channel cou-

pled with HOM. However, RLS and LMS equalizers offer

better performance for low and moderate levels of noise

with HOM.

Table 3 represents the profiling of equalizer algorithms

during the processing of data (all sequences and all stages

of training). Initialization and MSE calculations are not

considered. The average of 10 measurements is reported

in the table for each algorithm. 256 QAM is chosen be-
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cause – in terms of BER – the equalizers are performing

almost similarly. LMS has the shortest duration because of

its simplicity. RLS is more complex and it requires more

time, which means that it performs similarly to MLP. The

latter, at a much better speed, can have a good result for

both MSE and BER. RBF takes a long time, since its ar-

chitecture design is extended (more neurons) to meet better

BER results.

Table 3

Profiling the equalizer speed performance

with 256 QAM at Eb/N0 = 20 dB

Equalizers LMS RLS MLP RBF

Time [s] 0.239644 0.451853 0.542335 0.972604
wn/neurons 10 10 10 20

5. Conclusion

In this paper, MLP and RBF equalizers are developed in

the simplest form for HOM equalization, serving as a key

for achieving more spectral efficiency. It is shown through

simulation results that MSE values of the two ANN equal-

izers are negligible in comparison with LMS and RLS.

Also the improved BER, in most M-QAM scenarios, offers

great performance in HOM processing, despite its complex-

ity (compared to linear equalizers). These models are more

reliable and efficient in terms of canceling noise (MSE cri-

terion) and error rate performance (BER criterion).

MLP is better suited than RBF with 64, 512 and 1024

QAM, and is performing almost identically to RBF with

16 and 256 QAM. RBF is performing well only with 128

QAM. Through the planning of small cells (cancelation

of ICI), HOM associated with MLP equalizer are an ac-

cessible option for enhancing spectral efficiency and for

increasing data rate peaks. Further investigations are to be

performed to augment the simplification of learning strate-

gies, architectures and complexity levels.
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