
Paper

Multifactor Authentication and

Key Management Protocol for WSN-assisted

IoT Communication
Tabassum Ara and M. Prabhakar

School of Computing and Information Technology, Reva University, Bangalore, India

https://doi.org/10.26636/jtit.2019.134019

Abstract—In this paper a novel multi-factor authentication

protocol for IoT applications, relying on enhanced Rabin-

assisted elliptic curve cryptography, biometric features and

time stamping methods, is developed. Furthermore, a fuzzy

verification algorithm has been developed to perform receiver-

level user verification, making computation efficient in terms

of computational overhead as well as latency. An NS2

simulation-based performance assessment has revealed that

the multifactor authentication and key management models

we have proposed are capable of not only avoiding security

breaches, such as smart card loss (SCLA) and impersonation

attacks, but can also ensure the provision of maximum pos-

sible QoS levels by offering higher packet delivery and mini-

mum latency rates.

Keywords—multifactor authentication, IoT security, ECC,

timestamp, one-way bio-hashing, fuzzy verifier, WSN.

1. Introduction

Advancement of new technologies has given rise, over

the past few years, to a new paradigm known as the

Internet of Things (IoT), relying on machine-to-machine

(M2M) communications performed on a large scale. Func-

tionally, these communication paradigms exploit Wireless

Sensor Networks (WSN) with augmented routing proto-

cols to simultaneously transmit data between multiple users

or machines. Typically, IoT systems require secure data

transmission or communication protocols across peers and,

hence, a proper security system becomes an inevitable

need [1], [2].

In IoT communication, the Internet Engineering Task Force

(IETF) recommended certain protocols and standards to

incorporate WSN into the Internet [3], such as IPv6

over Low-Power Wireless Personal Area Networks (6LoW-

PAN) [4] and Routing Over Low Power and Lossy Net-

works (ROLL) [5]. Functionally, IoT may comprise mul-

tiple sensor nodes connected to the Internet via a gate-

way. In such a scenario, the connected sensors would be

accessible by any authorized entity, thereby ensuring re-

mote access to and control over major applications. As

a consequence, IoT communication remains vulnerable to

attacks [2], [6]–[11]. Considering the criticality of data se-

curity across IoT ecosystems, the transmitted data must be

protected and secured across the sensor nodes and the en-

tities connected to the network, by means of certain secure

peer-to-peer channels. It is not feasible to apply Internet

security measures directly to the IoT, due to WSN charac-

teristics [12]. Nevertheless, efforts have been undertaken,

such as IPsec [13] and IKEv2 [14], to ensure the security

of IoT using Internet security models, with the resource-

constrained nature of WSNs limiting their efficiency.

The classic uni-factor security models, such as password-

based or bio-physical security systems are prone to being

attacked, as the number of hacking techniques that exists

is growing exponentially. Therefore, it becomes necessary

to enable multi-factor assisted user (node) authentication

to establish keys between nodes and the different authen-

ticated stakeholders or entities. Furthermore, the existing

efforts [15]–[17] have affirmatively stated that designing

a secure IoT communication protocol is feasible. The ob-

jective may be achieved by enabling channel authentication

and key management strategies requiring the remote enti-

ties to mutually authorize each other and to negotiate se-

cret keys to assist the sensor nodes in avoiding active and

passive attacks during the transmission [12]–[17]. Notice-

ably, even with certain security features deployed at the link

layer of the IEEE 802.15.4 protocol stack, the openness of

the Internet still causes significant vulnerability and, hence,

demands certain robust key agreement and authentication

schemes [12].

In this paper, a robust multi-factor authentication pro-

tocol has been developed that exploits efficacy of time-

stamping, Rabin cryptosystem-assisted elliptic curve cryp-

tography (ECC) and bio-hashing. To enable optimal user

verification under real-time communication scenarios, a

fuzzy-based verification model has been applied that learns

the above mentioned features to provide access to a node

for further communication. The proposed model has been

implemented over a WSN with multiple cooperatively com-

municating or connecting nodes. NS-2 simulation has re-

vealed that the proposed security model exhibits goods effi-

ciency without incorporating any significant computational

overheads or complexities.

The remaining sections of this paper are organized as fol-

lows. Section 2 presents the related work, which is fol-
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lowed by the discussion of key existing approaches to IoT

data security, given in Section 3. Section 4 shows the pro-

posed system and its implementation. Section 5 presents

the results and discussion, while conclusions concerning

the overall results are given in Section 6.

2. Related Work

Realizing the shortcomings of single parameter-based secu-

rity systems, Shin et al. [18] developed a two-factor authen-

tication model where the prime focus was on employing

an authenticated key agreement paradigm between users

and IoT devices. However, this model was found to be

limited due to its inability to address stolen or lost smart

card attacks (SCLA), as well as offline password guess-

ing and/or retrieval attacks relying on Brute Force, etc. To

deal with these shortcomings, Wazid et al. [19] designed

a new secure lightweight multi-factor remote user authenti-

cation scheme for hierarchical IoT networks (HIoTN). They

proposed a user-authenticated key management protocol

(UAKMP). However, these approaches are complex. To

reduce computational complexities, Sarvabhatla et al. [20]

used a biometric feature authentication model for heteroge-

neous WSNs. However, personalized biometric traits pre-

served in a memory chip can be compromised due to smart

card loss.

Challa et al. [21] developed a secure signature-based au-

thenticated key establishment scheme for future IoT ap-

plications. Porambage et al. [22] developed a group key

establishment protocol for secure multicast communica-

tions between resource-constrained sensor devices in IoT.

However, the ambiguity of information shared between the

interconnected nodes confines its efficiency in large net-

works. Ning et al. [23] developed a proof-based hierar-

chical authentication scheme for IoT. This model focused

primarily on developing an U2IoT architecture (i.e. unit

IoT and ubiquitous IoT), and eventually recommended an

aggregated proof-based hierarchical authentication scheme

(APHA). The authors combined directed path descriptors,

homomorphism functions and Chebyshev chaotic maps

for mutual authentication to ensure hierarchical access

control.

Mick et al. [24] developed a lightweight authentication

and secured routing (LASeR) method for named data net-

works (NDN) used in smart city IoT applications. To en-

able computationally efficient routing, He et al. [25] de-

veloped an ECC-based RFID authentication scheme for

the healthcare sector. Being an energy-constrained net-

work, WSN-assisted IoT requires energy efficient and re-

liable transmission. Hence, Mohd et al. [26] developed

lightweight block ciphers enhancing IoT security. The au-

thors focused on both security and computational efficiency.

Similar work was performed by Lu et al. [27], who de-

veloped a lightweight privacy-preserving data aggregation

scheme, known as lightweight privacy-preserving data ag-

gregation (LDPA). They relied on homomorphic Paillier

encryption, Chinese remainder theorem and one-way hash

chain techniques to ensure efficient data gathering and to

achieve a reduction in the false rate.

Jakalan et al. [28] designed a model called network se-

curity situation awareness (NSSA), where the focus was

on assessing security situation-related elements and infor-

mation originating from a multi-source heterogeneous net-

works. The authors considered four IoT security-related

variables, such as context, attack, vulnerability, and net-

work flow, which were then processed using the ontologi-

cal concept to obtain the best security solution. In order to

augment computational complexity, Diro et al. [29] recom-

mended a lightweight cryptographic model – ECC. A sim-

ilar effort was made by Yuan et al. [30], who developed

a lightweight trust mechanism for IoT edge devices based

on the fusion of multi-source feedback information. The

use of multi-source feedback information for global trust

estimation enabled avoiding a scenario in which a mali-

cious node becomes a part of the network and, hence, en-

hance the security of the solution. This approach may be

helpful in exploiting different node features to isolate the

unauthorized node. However, this is done at the cost of

increased computational overheads and latency.

Zahra et al. [31] employed Shibboleth, also known as the

security and cross-domain access control protocol between

fog a client and a fog node, to achieve secure communica-

tion between nodes, even under uncertain network condi-

tions. Zheng et al. [32] utilized attribute-based encryp-

tion to enable data sharing over the network. In addi-

tion to the removal of attribute matching function, the use

of the attribute bloom filter enabled hiding all attributes

in the access control structure. However, the efficacy of

their model could not be assessed in terms of node perfor-

mance parameters. A similar effort was made by Want et

al. [33]. Lei et al. [34] derived a closed-form model for

assessing the probability of security-outage and its impact

on throughput. They assessed their model to achieve bet-

ter trade-offs between secure communication and energy-

efficient data transmission over IoT. Lai et al. [35] derived

a novel pairing-free data access control scheme by ex-

ploiting cipher text policy, attribute-based encryption (CP-

ABE), where ECC was applied as encryption the method.

Elhoseny et al. [36] designed a hybrid-cryptosystem using

AES and RSA algorithms for diagnostic text data secu-

rity in medical images. The authors applied 2-dimensional

discrete wavelet transform and steganography concepts to

ensure secure data transmission. In [37] Ruan et al. de-

signed a leakage-resilient (LR) eCK security model for the

password-based authenticated key exchange (PAKE) pro-

tocol. The authors applied the LR PAKE protocol with

Diffie-Hellman key exchange LR storage (LRS).

3. Proposed Method

Unlike major existing methods, the proposed solution ex-

ploits multiple authorization schemes to design a robust

security model, where each factor may function as a sup-

plementary security layer, to ensure seamless communi-
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cation. Considering the efficacy of a robust multi-factor

authentication and key management system for IoT secu-

rity, in this paper the emphasis is placed on developing an

advanced security paradigm by amalgamating robustness

of Rabin cryptosystem-assisted ECC, bio-hashing and the

FLC- based verification mechanism.

3.1. Bio-Hashing

Over the past few years, the use of bio-traits as a secu-

rity feature has increased significantly. Considering the

increased threat of security breaches in the classic ap-

proaches, biometric features, such as fingerprint, retina and

face detection, have been applied as additional security lay-

ers. The use of biometric traits as a supplementary secu-

rity feature in conjunction with classic passwords or smart

cards, has exhibited satisfactory results, making it one of

the most sought-after techniques. Biometric features are

deeply integrated and closely coupled with each individ-

ual. On the other hand, the irreplaceable nature of biomet-

ric features makes them most resistant to security breaches

or to unauthenticated attempts to access specific systems

or resources. Over the past few years, numerous research

projects have been completed, relying on the efficiency

of biometric data as security features [38], [39]. Biomet-

ric templates may be considered one of the pre-dominant

privacy-preserving biometric approaches [39]. In practice,

biometric template B and certain random constructs called

secret key K are employed to generate a bio hash value

(BV) (BV) Bio2H(K,B) during registration. Noticeably,

here Bio2H(K,B) defines a bilinear hashing of the biomet-

ric feature, such as a finger print, retina information, etc.

Bio2H(K,B) (two-factor bio hashing) pre-processes the bio-

metric feature template B to preserve its integrity and ac-

curacy. In other words, the pre-processing of B leaves the

biometric feature concerned intact, even if certain minor

variations in the input biometric signal are experienced.

Once the BV has been generated, Bio2H(K,B) compares

the inner product of the random vector generated from the

user specific secret key K and the feature vector extracted,

against a predefined threshold value. During the verifica-

tion phase, the same process as applied at the registration

stage is followed. In this phase, the received biometric

template or signal B′ and the secret key specified by the

user as a BV value Bio2H(K,B′) are estimated. Once the

initial BV Bio2H(K,B) and the re-estimated value of BV

Bio2H(K,B′) have been obtained at the user end, they are

compared to authenticate the user [39]. The key assump-

tion for use of any bio-hashing technique is that the user

has to be registered/on-boarded with at least one biomet-

ric feature captured (biometric template B), which is then

converted into and stored in a suitable binary format (bits).

In the proposed research, we have considered fingerprint

bits BioUi to be biometric template B which, when com-

bined with secret K at the registration end, is compared

with received template B′ combined with K as a signature

to validate the user.

Table 1

Different cryptosystems and their features

Algorithm
Key Encryption/ Digital

exchange decryption signature

Diffie Hellmen Yes Yes No

DSA No No Yes

RSA Yes Yes Yes

ECC Yes Yes Yes

Table 2

Notations used in this paper

Notation Description

Bio2H Two factor bio hashing

K Secret key

B Biometric feature template

B′ Received biometric feature template

P, Q Points of elliptic curve

x, y Coordinates on elliptic curve

M Plain message

C Cipher text

P Prime number

GF Galois field

a, b Coefficients

G Generator point

n, h Cryptographic prime factor and cofactor

r Random integer

Pr Private key

Pu Public key

UIDi i-th user identification

PWUi i-th user password

l Integer

Ui i-th user

AD j Admin/sensor node

ADID j Admin’s ID

ADxi Admin’s x value

h() Hash function

Rshrd Shared random number

ei, fi, Li Hashed value

SCNi Smart card number

SCS Smart card storing

Bioui Bio information of user Ui

SC Smart card

Zi Arbitrary number

EID Estimated ID

GN Gateway node

IDGN ID f gateway node

M1, M2, M3, M4 Intermediate values of messages

T Delay threshold

MSG Message

SKGN Session key of gateway node

DDi, ZZi Derived parameter

einew, f inew, ginew New estimated hash values
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3.2. Rabin-Assisted Elliptic Curve Cryptography

There are numerous public key cryptosystems, such as

RSA, DSA or Diffie Hellmen. The majority of these clas-

sic approaches suffer from huge computational overheads

and time complexities (Table 1). Table 2 summarizes the

notation used. Robustness of the ECC cryptosystem may

be visualized based on the intricacy of the elliptic curve

discrete log-arithm problem (ECDLP). Let the expression

be Q = kP, where P and Q pertain to Fp(a,b). With k and

P values provided, it becomes easy to calculate Q. On the

contrary, with P and Q pre-specified, it becomes more com-

plicated to estimate k, especially when k is large. Notice-

ably, k states the discrete logarithm of Q to the base P, sig-

nifying the discrete logarithm problem for ECC. This com-

putational complexity enhances attack resilience of ECC.

The predominant process involved in ECC is known as

point multiplication. Functionally, elliptic curve E is de-

fined as:

y2 = x3 +ax+b . (1)

In Eq. (1), the highest degree is 3. In the proposed method,

ECC encrypts data M and generates ciphertext C and vice

versa, using a certain finite set of points in the elliptic

curve over GF(p). Equation (1) (Weierstrass equation),

y2 = x3 + ax + b is used in conjunction with modulo p to

generate points on the elliptic curve. Typically, the elliptic

curve-specific variables are p, a, b, G, n, h, r where p states

a prime number, a and b are the coefficients, and parameter

G presents a generator point. The other parameters, such

as n and h, define the cryptographic prime factor and the

co-factor, respectively. Here, r is a random integer which is

lower than n. The proposed model employs the finite field

elliptic curve with modulo 263. A snippet of the applied

method is given as Algorithm 1.

Algorithm 1: The proposed model concept

{
Chose an elliptic curve having modulo p(y2 =x3+ax+b mod p)
Assign the values of a and b, and of the coefficients.

Estimate the value of y2 =x3+ax+b mod p
{
For x = 0 to (p−1)
S = x3 +ax +b mod p

For d = 0 to (p−1)/2
{
T = d2 mod p
If T = S
Y 1 = d and Y 2 = p−d
Else d = d +1
}

x = x +1
}
(x,Y 1), (x,Y 1)
}

In ECC, n is often multiplied by point generator G, eventu-

ally amounting to zero. Noticeably, generator point G may

generate all points that may be potentially generated for

the defined elliptic curve. Next, a definite set of points is

selected and the data are assigned to these points to be en-

crypted before the transmission. During the transmission,

message M is at first encoded to point P(M) from the fi-

nite set of points generated over the elliptic curve Ep(a,b).
To ensure high security levels, the selection of G is of

paramount significance, where G ∈ Ep(a,b). Typically, G
and Ep(a,b) are made public during the transmission.

Both the transmitter and the receiver may choose private

key Pr, with the help of which public key may be obtained

as Pu = Pr ×G. In our implementation, random integer r is

selected at first, which is then followed by the estimation

of a cipher-text point using the receiver’s public key. Thus,

the cipher-text points obtained are C =
[

(r.G), (M+r.Pur)
]

.

Now, the cipher-text is decrypted by multiplying the initial

(first) point of the cipher-text pair (r,G) by private key

Prr, which is then subtracted from the second point of

the cipher-text pair. The original message M is obtained

as M = (M + rPur)−Prr(r.G) = (M + rPrrG)−Prr(r.G).
A detailed presentation of the ECC algorithm may be found

in [41]. Noticeably, unlike it is the case in classic cryptosys-

tems, in this paper we have derived a hybrid method by

combining the Rabin cryptosystem and ECC. Here, the Ra-

bin cryptosystem has been used to generate the keys, while

ECC has been employed to perform encryption-decryption

of the message or the data being transmitted.

4. System Model

Unlike in the classic RSA, in the ECC-based cryptosystem

presented in this paper we have designed a multifactor au-

thentication and key management strategy. The proposed

system incorporates the ECC cryptosystem, one-directional

bio-hashing, time stamping and fuzzy verification. Such an

approach results in a robust security solution enabling to

avoid attacks, like SCLA and location tracking. The use

of the ECC model is a lightweight crypto-solution. The

use of the timestamp method enables mitigating session-

specific temporary information attacks, eventually avoiding

any tracking attacks. On the other hand, the use of the

fuzzy verifier enables the model we have proposed to per-

form local verification of the users’ passwords, thus offering

a robust scheme for malicious node isolation. A snippet of

the proposed multi-factor authentication and key manage-

ment model is given below.

4.1. Model Description

As discussed above, the proposed system is initiated by

relying on the Rabin-based ECC cryptosystem.

In this preliminary phase, a sensor administration node

ADM generates two prime numbers p and q, and esti-

mates variable N = pq. Preserving (p,q) as the private

key, it selects a master reference key xGN in addition to

an integer l (24 ≤ l ≤ 28) which is used at the receiver for

local password verification, performed with the use of the

fuzzy verifier. Estimating the receiver’s master reference
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key, hereinafter referred to as the public key, the cipher-

text point is obtained as C =
[

(r.G),(M + r.Pur)
]

. The first

point of the cipher-text pair r.G is multiplied by private key

Prr, and the result obtained is subtracted from the second

point of the cipher-text pair.

Next, ADM selects an identity ADID j and estimates the

secret key:

ADX j = h(ADID j‖xGN for AD j(1 ≤ j ≤ M) .

Then, ADM generates a random number Rshrd, which is

shared between the GN and the node AD j. Node AD j stores

ADID jADX j and Rshrd in its memory.

4.1.1. User Registration and Login

During the user registration phase, user Ui performs the

following steps to get registered with ADM.

User Ui transmits the selected identity UIDi along with their

personal credentials to ADM, by means of a specific secure

channel.

Upon receiving information from Ui, ADM verifies whether

UIDi exists in the table or in the database. If the verification

is positive, ADM acknowledges Ui to select an updated or

a new identity; else it generates an arbitrary number xi
and then estimates variable di = h(UIDi‖xGN‖xi) and Li =
h(SCNi‖xGN). Here, SCNi defines the SC number belonging

to a user or a node. Estimating the values of di and Li,

ADM enables SCS.

Ui connects the smart card into a card reader and then

enters UIDi, PWUi and imports BioUi , SC selects a random

number ri and estimates the attributes:

BioZi = Bio2H(ri,BioUi),

ei = h
(

h(UIDi‖PWUi‖BioZi
)

mod l),

fi = di ⊕h(UIDi‖PWUi‖BioZi) and

gi = Li ⊕h(UIDi ⊕PWUi ⊕BioZi).

Upon performing user registration, the user requires a login

to the system. This step occurs when user Ui intends to

access sensor data.

First, Ui connects SC and feeds its unique identity

U∗
IDi, along with password-related information PWU ∗

i . In

addition, it requires that fingerprint information BioUi ,

be embedding or attached. Now, the deployed SC es-

timates BioZ∗
i = Bio2H(r∗i , BioUi) in addition to e∗i =

h
(

h(U∗
IDi‖PWU∗

i ‖BioZ∗
i )mod l

)

. This process ensures that

in the case of e∗i 6= ei, the card will reject user Ui, without

granting access to sensor data.

Next, the SC generates an arbitrary number zi along with

a timestamp Tstamp1, and calculates:

d∗
i = fi ⊕h(U∗

IDi‖PWU∗
i ‖BioZ∗

i ),

L∗
i = gi ⊕h(U∗

IDi ⊕PWU∗
i ⊕BioZ∗

i ),

M1 = (UIDi‖SCNi‖zi)
2 modn,

M2 = h(d∗
i ‖L∗

i ‖zi‖Tstamp1).

Finally, Ui selects the ID of the j-th sensor ADID j which

it intends to access, and the SC estimates value EID j =

ADID j ⊕ h(UIDi‖zi‖Tstamp1), which is then appended and

transmitted to the GN as MSG1 =< M1, M2, T1, EID j >.

4.1.2. Authentication

To perform a secure or valid mutual authentication, and to

agree on the session key, the proposed model performs the

following processes.

Upon receiving MSG1 from Ui, GN at first decrypts M1
using p and q to obtain U ′

IDi, SC′
Ni

, and z′i. xi is retrieved as

per U ′
IDi which is then validated in the entries with SC′

Ni
.

If these values fail to match, GN rejects the request and

terminates the process. Otherwise, it estimates:

L′
i = h(SC′

Ni
‖xGN ,

d′
i = h(U ′

IDi‖xGN‖xi),

z′i = M2 ⊕h(d′
i‖Tstamp1),

M′
2 = h(d′

iL
′
iz
′
iTstamp1).

In the case of M′
2 6= M2, GN aborts the current session. On

the contrary, for M′
2 = M2 it estimates:

AD′
ID j = EID j ⊕h(UIDi‖z1‖Tstamp1),

AD(X j)
′ = h(AD′

ID j‖xGN),

M3 = h(U ′
IDi‖AD′

ID j‖IDGN‖AD′
X j
‖z′i‖Tstamp2),

M4 = U ′
IDi ⊕hIDGN‖AD′

X j
‖Tstamp2),

M5 = zi ⊕h(U ′
IDi‖AD′

ID j‖AD′
X j
‖Tstamp2).

Next, GN transmits message MSG2 =< IDGN , M3, M4,
Tstamp1 > to AD j.

In the next step, AD j verifies whether |Tstamp3 −Tstamp1| ≤
∆T exists, where Tstamp3 signifies the current timestamp.

If the verification result is positive, AD j stops the session,

otherwise it estimates:

U∗∗
IDi = M4 ⊕h(IDGN‖ADX j‖Tstamp2),

z∗∗i = M5 ⊕h(U∗∗
IDi‖ADID j‖ADX j‖Tstamp2),

M′
3 = h(U∗∗

IDi‖ADID j‖IDGN‖ADX j‖z∗∗i ‖Tstamp2).

Now, AD j aborts the connection in the case of M′
3 6= M3.

Otherwise, it confirms the authenticity of Ui and GN. Next,

AD j estimates the following:

SK j = h(U∗∗
IDi‖ADID j‖z∗∗i ‖z j),

M6 = h(SK j‖ADX j‖z j‖Tstamp3),

M7 = z∗∗i ⊕ z j, where z j is a random number generated by

AD j.

In the next phase, AD j forwards MSG3 =<M6, M7, T3 > to

GN.

In the following phase, GN verifies whether |Tstamp4 −
Tstamp3| ≤ ∆T . If not, GN terminates the session. Oth-

erwise, it estimates:

z′j = M7 ⊕ z′i,

SKGN = h(UIDi‖ADID j‖z′i‖z′j),

M′
6 = h(SKGN‖AD′

X j
‖z′i‖Tstamp3).

In the case of M′
6 6= M6, GN terminates the connection and

estimates M8 = h(SKGN‖U ′
IDi‖d′

i‖z′i). Thus, the gateway

node GN transmits MSG4 < M7, M8 > to Ui.

21



Tabassum Ara and M. Prabhakar

Once receiving MSG4, Ui estimates:

z∗j = M7 ⊕ zi,

SKi = h(UIDi‖ADID j‖zi‖z∗j), and

M′
8 = h(SKi‖UIDi‖di‖z∗j ).

If M′
8 6= M8, Ui terminates the session. Otherwise, it as-

sumes that gateway node GN and AD j are authentic. At

this instant, a common session key SKi = SK j = SKGN is

established between the participating Ui, GN and AD j.

5. Results and Discussion

To examine the effectiveness of the proposed model, refer-

ence works [38], [39], where three factor-based authentica-

tion was proposed, have been taken into consideration.

The overall results have been assessed in terms of qual-

itative and quantitative, or empirical outcomes. As far

as the qualitative assessment is concerned, the proposed

method has been examined for its ability to avoid differ-

ent attack scenarios. On the other hand, in the quantitative

assessment, the model has been integrated with a WSN

routing protocol, developed and simulated using Network

Simulator-2, version (NS-2). The outcomes have been ex-

amined in terms of latency, packet delivery and packet loss

rates.

5.1. Resistance to SCLA Attacks

Consider that attacker A obtains SC information con-

taining < ei, fi, gi, SCNi , l, n, ri, Bio2H(., .), Hash1() > of

valid user Ui.

Attacker A may be able to guess user the credentials of

U∗
IDi as well as PWU∗

i , which may help in estimating

e∗i = h
(

h(U∗
IDi‖PWU∗

i ‖BioZi)mod l
)

. However, they can-

not retrieve the correct value of U∗
IDi and PWU∗

i due to ei
being a “fuzzy verifier”. This novelty enables the proposed

system to avoid an SCLA attack. In addition, the proposed

model is capable of withstanding an SCLA Type II attack

as well.

Consider that the attacker node A has identified the mes-

sage MSG1 =< M1, M2, T1, EID j > transmitted by Ui when

logging in, where:

d∗
i = fi ⊕h(U∗

IDi‖PWU∗
i ‖BioZ∗

i ),

L∗
i = gi ⊕h(U∗

IDi ⊕PWU∗
i ⊕BioZ∗

i ).

In the above expression, gi is obtained from SC of Ui SC.

The complexity of the quadratic residue problem makes it

infeasible for the attacker to estimate R1 from the value

M1 = (UIDi‖SCNizi)
2mod n, and hence it prevents A from

estimating value M∗
2 = h(d∗

i ‖L∗
i ‖zi‖T1), that is required to

verify the user with its U∗
IDi and PWU∗

i . This approach

makes the proposed model resilient to SCLA Type II at-

tacks.

5.1.1. Resistance KSSTIA and User Impersonation

Attacks

In the existing methods, their authors applied a static

value h(U ′
IDi‖AD′

X j
) to secure the ephemeral arbitrary num-

bers, where variable AD′
X j

signifies the node’s key shared

between AD j and GW. Consequently, the revealing of

ephemeral random number zi compromises the static value

h(U ′
IDi‖AD′

X j
), which eventually leads to revealing or com-

promising the ephemeral arbitrary numbers in other key

management or authentication sessions. To alleviate the

risk, a multi-factor authentication and key management pol-

icy with timestamp and one-way hashing concepts is incor-

porated into the proposed model. such an approach allows

the proposed model to avoid KSSTIA type attacks.

In user impersonation attack scenarios, attacker A is pre-

vented from performing any user impersonation attacks.

Consider that attacker A manages to retrieve Ui’s SC

card and extracts information like < ei, fi, gi, SCNi , l, n, ri,
Bio2H(., .), Hash1() >. Furthermore, let’s assume that A

has already identified or obtained the messages commu-

nicated in the previous authentication sessions. In such

cases, our proposed security model forces A to have all

authorizing factors including PWUi, SC, and biometric in-

formation for generating a certain valid message MSG1 =
< M1, M2, T1 EID j >. Practically, the key required to

facilitate the authenticity of the user Ui refers to value

M2 = h(d∗
i ‖L∗

i ‖zi ‖T1). The vital constructs of M2 en-

compass d∗
i = fi ⊕ h(U∗

IDi‖PWU∗
i ‖BioZ∗

i ) and L∗
i = gi ⊕

h(U∗
IDi ⊕PWU∗

i ⊕BioZ∗
i ). However, without providing the

password for that user PWUi, as well as SC and biometric

information, the intruder or attacker A cannot estimate d∗
i

or L∗
i .

5.1.2. Resistance to Gateway Impersonation Attacks

In the proposed system, attacker A is capable of imperson-

ating the user by pretending GW to be either user Ui or AD j.

To impersonate GW as AD j, the intruder A must estimate

M3 = h(U ′
IDi ‖AD′

ID j ‖ IDGN ‖AD′
X j
‖z′i ‖T2). However,

without having precise information about h(U ′
IDi‖xGW N),

it is impossible for the intruder to estimate the value

of M3. On the other hand, the use of the hash algo-

rithm and the time stamping technique means that intruder

A will not be able to retrieve any significant informa-

tion from messages obtained from the previous authenti-

cation sessions. On the contrary, impersonating as GN

to user Ui, the intruder requires estimating a valid fac-

tor M8 = h(ZSessionGN‖U ′
IDi‖d′

i‖z′j). To achieve it, the in-

truder requires having information about zi that further

helps in the estimation of ZSessionGN = h(U ′
IDi‖ADID j‖zi‖z j).

To retrieve the value of zi, A requires knowing the se-

cret key of GN. This condition cannot be fulfilled, as the

secret key is preserved or protected by the administrator.

An in-depth analysis shows that A can impersonate by

decrypting M1 = (UIDi‖SCNi‖zi)
2 mod. However, this is

a highly tedious and challenging task due to the compu-

tational complexity of Rabin-assisted ECC and its allied

quadratic residue problem (QRP). Therefore, the proposed

security model or the allied protocol eliminates any possi-

bility of a gateway node impersonation attack.
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5.1.3. Resistance to Modification and Replay Attacks

In the proposed method, intruder A is unable to make

any modification to messages MSG1 =< M1, M2, T1,
EIDJ >, MSG2 =<IDGN , M3, M4, M5, T2>, MSG3 =<M6,
M7, T3 >, or MSG4 =< M7, M8 >. Consider that attacker

A is capable of intercepting any one of the message chunks.

Then, it may be able to modify the same and transmit them

further. However, in the proposed method, each message

is protected by means of a hash value that is estimated us-

ing a secret value. Therefore, the attacker cannot retrieve

the message. For illustration, in MSG1, attacker A can-

not estimate the value of M2 = h(d∗
i ‖L∗

i ‖zi‖T1), because

d∗
i = fi ⊕ h(U∗

IDi‖PWU∗
i ‖BioZ∗

i ) and L∗
i = gi ⊕ h(U∗

IDi ⊕
PWU∗

i ⊕BioZ∗
i )are secret values which cannot be estimated

without knowing PWUi, SC or the biometric feature. In the

case of any modification, the receiver can detect it when

checking the correctness of the hash value in each mes-

sage. Thus, our proposed system can be described as being

modification resilient.

In IoT, mobile nodes may be used. In such a scenario,

the attacker may try to replay a stale message transmitted

by a certain user. In the proposed method, the timestamp

feature allows to resist any replay attacks.

5.1.4. Resistance to Insider Attacks and Verification of

Credentials

Typically, nodes or users may sign up to various appli-

cations or information systems using similar passwords.

Should an insider somehow get access to the password,

they may use it for impersonating the user and getting ac-

cess to their data. User Ui submits UIDi when signing up

or registering. Therefore, the insider will not be able to

achieve the user’s password.

While attacking the authentication server, verification infor-

mation, e.g. the password, may be retrieved or stolen. The

proposed method enables the server to retain such attributes

as <UIDi ; SC(Ni) ; xi ; personal credential > and does not

store any password-related information. Therefore, even af-

ter gaining access to the authentication server, the attacker

cannot obtain the user’s password-related information.

5.1.5. Mutual Verification, Session Key Attack,

and Anonymity

In WSN-based IoT, mutual authentication is required be-

tween the nodes. In practice, the intruder is not capable

of easily retrieving M2 = h(d∗
i ‖L∗

i ‖zi‖T1) without having

the genuine private key of the user, d∗
i and L∗

i . In such

a case, the gateway node GN is not able to authenticate Ui
by verifying the precision of M2. In the same way, user

Ui can verify gateway node GN by verifying the correct-

ness of M8 = h(ZSessionGN‖U ′
IDi‖d′

i‖z′j). In this scenario,

user Ui and the GN can authenticate each other. Further-

more, AD j authorizes GN by checking the correctness of

M3 = h(U ′
IDi‖AD′

ID j‖IDGN‖AD′
X j
‖z′i‖T2). Similarly, gate-

way node can authorize AD j by verifying the correctness

of M6 = h(ZSession j‖ADX j‖z j‖T3). The proposed security

model offers seamless mutual authentication between GN

and AD j.

During mutual authentication, session key ZSession =
h(UIDi‖ADID j‖zi‖z j) is formed between user UIDi and AD j
to secure future communication. Noticeably, the security

of ZSession relies on the secrecy of the random numbers

involved. In fact, these values remain protected by the

Table 3

Comparison of the proposed solution and other methods

Security features Amin et al. [39] Yeh et al. [42] Hue et al. [43] Jiang et al. [16] Gope et al. [44] Proposed

User untraceability ◦ ◦ ◦ • ◦ •

Replay attack ◦ • • •

User impersonation attack • ◦ ◦ ◦ • •

Gateway node impersonation attack ◦ ◦ ◦ ◦ • •

Sensor node impersonation attack • • • • • •

De-synchronization attack ◦ ◦ ◦ ◦ • •

Support of dynamic node addition • ◦ ◦ ◦ • •

Insider attack • ◦ ◦ • •

Stolen smartcard attack • ◦ ◦ ◦ • •

User anonymity • ◦ ◦ • • •

Identity guessing attack • ◦ ◦ • • •

Support of three-factor security • ◦ ◦ ◦ ◦ •

Supports correct password update • ◦ ◦ ◦ ◦ •

Session key disclosure attack ◦ • • ◦ •

Bio hashing ◦ ◦ ◦ ◦ ◦ •

Quality of service ◦ ◦ ◦ ◦ ◦ •

Rabin-assisted ECC ◦ ◦ ◦ ◦ ◦ •

Fuzzy verification ◦ ◦ ◦ ◦ ◦ •
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secret values shared between WSN nodes participating in

the exchange of each message. Let the session key be

ZSession = h(UIDi‖ADID j‖zi‖z j) which is somehow known

to intruder A. Even though A knows the session key, they

cannot estimate any future or past session keys using ZSession
as the session key itself is secured with the help of one-way

hash function Hash1(). In addition, the random number

used < zi,z j > may be different in each session, and, there-

fore, the proposed model offers resistance to any session

key attacks.

A situation may be experienced when intruder A retrieves

messages transmitted between the users and tries to iden-

tify the user. Now, observing our proposed model, it

can be found that it integrates user identity in M1 =
(UIDi‖SCNi‖z′i)

2 mod n. To retrieve user identity UIDi, the

intruder requires the knowledge of the secret key when

executing Rabin-assisted ECC of gateway GW. In prac-

tice, it is impossible to retrieve, as it is already stored

by ad-ministrator. On the other hand, the computational-

complexity of the quadratic residue problem (QRP) makes

it near impossible for the intruder to obtain UIDi by de-

crypting the value of M1 = (UIDi‖SCNi‖z′i)
2 mod n.

Table 3 compares the proposed solution with other similar

methods described in the referenced publications.

5.2. Simulation Results

To assess the efficiency of the proposed (secure) WSN

routing protocol, we simulated it with a distributed sen-

sor network comprising 50 nodes cooperating across the

Table 4

Nodes characteristics in simulation environment

Parameter Value

MAC IEEE 802.15.4

PHY 802.15.4PHY

Antenna Omni-directional

Radio range 200

Sensor nodes 50

Efficiency of RF power amplifier 0.47

Link margin 40 dB

Gain factor 30 dB

Power density of AWGN channel –134 dBm/Hz

Noise figure (receiver) 10 dB

Path loss 3–5 dB

Carrier frequency 2.5 GHz

Bandwidth 20 kHz

BER performance 1 ·10−3

Transmitter circuit power consumption 98.2 mW

Receiver circuit power consumption 112.6 mW

Antenna gain of transceiver 5 dB

Routing table update period per round 5

Routing table size 100

Transmission rate 2–10 kb/s

Packet size 2 kbits

Transmission probability of each node 0.8

region. Furthermore, each node was assigned a radio range

of 200 m. To examine the effectiveness of the proposed se-

cure routing protocol in avoiding malicious or attack nodes,

two compromising or attacker nodes were incorporated in

the simulation environment (Table 4).

Figure 1 presents the packet delivery ratio (PDR) perfor-

mance of our proposed security model and a routing proto-

col without any security features. As depicted, performance

of the proposed model was nearly equivalent to that of the

model without any security. This signifies that the pro-

posed approach is lightweight and may be well suited for

any WSNs. Similar performance-related results are visual-

ized in Fig. 2, showing that the proposed security model

exhibits a much lower packet loss rate than the classic rout-

ing protocol.

Fig. 1. Trade-off analysis for packet delivery ratio.

Fig. 2. Trade-off analysis for packet loss.

Figure 3 presents the rate of transmission over varying sim-

ulation times or transmission periods. Here, one may ob-

serve that the transmission rate of the proposed security

method is nearly the same as that of the classical or native

routing protocol. This shows that incorporation of the pro-

posed multi-factor authentication and key management ap-

proaches does not affect the transmission rate significantly.

In WSN-based IoT systems, ensuring timely data transmis-

sion or delivery is of utmost significance. On the other

hand, it is hypothecated that the inclusion of any security

models may impose computational overheads, causing in-

creased latency. In such cases, assessment of the efficiency
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Fig. 3. Trade-off analysis for throughput.

Fig. 4. Trade-off analysis for end-to-end delay.

of the proposed secure protocol in terms of delay, is a must.

Figure 4 presents the end-to-end delay performance of the

proposed secure routing protocol.

6. Conclusions

The proposed protocol is characterized by a delay perfor-

mance that is similar to that of classic or native WSN rout-

ing protocols. The proposed secure routing protocol is ca-

pable of ensuring the QoS required without suffering any

significant delays, computational overheads, packet losses,

retransmission rates or multifactor authentication. The key

management model allows not only to avoid such security

breaches as SCLA and impersonation attacks, but is also

capable of ensuring the maximum possible QoS levels by

guaranteeing higher packet delivery and minimum latency

rates. The proposed model has exhibited satisfactory per-

formance for WSN-based IoT systems.
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