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Abstract—Multi-hop networks, such as WSNs, become an ob-

ject of increasing attention as an emerging technology which

plays an important role for practical IoT applications. These

multi-hop networks generally consist of mobile and small ter-

minals with limited resources, which makes them vulnerable

to various network status changes. Moreover, the limited na-

ture of terminal resources available, especially in terms of

battery capacity, is one of the most important issues to be ad-

dressed in order to prolong their operating time. In order to

ensure efficient communications in such networks, much re-

search has already been conducted, especially in the field of

routing and transmission technologies. However, conventional

approaches adopted in the routing field still suffer from the

so-called energy hole problem, usually caused by unbalanced

communication loads existing due to difficulties in adaptive

route management. To address this issue, the present paper

proposes a novel routing algorithm that utilizes ACO-inspired

routing based on residual energy of terminals. Operational

evaluation reveals its potential to ensure balanced energy con-

sumption and to boost network performance.

Keywords—ant colony optimization, load balancing, routing al-

gorithm, sensor networks.

1. Introduction

A wireless sensor network (WSN) generally consists of

a number of terminals which have the capability of sens-

ing and communicating. WSN terminals transmit the in-

formation collected to a sink, responsible for collecting

and processing information, by direct or multi-hop trans-

mission. WSN is thought to be a promising technology

for wide-range observation and requires a bunch of sen-

sors to acquire and relay data. WSN terminals are powered

by batteries with limited capacity, and powering the net-

work’s nodes in a continuous manner is nearly impossible.

Moreover, WSNs are intended to operate in the long-term,

and smaller batteries are preferred due to manufacturing

and deployment costs. In addition, the cost of replacing

the batteries significantly increases when terminals are de-

ployed in an environment that cannot be easily accessed by

operators, such as deep forests or underwater installations.

Therefore, prolonging the lifetime of WSN with limited

battery capacity an important issue that needs to be tackled

in order extend the network’s operating time as much as

possible. Therefore, efficient routing and communication

technologies are imperative for the achievement of that ob-

jective.

A number of routing methods relying on various approaches

have been studied with the view of prolonging the lifetime

of WSN, such as [1]–[3]. Although all proposals improve

efficiency to a certain degree, there is a drawback in the

scalability required to increase the physical coverage of the

network, because it requires central management for in-

formation processing and terminals with specific capabil-

ity. To address the drawback, autonomous and distributed

mechanisms inspired by the behaviors of living organisms,

such as insects, are proposed [5]–[8]. They allow to solve

various problems with autonomous and distributed opti-

mization procedures, by imitating the behavior of the liv-

ing organisms. In this paper, we adopt the concept of ant

colony optimization (ACO) [5]–[7] to achieve an energy-

aware routing mechanism. In the proposed scheme, ACO

is utilized not in order to optimize the route, but to dynam-

ically select routes according to the level of the terminals’

residual energy, with the transition statuses relied upon for

ACO optimization process.

2. Related Work

2.1. Energy-Aware Routing Protocols for WSN

Paper [1] introduces an asymmetric communication ap-

proach enabling to save energy. It utilizes the fact that sinks

are generally operated by external power supplies. Thus,

sinks are capable of conducting longer-range transmissions,

compared with terminals powered by batteries. Therefore,

terminals with energy constraints adopt the multi-hop com-

munication model, with shorter range communication, to

send information to the sink. Then, the sink, as a mains

powered device, provides long range communication with

the host. In other words, battery operated terminals re-

quire less energy compared with the sink. However, it is the
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placement of the sink that greatly affects its energy saving

ability, because energy consumption is determined by the

sum of path lengths from the terminals to the sinks.

The routing method introduced in paper [2] utilizes sev-

eral topologies, depending on network characteristics, to re-

duce energy consumption. The method adaptively utilizes

star-shaped, tree-shaped, chain-shaped and cluster-shaped

topologies. In the star-shaped topology, sinks become the

center of the star and other terminals use direct transmis-

sion to the sinks for reducing the energy required to re-

ceive, process and aggregate the data sensed. The tree-

shaped topology will be applied to suppress the energy re-

quired for transmission by using the multi-hop method. In

the chain-shaped topology, the method establishes a single

route that reaches every terminal once, and minimizes the

route length to improve reliability. In the cluster-shaped

topology, the method divides networks into clusters that

have 2-hop neighbors at the most, just as conventional clus-

tering in WNS does. Then, the cluster head aggregates the

received information and sends it to sinks to suppress the

total amount of send and receive data and the transmission

distance. However, environment-related changes caused by

joining and leaving of terminals or by other factors forces

the method to recalculate the optimal topology and the cost

increment that is proportional to the network’s size becomes

an inevitable issue.

Optimized LEACH-C [3] also adopts cluster-based routing

that estimates required energy consumption based on the

terminals’ location and the number of cluster members of

a sink. Optimized LEACH-C utilizes the estimated energy

consumption to generate an initial solution and uses the

simulated annealing to generate heuristic solutions. Then,

the solution is notified to each terminal and clusters will

be assigned to terminals entirely. However, in optimized

LEACH-C, sinks must play the role of collecting informa-

tion, performing clustering calculations and notifying the

results, which increases the operational costs.

2.2. Ant Colony Optimization

The issues described in Subsection 2.1 may be solved by

network-wide optimization which is accomplished by au-

tonomous and distributed state prehension and a decision

made by an individual terminal, i.e. by the so-called divide-

and-conquer method. The swarm intelligence strategy may

serve as an example of such an approach, as it is inspired by

the group behavior of insects. Their simple individual be-

haviors optimize objectives entirely. There are methods that

apply the optimization mechanism to manage the behavior

of terminals acting as elements of swarms, such as [4].

Ant colony optimization (ACO), inspired by the feeding

behaviors of ants, is proposed as one particular applica-

tion [5]–[7]. ACO generally utilizes agents, called “ants”,

that secrete “pheromone” to the traveled route, serving as

an evaluation value of the route, for adaptive and continu-

ous route updating. Therefore, application of ACO in such

an environment as WSN, where the communications con-

ditions change over short periods of time and mutual state

prehension by the terminals is difficult, allows to achieve

effective performance.

ACO has an ability to discover the shortest route without an

effort of centralized management by utilizing the behaviors

of ants and the secretion of pheromones, as described pre-

viously. Thus, ACO is applied in various combinatorial is-

sues, such as the traveling salesman problem (TSP). A feed-

ing ant detects pheromones on the ground, follows them to-

wards the food source and then returns to the nest with the

food, secreting pheromones. As the secreted pheromones

volatilize at a constant pace, more pheromones are present

along shorter, rather than longer routes. A route with more

pheromones attracts more ants and pheromone secretion in

regions adjacent to the shortest route becomes active, i.e.

ants tend to select the shortest route, as the time passes, as

shown in Fig. 1.

Fig. 1. The principle of ACO routing.

Papers [6], [7] proposed a basic ACO model, called the ant

system (AS). Here, we will explain AS with TSP, which

is applied, in particular, to combinatorial problems. In the

specific application, each ant is treated as m agents and

placed in n cities, and creates a route based on the rule

that each agent visits each city only once and decides the

next city to be visited based on the pheromone level. Equa-

tion (1) calculates the probability that agent k in city i on

cycle t travels to city j in the next cycle:

pk
i j(t) =















[τi j(t)]
α [ηi j]

β

∑
s∈Jk(i)

[τis(t)]
α [ηis]

β j ∈ Jk(i)

0 otherwise

, (1)

where τi j(t) represents the pheromone level between city i
and j on cycle t, ηi j represents the invert of route length

between city i and j, Jk(i) represents the set of visiting

cities of agent k in city i, and α ,β are the constant.

After the agent finishes the trip upon visiting each city

and after the route has been created, AS calculates the

pheromone level to be secreted along the traveled route

with the following Eq. (2):

∆τk
i j =







1
Ck

(i, j) ∈ Tk

0 otherwise
, (2)

where τk
i j represents the pheromone level to be secreted

between city i and j and Ck represents the length of route

Tk between city i and city j that agent k created. Then,

6



ACO-Inspired Energy-Aware Routing Algorithm for Wireless Sensor Networks

AS applies the calculated pheromone level to the route and

update the residual pheromone level using Eq. (3):

τi j(t +1) = ρτi j(t)+
m

∑
k=1

∆τk
i j , (3)

where ρ represents the volatile coefficient, i.e. AS vola-

tilizes a certain pheromone level from the remaining

pheromones and adds the pheromones secreted by agents.

AS continuously repeats this procedure until it discovers

the optimal solution.

AS enables ACO-based routing, by relying on simple pro-

cedures performed by individual terminals, to find the opti-

mal route without using centralized network management.

In addition, as the data travels along the optimal route, re-

liability improves and energy consumption per packet be-

comes lower. Although the mechanism identifies and uti-

lizes a route that is most efficient in terms of network per-

formance, concentration of traffic along specific routes may

cause an early drop out of terminals due to the exhaustion

of batteries.

3. ACO-Inspired Energy-Aware

Routing

Here we propose an ACO-inspired energy-aware routing

algorithm, named AERO, based on the residual energy of

terminals and relied upon for adaptive and dynamic routing.

The significant characteristic of AERO is that the agent ant

behavior tries not to find the optimal solution, but strives

to identify semi-optimal solutions. This prevents the routes

with a sufficient pheromone level from being utilized on

a continuous manner, until the terminals along the route

exhaust their batteries, that is until AERO positively utilizes

the transient state of ACO to improve route diversity.

AERO introduces three types of ant imitating control pack-

ets to apply ACO while routing, namely forward ant

(F-ANT), backward ant (B-ANT) and data ant (D-ANT).

In addition, AERO does not secrete pheromones into links

between terminals, as the conventional ACO does, but into

terminals. The secreted and residual pheromone levels are

notified to neighboring terminals with periodical hello mes-

sage exchanges, just as in the case of conventional routing.

A brief description of the routing procedure is presented

below.

In AERO, a source terminal first sends F-ANTs towards the

desired destination in the same way as conventional rout-

ing protocols do, as shown in Fig. 2. The F-ANTs sent by

the source terminal travel along various routes and F-ANTs

store the terminal ID and the residual energy of each inter-

mediate terminal during the travel. The destination termi-

nal that receives the F-ANTs waits for other F-ANTs, for

a predetermined period of time, to collect information about

multiple routes.

After the predetermined waiting time elapses, the desti-

nation terminal that received multiple F-ANTs evaluates

each route using the information stored in the F-ANTs. It

Fig. 2. Forward ant.

Fig. 3. Backward ant.

needs to be noted that the detailed evaluation procedure

will be explained later. The destination terminal generates

B-ANTs that contain information about the route and its

evaluation value after the evaluation procedure is com-

pleted. Then, B-ANTs start their travel by tracing back

along the route that F-ANTs traveled, and B-ANTs secrete

pheromones to the intermediate terminals along the route

during the travel (Fig. 3). This is recursively performed

until the B-ANTs reach the source terminal. Note that the

source terminal also waits for other B-ANTs, over a prede-

termined period of time, to receive multiple B-ANTs, just

as it was the case with F-ANTs.

Fig. 4. Data ant scheme.
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After the arrival of B-ANTs at the source terminal, it starts

the forwarding procedure for data encapsulated by D-ANT

(Fig. 4). Senders of D-ANT, namely source and intermedi-

ate terminals, select the next hop terminal probabilistically,

according to the pheromone level at the candidate receivers.

Once the sender determines the receiver, it records its own

residual energy to the D-ANT, and the D-ANT travels to

the receiver. The receiver selection procedure will be ex-

plained in detailed later in this section. The receiver that the

D-ANT reaches then updates own pheromones according

to the information stored in the D-ANT. By repeating the

above scheme recursively, AERO updates the pheromone

levels on intermediate terminals and the data encapsulated

by the D-ANTs reaches the destination node.

3.1. Route Evaluation and Pheromone Update

The pheromone level on each terminal is calculated at the

destination terminal by means of two evaluation values,

with the use of the collected route information and the

terminal information stored in D-ANT.

We will describe the evaluation values as HA,i and HB,i. It

needs to be noted that the pheromone level in AERO will

always be positive, and that AERO assigns upper and lower

limits to that value.

Evaluations at destination terminals. The destination

terminals calculate the evaluation values for each route us-

ing the information obtained by F-ANTs. In this proce-

dure, AERO first calculates the average residual energy Esd,i
of each terminal along route i whose source and destination

terminals are s and d, by:

Esd,i =

∑
j∈nsd,i

ei j

∣

∣nsd,i
∣

∣

, (4)

where ei j represents the residual energy of terminal j along

route i, nsd,i represents the set of terminals along route i.
Then, the destination terminal calculates the average resid-

ual energy of complete routes using the result of Eq. (4)

and:

Esd =

∑
i∈rsd

Esd,i

|rsd |
, (5)

where rsd represents the route set obtained by F-ANTs.

Next, the destination terminal calculates the evaluation

value HA,i as:

HA,i =(1−β )
Esd,i

Esd,max
+β









∑
j∈nsd ,ei j≤Esd

(ei j−Esd)

∣

∣ei,low
∣

∣Esd
+1









, (6)

where Esd,max represents the maximum average residual en-

ergy along the route set rsd , ei,low represents the number

of terminals along route i whose residual energy is lower

than Esd , and β is a constant.

The first member of Eq. (6) becomes closer to 1 when

the residual energy of terminals composing route i is high.

The second member of Eq. (6) gets closer to 1 when the

variance between the residual energy levels of terminals

along route i is low. The evaluation value HA,i will be

stored in B-ANTs, and the intermediate terminals that the

B-ANTs travel along update their pheromones by adding

the evaluation value to the current pheromone level.

In addition to the above, AERO takes hop counts into ac-

count to calculate the overall evaluation Hi. AERO evalu-

ates the hop count of each route and calculates HB,i as:

HB,i =
hi − (1+α)hsd

(1+α)hsd
, (7)

where hi represents the hop-count of route i, hsd represents

the average hop-count of all routes from source s to des-

tination d, and α represents the acceptable route length

increment ratio. With HA,i and HB,i, AERO calculates the

overall evaluation using the weight parameter γ as:

Hi = (1− γ)HA,i + γHB,i . (8)

Pheromone update with data ant. D-ANTs record the

residual energy of the terminals along the route and in-

termediate terminals update their pheromones using the

evaluation value calculated with the use of the information

stored. The evaluation value for D-ANTs HC, j for interme-

diate terminal j will be calculated by:

HC, j =
e j −Es j

Es j
, (9)

where Es j represents the average residual energy of inter-

mediate terminals after the source terminal s, and e j repre-

sents the residual energy of terminal j at which the D-ANT

is currently staying. The evaluation value HC, j becomes

positive when the residual energy of the current terminals

is higher than the average residual energy, and becomes

negative when the latter value is lower. Afterward, the ter-

minal adds HC, j to its own pheromone level, in order to

increase or decrease the pheromone level:

Pi(t +∆t) = (1−ρ)Pi +HC, j , (10)

ρ = θ∆t , (11)

where ∆t represents the time gap between the current time

and the last update time, ρ represents volatilization rate,

and θ represents a fixed parameter to determine the rate ρ .

3.2. Route Selection

In AERO, route selection is done by the probabilistic way

based on the pheromone level of each terminal. Each ter-

minal first confirms the set of candidate intermediate ter-

minals for sending data towards the destination, before

D-ANTs travel to other nodes. If there is only one can-

didate in the set, D-ANTs just start their travel towards the
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terminal. If there are multiple candidates, sender m cal-

culates the probability of D-ANTs’ travel towards the next

intermediate terminal n:

Qmn =
Pn

∑
i∈Nd

m

pi
, (12)

where Qmn represents the probability that terminal m selects

terminal n as the next hop, Pn represents the pheromone

level in n, and Nd
m represents the set of candidate interme-

diate terminals for F-ANTs, leading towards destination d
from m. By relying on the probabilistic intermediate ter-

minal selection procedure described above, AERO assigns

a higher priority to the node with a higher pheromone level

and data encapsulated by D-ANTs travel towards the desti-

nation terminal.

4. Performance Evaluation

4.1. Simulation Setup

Computer simulations have been conducted to evaluate the

effectiveness of AERO compared to conventional routings,

using the QualNet [9] network simulator. In the simu-

lations, we adopted AODV [10], optimized LEACH-C [3],

and AS [6], [7] for the routing to be compared. Two scenar-

ios were used to evaluate the performance from the view-

point of communication qualities and network lifetime. The

first evaluates network performance by changing terminal

densities that greatly affect the routing results. The second

evaluates network lifetime by observing the number of ac-

tive terminals over time. The common parameters for the

simulations are shown in Table 1.

Table 1

Simulation parameters

Parameter Value

Routing methods AODV, optimized LEACH-C, AS

Simulation duration 1000 s

Simulation area 1000 × 1000 m

The number of terminals 100–400

The number of sinks 2–10

Wireless medium IEEE 802.11b

Bandwidth 11 Mbps

Communication radius 150 m

Terminal placement Random

The number of sessions 50 sessions

Source terminals Randomly chosen

Packet generation interval 100 ms

Packet size 1000 bytes

Battery capacity 18,000 mAs

Power consumption
840 mAs

for sending

Power consumption
800 mAs

for receiving

In the simulations, terminals are randomly placed in the

square area of 1000×1000 m, and communicate with each

other using IEEE 802.11b with the radius of 150 m at the

most. Source terminals and the number of packets to be

transmitted are randomly chosen, and every packet with

the size of 1000 bytes is transmitted every 100 ms. In

this paper, we have conducted two simulations by changing

terminal density and sink density. The number of termi-

nals is changed from 100 to 400 and the number of sinks

from 2 to 10 with 400 nodes.

4.2. Network Performance Evaluation

We evaluate the impact that terminal or sink density has

on communication performance by relying on successful

delivery rate and end-to-end delay. The successful deliv-

ery rate is calculated by dividing the number of received

packets by the number of packets generated in terminals.

The end-to-end delay indicates the time gap between the

initiation time of packet transmission and the time that the

destination sink receives the packet.

4.3. Network Lifetime Evaluation

In this simulation, we evaluate the number of active ter-

minals every 25 s to show the efficiency of each rout-

ing method. We defined the active terminal as the termi-

nal with the battery level of 40% of the initial capacity.

We firstly conducted simulations with 100 and 200 termi-

nals to evaluate the performance in an environment that

is tough for the routing methods since the available route

diversity is limited to a certain degree. In addition to the

aforementioned simulations, we conducted simulations us-

ing 6 or 10 sinks with 400 terminals. It is obvious that

with the higher number of singles, the path diversity in-

creases and balances traffic load and energy use. However,

the improvement in traffic load performance and energy

consumption, generally derives from how the routing pro-

tocols select or manage routes. Therefore, the simulations

reveal the balancing performance from a different point

of view.

4.4. Simulation Results

Figures 5–8 show the impact of terminal density on com-

munication performance. In the results, we exclude abnor-

mal outcomes caused by unclosed sessions. Moreover, the

values of top and bottom 5%, such as the outlier in the

calculation of end-to-end delay, were excluded as well.

Figures 5–7 show the successful delivery rate results. The

result indicates that the proposed method could achieve

a successful delivery rate of nearly 90%, regardless of ter-

minal and sink density. This is due mainly to the adap-

tive and dynamic route management of AERO, which ef-

fectively suppresses unnecessary route reestablishment by

avoiding energy exhaustion of terminals caused by the ex-

haustion of batteries. The conventional AODV decreases its

9



Ryo Yamamoto, Seira Nishibu, Taku Yamazaki, Yasushi Okamura, and Yoshiaki Tanaka

Fig. 5. Simulation of successful delivery rate versus number of

terminals.

Fig. 6. Average end-to-end delay versus number of terminals.

reliability since the routing procedure is basically aimed to

establish a single end-to-end route from a source terminal to

the destination terminal based on a route length. Moreover,

the route length only takes hop-counts into a consideration,

and other parameters such as residual energy and reliabil-

ity are not the metrics for evaluating route quality. Thus,

the route established by AODV could not achieve better

route quality except for route length. Optimized LEACH-C

could achieve better routing performance due to its complex

and centralized comprehensive route management, since it

can comprehend the states of the entire network and is

capable of deriving entirely optimal solutions. Pure AS

could achieve a certain degree of improvement compared

to AODV, since AS can take other metrics into account,

such as pheromone level. However, improvement is limited

because pure AS ceases optimization once the optimal solu-

tions are found, and further optimization will be suspended

until another route request comes in.

In addition, a common feature could be observed. Namely,

the success rate of routing protocols gradually improves

as the number of sinks increases. The reason of this is

obvious: routes established within the network were au-

tonomously distributed, since the overlapping link usage

is autonomously eliminated to a certain degree. However,

AERO could achieve a higher rate since the aforementioned

characteristics were capable of increasing the base perfor-

Fig. 7. Simulation of successful delivery rate as a function of

number of sinks.

Fig. 8. Average end-to-end delay as a function of number of sinks.

mance of AERO to the higher degree than in the remaining

cases.

Figures 6 and 8 show the results of end-to-end delay for

each of the routing methods. The results show that each

protocol gradually increases the delay as the terminal den-

sity increases, whereas the delay is decreased as the sink

density grows. The reason for the delay increase mainly

derives from the increase in overall traffic within the net-

works, which will be a cause of a higher queuing delay and

interference in transmission to other terminals. Although

the delay increase is inevitable, AERO could suppress this

type of degradation by means of its adaptive route manage-

ment and could decrease the delay compared to the other

methods. In other words, the probabilistic intermediate

terminal selection by D-ANTs could efficiently select the

intermediate terminals with less traffic load. On the other

hand, other single route-based routing methods degrade the

performance compared with AERO, since their routing pro-

cedures only show an advantage in terms of route establish-

ment. The decrease of delay, observed as the sink density

increases, can also be explained with the same character-

istic as described in the explanation of the success rate.

In other words, the increase in sink density autonomously

balances traffic load without a systematic procedure. In ad-

dition to that, we could observe that the base performance

is also affected as the density increases.

10
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4.5. Network Lifetime Evaluation

Figures 9–12 show the transition of the active terminal ra-

tio versus elapsed time. The result shows that AERO could

reasonably reduce the number of inactive terminals com-

pared with other routing methods. Moreover, the decrease

observed in AERO seems to be linear, whereas the de-

crease typical of other methods seems to be an inversely

Fig. 9. Active terminal ratio (100 terminals) vs. time.

Fig. 10. Simulation results on active terminal ratio (200 termi-

nals) vs. time.

proportional or exponential. The main reason for the dif-

ference can be explained by the routing strategy, as AERO

relies on the principle of dynamic and adaptive intermedi-

ate selection, whereas other approaches adopt the one-time

optimization principle. Another characteristic trend may be

identified as the simulation time elapses, namely the rate

at which the number decreases is more gentle in the case

of conventional routing methods. This can be explained by

the manner in which intermediate terminals are selected by

the individual methods, since they attempt to utilize the op-

timal terminals for end-to-end routes and such devices must

transmit more packets than others. Thus, the optimal ter-

minals exhaust their batteries and become inactive sooner

than other non-optimal nodes. After the rapid exhaustion

phase, the methods must select the rest of the terminals

as intermediate devices and the selection procedure may

autonomously balance traffic loads.

Fig. 11. Active terminal ratio value (6 sinks) vs. simulation time.

Fig. 12. Results on active terminal ratio (10 sinks) vs. simula-

tion time.

4.6. Summary of the Simulations

Through the simulations conducted above, we confirmed

that the proposed AERO approach may extend the life-

time of a network while maintaining its reasonable per-

formance. The major contribution of the proposed solution

derived primarily from its adaptive and dynamic route and

intermediate terminal selection principle, which utilizes the

transient state of ant-colony optimization. Moreover, the

unique characteristic consisting in the fact that AERO se-

cretes pheromones not to links, but to terminals, enables

adaptive and dynamic intermediate terminal selection.

5. Conclusions

This paper proposes an ACO-inspired routing strategy,

known as AERO, for WSNs, enabling to balance traffic

loads by utilizing transient behaviors for optimization. Per-

formance evaluation reveals that the AERO approach pro-

posed may achieve improved routing efficiency compared

with other existing routing methods. In other words, AERO

requires less transmission effort to send the same amount

of data and improves energy efficiency.

Although the improvement achieved by AERO contributes

to prolonging the lifetime of WSNs, there is still room for

further improvement, since AERO currently does not take

into account terminal statuses, such as their awake and sleep

11



Ryo Yamamoto, Seira Nishibu, Taku Yamazaki, Yasushi Okamura, and Yoshiaki Tanaka

modes. Moreover, such issues as refining the procedure

relied upon to calculate the evaluation values, as well as

assessment of performance with the use of realistic models

may also be addressed in the future.
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