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Abstract—A high-performance polar code introduced as

a product polar code can be constructed by concatenating

two short length polar codes. The punctured structure of this

code was achieved by puncturing one of its constituent codes.

The constructed polar code provided better performance than

a single polar code in the error floor region. However, its per-

formance in the waterfall region was not as good as that of

single polar codes. This paper proposes a new puncturing al-

gorithm for product codes constructed by two identical polar

codes. Puncturing is conducted on both constituent codes, to

ensure that the new code outperforms the previously punc-

tured product polar and single polar codes. This is evident in

both waterfall and error floor regions.

Keywords—polar codes, product codes, punctured codes, itera-

tive decoding.

1. Introduction

Polar codes are recently invented promising forward error

correction (FEC) codes [1], which are well known for their

low complexity in encoding and decoding. However, the

lengths of codes are not flexible as they are in order of

2n (n = 1, 2, . . .). This limits their application in video

services and control-based systems, which usually require

unequal error protection in their structure. Similar to other

linear block codes, obtaining an arbitrary length for polar

codes is possible by puncturing a number of bits from its

original codeword.

Several puncturing methods were proposed, which are

mainly applicable for single polar codes (SPC). In one of

the methods, an exhaustive search is performed to delete

rows and columns that maximize the exponent of the re-

duced generator matrix G [2]. This technique offers bet-

ter performance compared to random puncturing. How-

ever, implementation of an exhaustive search algorithm for

determining a good polarized matrix still remains a time-

consuming process. Another class of punctured polar codes

was proposed in [3], where the first ηρ unreliable bits in

the bit-reversal order are punctured. An improvement is

presented by Wang et al. [4], where a puncturing pattern

is obtained based on the column weights of the generation

matrix. In [5], puncturing and shortening sets are formed

based on bit-reversal permutation of the most unreliable

bits. Similarly, a technique was proposed to ensure short

polar codes, which do not select consecutive coded bits

as punctured ones [6]. Finally, limitations of the above-

mentioned techniques are overcome by puncturing bits at

different levels of the code [7].

In general, performance of SPCs is limited due to the exi-

stence of a low minimum weight, or a relatively high mini-

mum weight with high multiplicity. As a solution, product

polar codes (PPCs) were proposed, which are constructed

by the serial combination of two half-rate polar codes [8].

These codes generate the same minimum weight but with

a lower multiplicity compared to SPCs with rate 1. It is

also shown that with the same code rates and lengths,

punctured PPCs provide better performance than punctured

SPCs. The improvement is mainly evident in the medium to

high signal-to-noise ratios. In the proposed method, punc-

turing of the product code is only conducted at one of its

constituent codes. Low performance of PPCs in the wa-

terfall region is mainly related to the weak performance of

their punctured constituent codes [8].

This paper presents an algorithm, which improves the per-

formance of punctured product polar codes, where their two

constituent codes are punctured. In this way, bits having the

highest error probability are punctured from the constituent

codes. This ensures that the most unreliable bits are punc-

tured for the product polar code and allows its constituent

decoders to efficiently recover the original information.

The rest of the paper is organized as follows. A brief intro-

duction of polar codes is given in Section 2. In Section 3,

structure of product polar codes and a new puncturing tech-

nique applied for both constituent codes are presented. The

effects that different puncturing techniques exert on itera-

tive decoding are analyzed in Section 4. Numerical results

are given in Section 5. Finally, Section 6 concludes the

paper.

2. Polar Codes

The generator matrix, of a (N, K, dmin) polar code with

length N, dimension K and minimum weight (dmin) is

formed by taking n-th, n = log2(N) Kronecker power of

a binary matrix B =

(

1 0
1 1

)

, which is given by GN = B⊗n.

Codewords of these codes are formed by multiplying

a message vector of length K with a sub-matrix of GN ,

which includes only K rows of the generator matrix (GK).
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These rows are selected based on the reliability of N-th

bit-channel. For any binary discrete memoryless channel,

the reliability of N-th bit-channels can be recursively con-

structed by [1]:

Z(w j
2i) =

{

2Z(w j
i )−Z(w j

i )
2 if 1 ≤ j ≤ i

Z(w j−i
i )2 if i+1 ≤ j ≤ 2i

, (1)

where i is a positive integer and in order of 2 (1 ≤ i ≤
2n−1) and Z(w j

2i) denotes the Bhattacharyya parameter of

j-th bit-channel at stage 2i (2i ≤ N). The code construc-

tion method shown in Eq. (1) was initially designed for the

binary erasure channel (BEC), when the equation is initial-

ized by Z(w1
1) = 1

2 . For the binary additive white Gaussian

noise (AWGN) channel, with zero mean and variance
N0
2 ,

Z(w1
1) can be given by [9], [10]:

Z
(

w1
1
)

= e−
Ec
N0 , (2)

where Ec = REb, R is the rate of the code and Eb is the

energy spent per bits.

The smallest Z(w) value obtained from Eq. (1) refers to the

most reliable bit-channel, known as a good bit-channel. Let

AI represents a set of good bit-channels. The remaining bits

are known as bad bit-channels and are denoted as elements

of Ac
I . Good channels are suitable for carrying information,

and the rest are recognized as frozen bits.

Let u =
(

u1 u2 . . . uK
)

be a message vector of length K and

x =
(

x1 x2 . . . xN
)

be the corresponding coded sequence,

which is generated by x = uGK , K ∈ {AI}. This paper

follows the systematic encoding and decoding proposed by

Arikan in [13]. The dmin of a systematic polar code is

determined based on weights of its rows, whose indices

are elements of AI . This is given by [14], [15]:

dmin(CSPC) = min
b∈AI

{2ω(b)} , (3)

where ω(b) is the number of ones in the binary expansion

of b.

Based on an exhaustive search algorithm, it is proven

that some polar codes have a low minimum weight com-

pared to their length. On the other hand, some codes have

high multiplicity for their relatively high minimum weights.

These specifications deteriorate performance of codes at

medium to high signal-to-noise ratios, which is mainly

dominated by their minimum weight specifications. By

contrast, with the same code rate and length, it is possible

to construct product codes whose minimum weights have

lower multiplicity than those obtained from single polar

codes [8].

3. Product Polar Codes (PPCs)

In (N, K) product polar codes with rate R, every message

with length K = K1 ×K2 is converted to K2 blocks with

length K1 and encoded by the half rate (R1 = K1
N1

= 1
2 ) outer

(N1, K1, dmin1) polar code. These codewords (x1
K2×N1

) are

then encoded by another half rate inner (N2, K2, dmin2)
polar code to form a two-dimensional codeword matrix

(xN1×N2) of (N, K, dmin) product polar codes with R = 1
4 ,

where N = N1 ×N2 and dmin = dmin1 ×dmin2 .

Interactive iterative decoding is used to decode the infor-

mation received from the channel. The basic structure

of iterative decoding of PPCs is shown in Fig. 1. Here,

y = [y1 y2 . . . yN1 ]
T denotes the noisy received sequence,

where yl =
[

yl,1 yl,2, . . . , yl,N2

]

is the received block at

time l. In the figure, Lem(x̂l)s is the extrinsic information

of the estimated codeword (x̂l) delivered by the m-th de-

coder (m = 1, 2). At t-th iteration, log-likelihood ratios

(LLRs) of the decoders are determined by:

L(t)
1 (x̂α) = Leπ(t−1)

2 (x̂α)+yα (4)

L(t)
1 (x̂β ) = Le(t−1)

1 (x̂β )

L(t)
2 (x̂α) = Leπ−1(t)

1 (x̂α)+yπ−1

α ,

where α ∈ {AI}, β ∈ {Ac
I} and Le(0)

2 (x̂α) = 0. Here, (o)π

and (o)π−1
are the interleaved and de-interleaved informa-

tion of (o). Note that a conventional concatenation tech-

nique is followed in this paper, where the inner code cannot

be smaller than the outer code. This means N2 ≥ N1 and

K2 ≥ K1.

Although product polar codes reduce the multiplicity of

dmin, they are represented as low rate codes. In order to

construct product codes with a rate greater than 1
4 , a proper

puncturing technique is required to maintain a high level

of error correcting capability.

Fig. 1. Decoder for a two-dimensional product polar code.
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3.1. Puncturing of Product Polar Codes

The arbitrary lengths of product polar codes can be ob-

tained by puncturing a number of bits from codewords.

Puncturing can only be performed at the inner code. In

this case, codewords of the punctured product polar code

are constructed by deleting nφ rows and columns from

the generator matrix of (N2, K2, dmin2) code [8]. This

concludes a (N1(N2 − nφ ),K1.K2) code, whose minimum

weight (d′
min) is upper bounded with the minimum weight

of dmin1 .(dmin2 − (n1)nφ ), where (n1)nφ gives the number of

punctured bits with the value of 1. Obviously, punctured

bits are the most unreliable bits of (N2, K2, dmin2) polar

code, which are also elements of Ac
I .

Example 1: A (64, 16) product polar code can be formed

by concatenating two (8, 4, 4) polar codes, N1 = N2 = 8
and K1 = K2 = 4.

Let

u =









u1,1 u1,2 u1,3 u1,4

u2,1 u2,2 u2,3 u2,4

u3,1 u3,2 u3,3 u3,4

u4,1 u4,2 u4,3 u4,4









be the message with length K1, which is encoded by the

outer (8, 4, 4) polar code. Its two-dimensional codeword

matrix is given by:

x1 =









p1,1 p1,2 p1,3 u1,1 p1,4 u1,2 u1,3 u1,4

p2,1 p2,2 p2,3 u2,1 p2,4 u2,2 u2,3 u2,4

p3,1 p3,2 p3,3 u3,1 p3,4 u3,2 u3,3 u3,4

p4,1 p4,2 p4,3 u4,1 p4,4 u4,2 u4,3 u4,4









,

(5)

where pi, j are the parity bits and i, j ∈ {Ac
I}. The x1 is

interleaved and encoded by the inner code. The inner code

is punctured by ηϕ = 2 bits. As the first and fifth bit-

channels, according to Eq. (1), are the most unreliable bits

amongst the eight bit-channels of (8, 4, 4) the polar code,

every message of x1 is encoded by removing first and fifth

rows and columns of G8 matrix. This concludes a two-

dimensionally punctured codeword presented in below:

x =





























× × × × × × × ×

p
′

2,1 p
′

2,2 p
′

2,3 p
′

2,4 p
′

2,5 p
′

2,6 p
′

2,7 p
′

2,8

p
′

3,1 p
′

3,2 p
′

3,3 p
′

3,4 p
′

3,5 p
′

3,6 p
′

3,7 p
′

3,8
p1,1 p1,2 p1,3 u1,1 p1,4 u1,2 u1,3 u1,4

× × × × × × × ×

p2,1 p2,2 p2,3 u2,1 p2,4 u2,2 u2,3 u2,4

p3,1 p3,2 p3,3 u3,1 p3,4 u3,2 u3,3 u3,4

p4,1 p4,2 p4,3 u4,1 p4,4 u4,2 u4,3 u4,4





























,

(6)

where p
′

i, j, i, j ∈ {Ac
I} are the parity bits produced by the

inner code. Indeed, all 8 codewords expressing columns

of the matrix are punctured by two bits. This sums up

a (48, 16) product polar code formed by combining (8, 4, 4)

and (6, 4, 4) polar codes.

3.2. The Modified Approach

A new puncturing scheme for the product polar code

is constructed by puncturing both constituent codes. In-

deed, a (N ′, K1.K2) punctured code is formed, where

N′ = (N1−n′φ1
)(N2 −n′φ2

). In this case, n′φ1
and n′φ2

are the

numbers of unreliable bits punctured from (N1, K1, dmin1)
and (N2, K2, dmin2) polar codes, respectively.

Figure 2 shows steps in the process of construction of

(49, 16) product polar code formed by two punctured (8, 4,

4) polar codes. The bit-channel one is the most unreliable

amongst the eight channels of (8, 4, 4) polar code. There-

fore, encoding at the outer code is performed by removing

the first row and column of its generator matrix. Then, ev-

ery message of u (as shown in Fig. 2) is encoded to form a

punctured codeword of the outer code. As bits in the first

column are already punctured, there are l−1 (l = N1) bits

remaining in each codeword.

Let x́1 be the matrix formed by punctured codewords of

the outer code. This matrix is interleaved and each of its

columns is used as the message for the inner code. Hence,

a two-dimensional codeword matrix (x́) at the output of

inner encoder is obtained. One may observe that only one

bit from l−1 = 7 codewords of inner (8, 4, 4) code is

punctured. Again, for this code, the first bit of the codeword

is the most unreliable one. Therefore, bits positioned at the

first row of x́ are punctured to conclude a (49, 16) code.

The minimum weights (d′′
min) of these punctured codes are

given by (dmin1 − (n′1)n′φ1
).(dmin2 − (n′2)n′φ2

), where (n′1)n′φ1

and (n′2)n′φ2
are numbers of bits (with the value of 1)

punctured from (N1, K1,dmin1) and (N2, K2, dmin2) po-

lar codes, respectively. If (n)nφ = (n′1)n′φ1
+ (n′2)n′φ2

and

(n′1)n′φ1
= (n′2)n′φ2

, d′′
min = d′

min +(n′1)n′φ1
.(n′2)n′φ2

. Obviously,

d′′
min > d′

min. This shows that the product code punctured on

the basis of two constituent codes has better performance

than codes whose puncturing is only conducted on one of

their constituent codes. Based on this analysis, improve-

ment is primarily expected at the medium to high signal-

to-noise ratios, where the codes’ performance is dominated

by their minimum weight specifications.

4. Puncturing Effect on the Iterative

Decoding of PPCs

The effect of puncturing is verified through the iterative

decoding process. In each iteration, LLRs of the informa-

tion are updated and fed back to the input of the decoder

until a maximum number of iterations (itemax) is reached.

At t-th iteration (t ≤ itemax), the iterative decoding pro-

cess can be terminated if the following assumptions on

the extrinsic information at the output of two decoders are

satisfied [11]:
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Fig. 2. Puncturing of two (8, 4, 4) polar codes for constructing a (49, 16) PPC.

Fig. 3. Average number of iterations for punctured product polar codes.

• The polarities of soft-output information obtained

from both decoders are not changed at two consecu-

tive iterations. This is done by checking the sign of

LLRs of two decoders, which is given by:

sign
(

L(t)
e1 (x̂i, j)

)

= sign
(

L(t)
e2 (x̂i, j)

)

= x̂(t)
i, j = [±1], (7)

where x̂i, j denotes the estimate value of xi, j and

i, j ∈ {AI}.

• The difference between the magnitudes of the ex-

trinsic information of a decoder input and output is

small.

Figure 3 shows number of iterations applied for iterative

decoding of different polar codes. In simulations, AWGN
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channel is modeled and the code is modulated by binary

phase shift keying (BPSK). The pipeline decoder with the

maximum of 60 iterations is constructed for the decoding

of constituent polar codes. Five iterations are also applied

in process of interactive iterative decoding between the two

decoders.

For (48, 16) and (49, 16) PPCs, puncturing is conducted on

one and two of their constituent codes, respectively. In this

case, two bits from each of eight codewords are punctured

for (48, 16) code, while only one bit of seven codewords

from each of (8, 4, 4) codes is punctured for the (49, 16)

code. As the (49, 16) product code applied a lower num-

ber of punctured bits in its codewords, a weaker impact of

the punctured bits on the LLR calculation of the informa-

tion bits is observed. While the most unreliable bits are

punctured from the inner code of (48, 16) PPC, some bits

recognized as reliable bits for the outer code also punc-

tured. Due to the removal of these reliable bits, interactive

iterative decoding does not provide a good error correct-

ing capability. Hence, decoding of this code is conducted

by a higher number of iterations than in the case of the

(49, 16) code.

Similarly, (736, 256) and (729, 256) PPCs are formed by

puncturing one and both of their constituent codes, respec-

tively. In this case, N1 = N2 = 32, nφ = 9 and n′φ1 = n′φ2 = 5.

This means that nine bits are punctured from each of 32

codewords, when one constituent code is only punctured.

Alternatively, five bits are punctured from 27 codewords,

when both of the constituent codes are punctured. Al-

though a higher number of bits are punctured to obtain the

(729, 256) code, its iterative decoder applies a lower num-

ber of iterations than that of the (736, 256) code. More-

over, 16 bits are punctured from each of 64 codewords of

the (3072, 1024) code, while nine bits are punctured from

55 codewords of the (3025, 1024) code. As shown in the

figure, a lower number of iterations for the (3025, 1024)

code is applied compared to (3072, 1024) at
Eb
N0

≤ 3.5 dB.

5. Numerical Results

In this section, the block error rate (BLER) and bit error

rate (BER) performance of product codes under AWGN

channel with BPSK modulation are evaluated. Codes are

decoded by using the belief propagation decoding method.

Again, for product codes, the iterative decoding of their

constituent decoders is conducted with 60 iterations. Five

iterations are considered for the interactive decoding be-

tween two constituent decoders. For SPCs, decoding is

also accomplished by 60 iterations.

Figure 4 shows performance of (48, 16) and (49, 16)

product codes, as well as the (49, 16) single polar code.

As mentioned in previous sections, (48, 16) and (49, 16)

product codes are formed by puncturing one and both of

their constituent codes, respectively. It is observed that

(49, 16) product code has a similar performance to that

of the single punctured code, while it performs better

than (48, 16) product code. In addition, at
Eb
N0

≥ 5.5 dB,

(49, 16) product code shows a performance better than

that of (49, 16) SPC, as its error floor occurs at BER

< 10−5. The confidence interval of (49, 16) product code

at
Eb
N0

= 6.0 dB is [0.1276× 10−3, 0.3915× 10−3], which

is [0.1907×10−3
, 0.4945×10−3 ] for the SPC.

Fig. 4. BLER and BER performance comparison of (48, 16) and

(49, 16) product polar codes and (49, 16) SPC.

Fig. 5. BER performance comparison of (768, 256) and

(784, 256) product polar codes and (768, 256) SPC.

Figure 5 shows the performance of (768, 256) and (784,

256) product codes, as well as of the (768, 256) single

polar code. The (768, 256) product code is constructed

by con-catenating (32, 16, 4) and (24, 16, 4) polar codes,

whereas (784, 256) product code is formed by combin-

ing two (28, 16, 4) polar codes. In the (768, 256) prod-

uct code, ηϕ = 8 bits from every codeword are punctured,

whereas half of ηϕ bits are punctured from 28 codewords

of the (784, 256) product code. The effect of interactive

decoding is observed at
Eb
N0

≥ 4.5 dB for these codes, when

the decoder can properly recover the punctured information

from a block of information. As a lower number of bits is

punctured from codewords of the (784, 256) product code,

this code provides a better performance than the (768, 256)
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product code for 2.0 dB ≤ Eb
N0

≤ 4.0 dB. The (784, 256)

product code also provides better BER performance than

(768, 256) single polar code for
Eb
N0

≥ 4.5 dB. Figure 3b

shows also that a lower number of iterations is required for

this product code. By contrast, for the single polar code,

256 bits are removed from the codeword, which means that

its error floor is at
Eb
N0

≥ 4.5 dB. No error floor has been

observed for the product code.

Fig. 6. BLER and BER performance comparison of (3072, 1024)

and (3025, 1024) product polar codes, and (3072, 1024 ) SPC.

Figure 6 shows the BER and BLER performance of

(3072,1024) and (3025, 1024) codes. It is seen that both

product codes have a better performance compared to that

of the single code at the waterfall region. This is achieved

for
Eb
N0

≤ 3.0 dB. For
Eb
N0

> 3.0 dB, (3072, 1024) SPC and

PPC formed by puncturing of one of their constituent codes

demonstrate a similar performance. At the same time, their

confidence intervals are [0.4404× 10−3, 0.7497× 10−3]
and [0.3970×10−3, 0.6932×10−3], respectively. However,

the (3025, 1024) PPC constructed based on the puncturing

of two constituent codes outperforms them.

6. Conclusions

The paper proposed a framework of product punctured po-

lar codes, where puncturing is applied to both of the con-

stituent codes. The analysis and simulations concluded that

codes constructed by this method outperform the previously

proposed ones, with a lower number of iterations applied

in their iterative decoding structure.
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