
Paper Load Balancing Based on

Optimization Algorithms: An Overview
Fatma Mbarek and Volodymyr Mosorov

Institute of Applied Computer Science at the Faculty of Electrical, Electronic, Computer and Control Engineering,

Lodz University of Technology, Lodz, Poland

https://doi.org/10.26636/jtit.2019.131819

Abstract—Combinatorial optimization challenges are rooted

in real-life problems, continuous optimization problems, dis-

crete optimization problems and other significant problems in

telecommunications which include, for example, routing, de-

sign of communication networks and load balancing. Load

balancing applies to distributed systems and is used for man-

aging web clusters. It allows to forward the load between

web servers, using several scheduling algorithms. The main

motivation for the study is the fact that combinatorial op-

timization problems can be solved by applying optimization

algorithms. These algorithms include ant colony optimiza-

tion (ACO), honey bee (HB) and multi-objective optimization

(MOO). ACO and HB algorithms are inspired by the foraging

behavior of ants and bees which use the process to locate and

gather food. However, these two algorithms have been sug-

gested to handle optimization problems with a single-objective.

In this context, ACO and HB have to be adjusted to multi-

objective optimization problems. This paper provides a sum-

mary of the surveyed optimization algorithms and discusses

the adaptations of these three algorithms. This is pursued by

a detailed analysis and a comparison of three major schedul-

ing techniques mentioned above, as well as three other, new

algorithms (resulting from the combination of the aforemen-

tioned techniques) used to efficiently handle load balancing

issues.

Keywords—ant colony optimization, honey bee, load balancing,

multi-objective optimization.

1. Introduction

Load balancing is an important element in distributed
and parallel environments, as it is used to achieve the maxi-
mum utilization of resources and to avoid the overwhelming
of nodes. It is also used to provide scalability and avail-
ability of systems, to reduce response time and to avoid
network bottlenecks. Therefore, it is important to improve
the performance of load balancing schemes in order to en-
sure that good overall performance of the system may be
achieved.
Several techniques are used to implement load balancing,
depending on the current status of the system. These tech-
niques can be categorized into two types: static and dy-
namic algorithms. In the case of static algorithms, prior
knowledge of the system is needed, while dynamic algo-
rithms depend on the current system state [1], [2]. Ant

colony optimization (ACO), honey bee (HB) and multi-
objective optimization (MOO) are considered to be three
dynamic load balancing algorithms. The ACO algorithm
relies on a meta-heuristic approach that is designed to solve
the most challenging concern of combinatorial optimiza-
tion problems, as well as of network applications, such
as routing and load balancing [3]. Thus, the aim of the
meta-heuristic algorithm is to supply high quality solutions
within a feasible lead time. ACO algorithms may be ap-
plied to solve different problems, such as the traveling sales-
man problem (TSP), vehicle routing, sequential ordering,
scheduling, quadratic assignment and so on. The HB algo-
rithm is a search method that is used for both continuous
and combinatorial optimization. The MOO algorithm is
known as Pareto optimization and is classified as a multiple-
criteria decision analysis (MCDA). The MOO algorithm is
used in connection with optimization problems that include
more than one conflicting objective function to be opti-
mized simultaneously [4]. Multi-objective problems, such
as routing in communication networks, compressor design,
engineering and logistics, require a number of objective
functions for simultaneous optimization.
In this paper, we describe the use of three main optimiza-
tion algorithms, i.e. ACO, MOO and HB, as a solution
for load balancing. The adaptation of these three algo-
rithms is demonstrated as well, resulting in three new tech-
niques. These new techniques include multi-objective ant
colony optimization (MOACO), multi-objective honey bee
(MOHB) and ANT-BEE algorithms. We also provide a de-
tailed comparison and analysis of previous works involving
these six algorithms.
The remaining parts of this paper are organized as fol-
lows. Section 2 gives an overview of related work. Sec-
tion 3 demonstrates six optimization techniques used for
load balancing. Section 4 presents the qualitative parame-
ters and policies for load balancing techniques, while Sec-
tion 5 contains a theoretical and experimental comparison
of optimization algorithms. Finally, conclusions are given
in Section 6.

2. Related Work

The existing research concerning load balancing solutions
and based on optimization algorithms can be classified into

3



Fatma Mbarek and Volodymyr Mosorov

three categories: methods based on ACO, HB and MOO
algorithms.
Several research projects have been conducted with regard
to load balancing – a phenomenon that constitutes an im-
portant aspect in a distributed system. These projects aim to
solve optimization problems using ACO. Zhang et al. [5]
proposed a load balancing mechanism based on the ant
colony and complex network theories for cloud environ-
ments. They described underload and overload balancing
methods. Kumar et al. [6] implemented the ant colony al-
gorithm in cloud computing using artificial ants in order
to understand how they find the shortest path facilitating
better performance. In [30], an improved ant colony al-
gorithm was proposed to solve the main issues of ACO,
such as ACO’s dependence on the initial conditions. This
dependence can affect the convergence speed and the final
optimal solution.
In [7], an effective load balancing algorithm was developed
using the ACO algorithm in order to maximize or minimize
different performance parameters in cloud environments,
such as CPU load, network delay and memory capacity.
Kun et al. [8] proposed a task scheduling policy based on
a load balancing ACO (LBACO) algorithm for achieving
optimized resource allocation to each task in a dynamic
cloud system. This scheduling strategy is to balance the
entire load system while minimizing the completion span
of a given set of tasks.
Scheduling methods based on the MOO algorithm consti-
tute another category. Arun et al. [9] proposed a new load
balancing algorithm for mobile cloud networks founded on
the MOO algorithm and the genetic algorithm. This al-
gorithm proposes a model for efficient resource allocation
in cloud environments. Li et al. [10] suggested a hybrid
VM live migration algorithm based on the MOO approach,
in order to speed up the virtual machine load rebalancing
process.
In addition to solving load balancing issues in distributed
systems, other efforts based on the HB algorithm have
been taken as well. Paper [11] presented a load balancing
method based on the BC algorithm. This method employs
a resource cost model in which the cloud is partitioned into
several sectors.

3. Load Balancing Optimization
Techniques

3.1. Optimization Algorithms

In this section, we present a review of existing optimization
methods inspired by the behavior of insect colonies, such as
ACO and HB algorithms. The MOO algorithm is described
as well.

3.1.1. Ant Colony Optimization Algorithm

The ACO approach [12]–[14] is based on the principle
of controlling the behavior of a natural system. ACO is

a meta-heuristic algorithm that is presented in Algorithm 1.
It is inspired by the observation of real ant colonies during
foraging, and by their innate ability to find the optimal path
between their nest and the food source. Ants find the short-
est path using stigmergy. It is a consensus social network
mechanism where individual organisms interact with each
other through the modifications of their environment. Thus,
it is a form of self-organization that can produce complex
structures and behaviors without the need for planning or
direct communication.

Algorithm 1. The ACO meta-heuristic algorithm
1: procedure ACO-Metaheuristic
2: Initialization;
3: while stopping criterion is not met do

4: Construct Ant Solutions();
5: Pheromone evaporation();
6: Daemon actions();{optional}
7: end while

8: end procedure

9: procedure Construct Ant Solutions
10: Initialization;
11: ant k = 1, · · · ,nk;
12: t = 0;
13: x = origin node;
14: Dest = target node;
15: Sbest(t) = 0{Short path};
16: Lbest(t) = 0{Short path length};
17: M = Manage private ant memory();
18: while x 6= Dest do

19: for all ant k = 1, · · · ,nk do

20: Sk← origin node of ant k;
21: x← origin node of ant k;
22: repeat

23: Build set of neighbors for x using M;
24: Select next node y and assign the proba-

bility pxy;
25: Add y to the list Sk(t);
26: x = y;
27: until Full path construction
28: if Lk(t) < Lbest(t) then

29: . Lk(t) length of the tour defined in
Sk(t)

30: Sbest(t)← Sk(t);
31: end if

32: end for

33: for each edge (x,y) do

34: Pheromone evaporation();
35: end for

36: t← t +1;
37: end while

38: Return Sbest(t);
39: end procedure

In artificial swarm intelligence, the optimization problem
is concerned with the collective behaviors of ants looking

4



Load Balancing Based on Optimization Algorithms: An Overview

for food. This means that food needs to be collected while
minimizing the energy required to accomplish that task.
The biological analogy of the ACO algorithm consists in
the fact that ants are considered to be simple agents for
an iterative process, used to construct potential solutions,
and are termed artificial ants. The indirect communica-
tion within a colony of simple agents relies on artificial
pheromone trails.
There are two main phases in the ACO algorithm: tour
construction and pheromone updates.

Tour construction: Suppose an artificial ant k builds
a tour from node x to y at time t. At each construction
step, a probabilistic action choice is applied by the ant k,
which is termed the transition probability [3]. The transi-
tion probability of the route (x, y) is noted as Pk

xy(t) and is
defined as follows:

Pk
xy(t) =



















[

τxy(t)
]α
·
[

ηxy(t)
]β

∑
z∈Jk

x

[

τxz(t)
]α
·
[

ηxz(t)
]β , y ∈ Jk

x

0, y /∈ Jk
x

, (1)

where Jk
x is the set of possible displacements that remain to

be visited by ant k positioned at node x, ηxy is a heuristic
that represents the a priori desirability of the move from x
to y, typically ηxy = 1

dxy
, where d is the distance of the route

(x,y), τxy is the pheromone intensity of the move from x
to y, α and β are two positive parameters used to control
the influence of pheromone concentrations and heuristic
information. As given in Eq. (1), the transition probability
of path (x, y) rises with the values of heuristic information
ηxy and pheromone trail τxy.

Pheromone trails update: Once the edge tour is con-
structed, each ant has deposited a certain amount of
pheromone. When all ants have built their tours, the
pheromone is updated at all edges due the evaporation
mechanism which is presented by:

τxy(t)← (1−ρ)τxy(t) , (2)

where 1− ρ is the residual coefficient of the pheromone
decay rate, 0 < ρ ≤ 1. Pheromone evaporation enables to
avoid bad decisions taken beforehand. After evaporation,
all ants drop the pheromone at the edge (x, y) at iteration
t +1:

τxy(t +1)← τxy(t)+∆τxy(t) , (3)

∆τxy(t) =
m

∑
k=1

∆τk
xy(t) , (4)

with

∆τk
xy(t) =

{

Q
Lk

, if ant k passes (x,y)

0, otherwise
, (5)

where τxy(t) is the pheromone concentration on the
edge (x, y) and ∆τxy(t) represents the total amount of
pheromones dropped by all ants on edge (x, y), as given

in Eq. (4), with m being the number of ants used for itera-
tion t. ∆τk

xy(t), defined as in Eq. (5), is the pheromone rate
deposited by ant k on the visited edge (x, y). Lk is the path
length performed by ant k, and Q is a constant.

3.1.2. Honey Bee Algorithm

The honey bee approach is a search algorithm for load
balancing. The bee algorithm (BA) is designed based on
the food foraging behavior of honey bee colonies. In nature,
bees are social and domestic insects. Honey bee colonies
are well-run organizations [15] which live on nectar serving
as their source of energy. The structure of a single colony
of bees includes a queen (a single fertile female within the
colony), drones (thousands of males to fertilize the queen’s
eggs), workers (the largest population of sterile females
within the colony), and broods (young bee larvae) [16].
The bees perform several functions within the group, such
as rearing the young, maintaining the hive or collecting
nectar. They search for the best food source, selecting it
from many sites, taking into consideration both speed and
accuracy. In beehives, honey bees are categorized into two
classes:

• scout bees: are the workers performing random
searches for new flower patches. When they find the
food source, they come back to the hive for deposit-
ing their nectar. Then they inform the forager bees
by performing a waggle dance in front of the hive;

• forager bees: are the bees which follow the scout bees
to the food location and begin to harvest the nectar.
The foragers may waggle dance to recruit other bees
to proceed to abundant food patches.

Algorithm 2. The bee algorithm
1: Initialization;
2: i = 0;
3: MaxIr = 0;{Number iterations}
4: FitnessValue(i) = 0;{Fitness value result}
5: Place all bees, b = 1, · · · ,N;
6: . Generate the initial population;
7: Evaluate fitness of the population;
8: Sort the initial population based on the fitness result;
9: MaxIr←MaxIr +1;

10: while i≤MaxIr or FitnessValue(i)−FitnessValue(i−
1)≤ Error do

11: i← i+1;
12: Select elite patches and non-elite patches for neigh-

borhood search;
13: Recruit the forager bees for selected patches;
14: Evaluate the fitness value of each patch;
15: Select the fittest bee from each patch;
16: Assign remaining bees to search randomly for elite

patch;
17: Evaluate the fitness value of elite patch;
18: end while

5



Fatma Mbarek and Volodymyr Mosorov

The communication language used by bees is fascinating.
It is based on two types of dances: the round dance and the
waggle dance. The round dance is short and attracts other
foragers to learn the approximate distance from the hive to
the food site. This distance is approximately 50 m [17].
The main purpose of the waggle dance is to advertise news
about the quality, quantity, direction of the food source and
the distance between the beehive and the food, provided it is
greater than 50 m [18]. The pseudo-code of bee algorithm
is presented as Algorithm 2.

3.1.3. Multi-Objective Optimization Algorithm

ACO considers optimization problems with one objective
function which is addressed to a unique optimal solution,
while MOO gives a countless combination of solutions
[19], [20]. In MOO, the solution is termed Pareto opti-

mal or non-dominated.
The general single-objective optimization problem is pre-
sented by Definition 1. Definition 2 describes multi-
objective optimization problems.

Definition 1: A single-objective optimization problem
[21]–[23] is defined as:

Minimize/Maximize f (x), x = (x1, · · · ,xn)

Subject to gi(x)≤ 0, i = {1, · · · ,m}
h j(x) = 0, j = {1, · · · , l}







, (6)

where f is the objective function that is discrete or continu-
ous. x ∈Ω is an n-dimensional vector of decision variables
from the universe Ω. Constraints gi(x) ≤ 0 and h j(x) = 0
must be achieved while optimizing f (x).

Definition 2: A multi-objective optimization problem [24],
[25]. The goal of MOO problems is to optimize, simultane-
ously, p objective functions by setting up a vector function
F(x) that designated: f1(x), f2(x), · · · , fp(x), where p is
the number of objective functions. gi(x) and h j(x) are the
achieved constraints for optimizing F(x):

F(x) =











f1(x)
f2(x)

...
fp(x)











. (7)

Obviously, this can be written as:

F(x) =
[

f1(x), f2(x), · · · , fp(x)
]T

.

The general multi-objective optimization problem (MOOP)
is defined as:

MOOP :










Minimize/Maximize F(x), x = [x1, · · · ,xn]

Subject to gi(x)≤ 0, i = {1, · · · ,m} ,

h j(x) = 0, j = {1, · · · , l}

(8)

where x ∈ Ω, x =
[

x1, · · · ,xn
]

is an n-dimensional deci-
sion variables vector (also called design variables) from the
universe Ω. A solution of MOOP minimizes or maximizes
the components of the vector F(x).

3.2. Load Balancing Based on Optimization Methods

This section presents the results of combining the three
algorithms mentioned in the Subsection 3.1.

3.2.1. Multi-Objective Honey Bee Algorithm

The MOHB algorithm is proposed by Soni et al. [26]. This
algorithm optimizes system performance based on multi-
objective requirements, by optimizing the fitness value of
task priority, load and execution error. The proposed tech-
nique pursues the steps shown in the flow chart of Fig. 1.

Fig. 1. MOHB algorithm flow chart.

3.2.2. Multi-Objective Ant Colony Optimization Algo-

rithm

In this section, we define the MOACO method (summarized
as Algorithm 3) that extends Eq. (1) to obtain multiple
pheromone matrices [27], [28]. The transition probability
of Eq. (1) has shifted to:

Pk
xy(t) =



















[

ηxy(t)
]β ∏n

l=1
[

τ l
xy(t)

]αl

∑
z∈Jk

x

[

ηxz(t)
]β ∏n

l=1
[

τ l
xz(t)

]αl
, y ∈ Jk

x

0, y /∈ Jk
x

, (9)

where τ l
xy is the amount of l-pheromone at edge (x,y) for

l-th objective. Supposing that n sub-objectives require to
be optimized. ηxy is the attractiveness of the move from
node x to node y, Jk

x is the feasible nodes for ant k at node x.
β sets out the relative heuristic information of ηxy while
αl ∈ R

+
0 (l = 0,1, · · · ,n) are heuristic parameters to control

the influence of the appropriate objective.

6



Load Balancing Based on Optimization Algorithms: An Overview

Algorithm 3. The MOACO algorithm
1: Place all ants, k = 1, · · · ,nk;
2: Initialize parameters, i.e. α ,β ,ρ ,τ0,nk,Q;
3: x = origin node;
4: Sbest(t) = 0{Short path};
5: Lbest(t) = 0{Short path length};
6: t = 0;
7: for each edge (x,y) do

8: τxy(t) = τ0;
9: . Initialize pheromones to τ0

10: ηxy(t) =
1

dxy
;

11: . dxy is the distance between the link (x,y)
12: end for

13: while stopping criterion is not met do

14: for all ant k = 1, · · · ,nk do

15: Sk← origin node of ant k;
16: x← origin node of ant k;
17: repeat

18: Calculate PK
xy(t) using Eq. (9);

19: Add y to the list Sk(t);
20: x = y;
21: until Full path construction
22: if Lk(t) < Lbest(t) then

23: . Lk(t) length of the tour defined in Sk(t)
24: Sbest(t)← Sk(t);
25: end if

26: end for

27: for each edge (x,y) do

28: Apply evaporation mechanism using Eq. (10);
29: Calculate ∆τ l

xy(t) using Eq. (11);
30: Update the pheromone trail using Eq. (3);
31: end for

32: t ← t +1;
33: end while

34: Return Sbest(t);

After each cycle, the pheromone level of each objective is
updated at edge (x,y) due to evaporation, using the follow-
ing formula:

τ l
xy(t)← (1−ρl)τ l

xy(t) , (10)

where ρl ≤ 1 (l = 0, 1, · · · , n) is the pheromone decay rate
for the l-th objective (1−ρl is the persistence trail).
At every cycle for each objective, the ants left a certain
quantity of pheromones through link (x,y) using the fol-
lowing rule:

∆τ l
xy(t) = ∑

l∈Ω

Q
f lTk

, (11)

where ∆τ l
xy(t) is the quantity of pheromone dropped by

ants. Ω is the set of ants that passed through path (x,y).
Q is a constant, Tk is the non-dominated solution (in each
iteration, non-dominated solutions are stocked in archive Γ)
and f l is the objective value for l-th objective functions.

Fig. 2. Flow chart of ant-bee algorithm.

Algorithm 4. The ant-bee algorithm
1: Initialization;
2: . Initially all virtual machines (VMs) possess

request 0;
3: Maintain an index table with VM id and VM request;
4: Schedule new request to VM;

5: VM← current request0;
6: Update the index table;
7: if VMs are not available then

8: Create random population of ants with same
pheromone value and place parameter;

9: Sort the ants randomly for search;
10: Store the current value of optimal solution;
11: Update pheromone table;
12: end if

13: if all ants complete their tour then

14: Compare updated pheromone table;
15: Select the best solution;
16: Choose the optimal node based on pheromone ta-

ble;
17: Assign best solution to optimal node;
18: Calculate fitness function;
19: if fitness function < threshold then

20: Migrate task to optimal node;
21: else

22: Find next optimal solution;
23: end if

24: end if

25: Return best solution;

3.2.3. Ant-Bee Algorithm

Gothi et al. [29] suggested the ant-bee algorithm for load
balancing in cloud computing. This algorithm combines
both ACO and HB algorithms to obtain an efficient and
feasible optimization algorithm. The generic pseudo-code
of this proposed technique is presented in Algorithm 4,
while Fig. 2 contains the corresponding flow chart.

7



Fatma Mbarek and Volodymyr Mosorov

4. Load Balancing Policies and
Performance Parameters

4.1. Dynamic Load Balancing Policies

Dynamic load balancing algorithms can be defined by their
implementation of strategies or policies, such as:

• Load estimation policy. It determines how to esti-
mate the workload of a particular node. The load may
vary depending on the remaining service time, which
can be calculated based on:

– setting up the periodic CPU state check timer
(idle/busy),

– the number of CPU cycles executed per unit of
real time,

– speed of the CPU node,

– resource demands;

• Process transfer policy. It determines if the process
will be executed remotely or locally;

• Location policy. It selects which node will run the
remote process;

• Priority assignment policy. It determines which local
or remote processes have a higher priority on a par-
ticular node;

• State information exchange policy. It is dynamic load
balancing information strategy which collects infor-
mation about all nodes in the system;

• Migration limiting policy. It helps to control trashing
and it sets the number of times that the process may
migrate from one node to another;

• Selection policy. It is a processor matching policy
which selects the processors involved in the load ex-
change;

• Transfer policy. It determines if the process will be
migrated remotely or locally.

4.2. Performance Measurement

Load balancing techniques are particularly useful in high-
speed networks required by emerging high performance
applications, as they enable to distribute the workload
evenly across the resources. Performance metrics used in
load balancing algorithms include the following parame-
ters [30], [31]:

• Nature. Determines the type of load balancing al-
gorithms: static or dynamic;

• Overload rejection. It is a parameter used to de-
cide the maximum load supported by any server [23].
Overload rejection measures are discontinued if the
overload condition ends. Then, load balancing is shut
down after a short period of time;

• Mean response time. It refers to the period of time
that needs to elapse in order for a process to be

executed in full. To achieve a good response time, an
appropriate load balancing algorithm must be used to
distribute processes among all nodes within a system.
The response time can be affected by several factors,
such as number of users, network bandwidth, num-
ber of submitted requests and mean thinking time.
The average response time can be calculated using
the following formula:

Tresponse =
n
p
−Tthink , (12)

where:

– Tresponse is the response time in seconds,

– n is the number of users,

– p is the number of processes per second the
server receives,

– Tthink is the mean of thinking time (which the
time between one request and the next) in sec-
onds;

• Resource utilization. It includes automatic load bal-
ancing. In a distributed environment, the number of
processes might be large and that demands more pro-
cessing power. Resource utilization is relied upon
more frequently in dynamic algorithms than in static
ones;

• Processor utilization refers to the amount of time
over which a workload is handled by the central pro-
cessing unit (CPU);

• Fault tolerance. This parameter enables the algo-
rithm to work properly if a failure occurs. It deter-
mines the value of the system’s performance. If the
performance of an algorithm degrades when a fault
of any type occurs, it causes a total failure in load
balancing;

• Predictability. It determines the degree of confor-
mity of the calculated outcome of the algorithm. In
static load balancing algorithms, the outcome is pre-
dictable because it is fixed before the execution stage,
while the outcome is unpredictable in dynamic load
balancing, as assumptions are made at run time;

• Stability. It is the delay required for transferring in-
formation among processors and obtaining faster per-
formance. In static load balancing algorithms, there
is more stability than in their dynamic load balanc-
ing counterparts. This is explained by the informa-
tion exchanged between processors in dynamic load
balancing algorithms;

• Adaptability. It checks if an algorithm is capable
of facing a change in the number of processes. Dy-
namic algorithms are perfectly adaptive, while static
algorithms are not;

• Process migration. This parameter determines when
a system should forward a process. That means
whether it should be created locally or remotely.

8



Load Balancing Based on Optimization Algorithms: An Overview

5. Comparison and Analysis of
Optimization Algorithms

In this section, a study was performed regarding vari-
ous load balancing techniques based on ACO, MOO, HB,
MOACO, MOHB and ant-bee algorithms in a distributed
system.

The analysis and the comparison of the above mentioned al-
gorithms were performed based on their purpose, the meth-
ods used, their advantages and disadvantages, or experi-
mental results.

Table 1 presents a comparison between ACO, MOO and
MOACO algorithms, while the comparison of HB, MOHB
and ant-bee algorithms is shown in Table 2.
In [32], the proposed SALB algorithm has better perfor-
mance than the ACO algorithm. The MBBO/DE algorithm
offers better results than the ACO algorithm and the genetic
algorithm [33]. As can be seen in Table 1, the MOACO al-
gorithm provides better results than ACO, first fit (FF) and
greedy scheduling (GS) algorithms [34]. From the compar-
ison shown in Table 2, it can be concluded that the LBA-
HB algorithm is more efficient than round robin, modified
throttled, ACO, artificial bee colony (ABC) and honey bee

Table 1
Load balancing based on ACO, MOO, and MOACO algorithms

Reference title Purpose Methods Advantages Disadvantages

ACO algorithm

Effective scheduling
algorithm for load bal-
ancing (SALB), using
ant colony optimization
in cloud computing [32].

To balance the load of
the entire system and to
maximize or minimize
different parameters,
such as performance and
energy use.

Scheduling algorithm for
load balancing (SALB),
using ACO.

• It is efficient in finding
the overloaded node
within a minimum time
period,
• Good response time,
• Less energy consump-
tion.

Poorer performance. It
means that the perfor-
mance can be increased
by varying different
parameters.

MOO algorithm

Multi-objective optimi-
zation algorithm based
on BBO for the prob-
lem of virtual machine
consolidation [33].

To achieve good load
balancing, better per-
formance and to reduce
power consumption.

Multi-objective optimiza-
tion algorithm named
MBBO/DE.

• Lower power consump-
tion,
• Ability to find optimal
solutions,
• Acceptable time cost.

• For load balancing,
MBBO/DE algorithm
provides same results
as ACO algorithm in
scenario 1,
• Migration time is
longer than in other
algorithms simulated in
scenario 2.

MOACO algorithm

Multi-objective virtual
machine placement for
load balancing [34].

To solve the virtual
machine placement prob-
lem.

Multi-objective Ant
Colony Optimization
(MOACO) algorithm.

Optimize multiple objec-
tives to balance the load
in different scales.

The proposed MOACO
algorithm provides poor
results for the two objec-
tives OBD and IBD.

Table 2
Load balancing based on HB, MOHB and ant-bee algorithms

Reference authors Purpose Methods used Experimental results

HB algorithm

W. Hashem et al. [35] To avoid overutilization of
resources and to minimize
execution time.

Load balancing algorithm
based on honey bee behavior
(LBA HB).

• Shorter execution time,
• Efficient resources utilization,
• Lower degree of imbalance,
• Lower makespan.

MOHB algorithm

A. Soni et al. [26] To schedule workload and
minimize the total processing
cost.

Bee colony based multi-
objective algorithm.

The execution time is longer
due to loop parameters.

Ant-bee algorithm

M. Kashefikia et al. [36] To find different routes in order
to avoid network congestion.

Multiple ant bee colony opti-
mization (MABC) algorithm.

• Offers better effects during
network failures,
• More suitable for unstable
networks.

9



Fatma Mbarek and Volodymyr Mosorov

behavior load balancing (HBB-LB) algorithms [35]. And
the bee colony-multi-objective algorithm provides better re-
sults than the single objective bee colony algorithm [26].
From the experimental results shown in [36], the multi-
ple ant bee colony optimization (MABC) algorithm is sig-
nificantly more effective in an unstable network than the
multiple ant colony optimization (MACO) algorithm.

Fig. 3. Mean response time.

The experimental results of ACO and MOACO algo-
rithms [37], related to qualitative performance parameters,
are shown in Figs. 3 and 4.

Fig. 4. Resource utilization.

Figure 3 shows that the performance of MOACO is the best
when the number of tasks is bigger than in ACO. Figure 4
shows that MOACO offers a lower resource utilization rate
with different resources.
In [38], an experiment was performed using ACO and HB
algorithms and evaluating the execution time covering 10,
50, 200 and 1000 iterations. Its results are shown in Fig. 5.
ACO offers a better execution time than HB for a small
number of iterations. However, when the number of itera-
tions increased, both ACO and HB algorithms were almost
equal in terms of the computation time.
In this paper, the significance of load balancing optimiza-
tion algorithms is discussed through an analytic previous
works. The results are summed up in Table 3, showing
the conclusions concerning three main optimization algo-

Fig. 5. Resource utilization.

Table 3
Comparative analysis of optimization algorithms

Parameters ACO HB MOO

Nature Dynamic Dynamic Dynamic

Throughput High High High

Fault tolerance High Moderate Low

Response time High High High

Resource utilization Moderate High High

Migration time Low Low High

Complexity Moderate High High

Speed Low Moderate Low

Adaptability More More More

Predictability Low Low Low

Stability Low Low Low

Waiting time Low Low Low

rithms: ACO, HB and MOO, as well as their qualitative,
performance-related parameters.

6. Conclusions

This paper addresses load balancing-related optimization
problems impacting the performance of entire systems. The
research provides a comprehensive review of the optimiza-
tion algorithms used to balance system loads.
Furthermore, it describes three well known algorithms used
in engineering applications, namely ACO, HB and MOO.
A consolidation of the three methods has been performed in
order to present MOACO, MOHB and ant-bee algorithms.
The advantages and disadvantages of the different algo-
rithms are discussed as well in the paper. Some optimiza-
tion techniques suffer from specific limitations, e.g. the HB
algorithm offers the best results only at a particular distance
(short path), while ACO suffers from speed-related prob-
lems and convergence.
As far as theoretical considerations are concerned, it can
be concluded that the three new algorithms based on the
combination of optimization methods are self-adaptive and
more feasible than the original techniques.

10



Load Balancing Based on Optimization Algorithms: An Overview

Acknowledgements

This work was financed by the Lodz University of Technol-
ogy, Faculty of Electrical, Electronic, Computer and Con-
trol Engineering, and was conducted as part of its statutory
activity (project no. 501/12- 24-1-5418).

References

[1] F. Mbarek and V. Mosorov, “Load balancing algorithms in hetero-
geneous Web cluster”, in Proc. Intern. Interdiscipl. PhD Worksh.

IIPhDW 2018, Świnoujście, Poland, 2018, pp. 205–208 (doi:
10.1109/IIPHDW.2018.8388358).

[2] A. A. Rajguru and S. S. Apte, “A comparative performance analysis
of load balancing algorithms in distributed system using qualitative
parameters”, Int. J. of Recent Technol. and Engin. (IJRTE), vol. 1,
pp. 175–179, 2012 (ISSN: 2277-3878).

[3] C. Blum, “Ant Colony Optimization: Introduction And Recent
Trends”, Phys. of Life Rev., vol. 2, no. 4, pp. 353–357, 2005
(doi: 10.1016/j.plrev.2005.10.001).

[4] D. Constantinou, “Ant colony optimisation algorithms for solving
multi-objective power-aware metrics for mobile ad hoc networks”,
Ph.D. Thesis, University of Pretoria, Hatfield, Pretoria, South Africa,
August 2010 [Online]. Available: http://hdl.handle.net/2263/25981

[5] Z. Zhang and X. Zhang, “A load balancing mechanism based on ant
colony and complex network theory in open cloud computing fed-
eration”, in Proc. 2nd Int. Conf. on Industr. Mechatron. and Autom.

ICIMA 2010, Wuhan, China, 2010, pp. 240–243
(doi: 10.1109/ICINDMA.2010.5538385).

[6] R. Kumar and G. Sahoo, “A load balancing using ant colony in cloud
computing”, Int. J. of Inform. Technol. Conver. and Serv. (IJITCS),
vol. 3, no. 5, pp. 1–5, 2013 (doi: 10.5121/ijitcs.2013.3501).

[7] R. Mishra and A. Jaiswal, “Ant colony Optimization: a solution
of load balancing in cloud”, Int. J. of Web and Semantic Technol.
(IJWesT ), vol. 3, no. 2, pp. 33–50, 2012
(doi: 10.5121/ijwest.2012.3203).

[8] L. Kun, X. Gaochao, Z. Guangyu, D. Yushuang, and W. Dan, “Cloud
task scheduling based on load balancing ant colony optimization”, in
Proc. 6th Ann. ChinaGrid Conf. ChinaGrid 2011, Liaoning, China,
2011, pp. 3–9 (doi: 10.1109/ChinaGrid.2011.17).

[9] E. Arun, A. Reji, P. M. Shameem, and R. S. Shaji, “Novel algo-
rithm for load balancing in mobile cloud networks: multi-objective
optimization approach”, Wirel. Personal Commun., vol. 97, no. 2,
pp. 3125–3140, 2017 (doi: 10.1007/s11277-017-4665-6).

[10] R. Li, Q. Zheng, X. Li, and J. Wu, “A novel multi-objective optimiza-
tion scheme for rebalancing virtual machine placement”, in Proc.

IEEE 9th Int. Conf. on Cloud Comput. CLOUD 2016, San Fran-
cisco, CA, USA, 2016, pp. 1–7 (doi: 10.1109/CLOUD.2016.0099).

[11] P. Ehsanimoghadam and M. Effatparvar, “Load balancing based on
bee colony algorithm with partitioning of public clouds”, Int. J. of

Adv. Comp. Sci. and Appl. (IJACSA), vol. 9, no. 4, pp. 450–455,
2018 (doi: 10.14569/IJACSA.2018.090462).

[12] M. Dorigo, “The ant colony optimization meta-heuristic: algo-
rithms, applications, and advances”, in Handbook of Metaheuristics,
M. Gendreau, J.-Y. Potvin, Eds. Springer, 2003, pp. 251–285
(doi: 10.1007/0-306-48056-5 9).

[13] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for
discrete optimization”, Artif. Life, vol. 5, no. 2, pp. 137–172, 1999
(doi: 10.1162/106454699568728).

[14] D. Darquennes, “Implementation and applications of ant colony al-
gorithms”, Master Thesis, Facultées Universitaires Notre-Damedela
Paix, Namur, Institut d’Informatique, 2005 [Online]. Available:
http://www.swarm-bots.org/∼mdorigo/HomePageDorigo/thesis/
master/DarquennesMASTER.pdf

[15] C. Jankowski, “Social Structure of the Honey Bee” [Online].
Available: http://animals.mom.me/social-structure-honeybee-
7317.html (accessed on Feb. 24, 2018).

[16] S. Bitam, “Bees life algorithm for job scheduling in cloud comput-
ing”, in Proc. 3rd Int. Conf. on Commun. and Inform. Technol. ICCIT

2012, Hammamet, Tunisia, 2012, pp. 186–191 [Online]. Available:
https://pdfs.semanticscholar.org/1823/
27d9c30c4970313704c53701100771d85bed.pdf

[17] O. Bin Hassan and A. S. Ahmad, “Optimum load balancing of
cloudlets using honey bee behavior load balancing algorithm”, Int. J.

of Adv. Res. in Comp. Sci. and Manag. Studies, vol. 3, pp. 334–339,
2015 (ISSN: 2321-7782).

[18] B. Yuce, M. S. Packianather, E. Mastrocinque, D. C. Pham, and
A. Lambiase, “Honey bees inspired optimization method: the bees
algorithm”, Insects 2013, vol. 4, pp. 646–662, 2013
(doi: 10.3390/insects4040646).

[19] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen,
Evolutionary Algorithms For Solving Multi-Objective Problems, 2nd
ed. Springer, 2007 (doi: 10.1007/978-0-387-36797-2).

[20] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering”, Struct. Multidisc. Optim., vol. 26, no. 6,
pp. 369–395, 2004 (doi: 10.1007/s00158-003-0368-6).

[21] A. Mukerjee, R. Biswas, K. Deb, and A. P. Mathur, “Multi-objective
evolutionary algorithms for the risk return trade-off in bank loan
management”, KanGAL Report Number 2001005, 2001 [Online].
Available: https://www.iitk.ac.in/kangal/reports.shtml#2001

[22] K. Deb, “Multi-objective optimization using evolutionary al-
gorithms: an introduction”, KanGAL Report Number 2011003,
pp. 1–24, 2011 [Online]. Available: https://www.egr.msu.edu/
∼kdeb/papers/k2011003.pdf

[23] C. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont, Evo-

lutionary Algorithms for Solving Multi-Objective Problems. Kluwer,
2002, pp. 4–13 (ISBN: 0306467623).

[24] G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, “Com-
parison of multi-objective optimization methodologies for engineer-
ing applications”, Comp. and Mathem. with Appl., vol. 63, no. 5,
pp. 912–942, 2012 (doi: 10.1016/j.camwa.2011.11.057).

[25] E. Zitzler, “Evolutionary algorithms for multi-objective optimization:
methods and applications”. Ph.D. Thesis, Computer Engineering and
Networks Laboratory, Swiss Federal Institute of Technology Zurich,
1999 [Online]. Available: https://sop.tik.ee.ethz.ch/
publicationListFiles/zitz1999a.pdf (doi: 10.3929/ethz-a-003856832).

[26] A. Soni, G. Vishwakarma, and Y. K. Jain, “A bee colony based
multi-objective load balancing technique for cloud computing envi-
ronment”, Int. J. of Comp. Appl., vol. 114, no. 4, pp. 19–25, 2015
(doi: 10.5120/19967-1825).

[27] S. Srichandan, T. A. Kumar, and S. Bibhudatta, “Task scheduling
for cloud computing using multi-objective hybrid bacteria foraging
algorithm”, Future Comput. and Inform. J., vol. 3, no. 2, pp. 1–21,
2018 (doi: 10.1016/j.fcij.2018.03.004).

[28] P. Cardoso, M. Jesus, and A. Marquez, “MONACO – multi-objective
network optimization based on an ACO”, in Proc. of 10th Enguentros

de Geometria Computacional, Sevilla, Spain, 2003, pp. 1–10, 2003.
[29] P. B. Gothi and D. V. Vekariya, “An efficient approach for load

balancing using dynamic AB algorithm in cloud computing”, Int.

J. of Innov. Res. in Comp. and Commun. Engin., vol. 4, no. 4,
pp. 7767–7773, 2016 (doi: 10.15680/IJIRCCE.2016.0404283).

[30] F. Mbarek and V. Mosorov, “A load balancing system to protect
servers against DDoS attacks”, in Algorithms, Networking and Sens-

ing for Data Processing, Mobile Computing and Applications, A. Ro-
manowski, D. Sankowski, and J. Sikora, Eds. Łódź: Lodz University
of Technology Press, 2016, pp. 55–74 (ISBN: 9788372837387).

[31] P. Kanungo, “Measuring performance of dynamic load balancing
algorithms in distributed computing applications”, Int. J. of Adv.

Res. in Comp. and Commun. Engin., vol. 2, no. 10, pp. 4063–4066,
2013 ([Online]. Available: https://pdfs.semanticscholar.org/ee91/
3f3d20f107ae269f66adc72c4b4f6fa71993.pdf

[32] S. Khan and N. Sharma, “Effective scheduling algorithm for load
balancing (SALB) using ant colony optimization in cloud com-
puting”, Int. J. of Adv. Res. in Comp. Sci. and Softw. Engin.,
vol. 4, no. 2, pp. 966–973, 2014 [Online]. Available:
https://pdfs.semanticscholar.org/e2cc/
4722d826943c99a3bdb5eb7dde8797516a25.pdf? ga=
2.168973801.915765179.1571657419-1047092990.1571657419

11



Fatma Mbarek and Volodymyr Mosorov

[33] Q. Zheng et al., “Multi-objective optimization algorithm based on
BBO for virtual machine consolidation problem”, in Proc. 21st Int.

Conf. on Parall. and Distrib. Sys. ICPADS 2015, Melbourne, VIC,
Australia, 2015, pp. 414–421 (doi: 10.1109/ICPADS.2015.59).

[34] F. Fang and B. B. Qu, “Multi-objective virtual machine placement for
load balancing”, in Proc. Int. Conf. on Inform. Science an Technol.

IST 2017, Wuhan, Hubei, China, 2017, pp. 1–9
(doi: 10.1051/itmconf/20171101011).

[35] W. Hashem, H. Nashaat, and R. Rizk, “Honey bee based load bal-
ancing in cloud computing”, KSII Trans. on Internet and Inform.

Syst., vol. 11, no. 12, pp. 5694–5711, 2017
(doi: 10.3837/tiis.2017.12.001).

[36] M. Kashefikia, N. Nematbakhsh, and R. A. Moghadam, “Multiple
ant-bee colony optimization for load balancing in packet-switched
networks”, Int. J. of Comp. Netw. and Commun. (IJCNC), vol. 3,
no. 5, pp. 107–117, 2011 (doi: 10.5121/ijcnc.2011.3508).

[37] L. Zuo, P. Shu, S. Dong, C. Zhu, and T. Hara, “A multi-objective
optimization scheduling method based on the ant colony algorithm
in cloud computing”, Big Data Services and Computational Intelli-
gence for Industrial Systems, IEEE Access, vol. 3, pp. 2687–2699,
2015 (doi: 10.1109/ACCESS.2015.2508940).

[38] M. B. Jasser, M. Sarmini, and R. Yaseen, “Ant colony optimization
(ACO) and a variation of bee colony optimization (BCO) in solving
TSP problem, a comparative study”, Int. J. of Comp. Appl., vol. 96,
no. 9, pp. 1–8, 2014 (doi: 10.5120/16819-6587).

Fatma Mbarek received her
B.Sc. degree in Computer Sci-
ence in 2012 and her M.Sc.
degree in Computer Systems
and Network Security in 2014
from the Faculty of Sciences of
Gabes, Tunisia. She is currently
a Ph.D. student at the Institute
of Applied Computer Science at
the Faculty of Electrical, Elec-
tronic, Computer and Control

Engineering in Lodz, Poland. She was an Erasmus grant-
holder under the Erasmus Mundus EGOV-TN Project at
Lodz University of Technology. Her current research fo-
cuses on load balancing, optimization algorithms, network
security, and web servers performance.

https://orcid.org/0000-0002-5545-3918
E-mail: fmbarek@kis.p.lodz.pl
Institute of Applied Computer Science
Lodz University of Technology
Stefanowskiego 18/22
Lodz, Poland

Volodymyr Mosorov received
his M.Sc. and the Ph.D. de-
grees in Telecommunications
from the Lviv Polytechnic Na-
tional University, Ukraine in
1983 and 1998, respectively. In
2009 he received the D.Sc. de-
gree (Habilitation) in Computer
Science from AGH University
of Science and Technology in
Cracow, Poland. He has been

working at the Institute of Applied Computer Science (pre-
viously – Computer Engineering Department), at the Fac-
ulty of Electrical, Electronic, Computer and Control Engi-
neering, TUL since 2000, currently as a Professor of the
Lodz University of Technology.

https://orcid.org/0000-0001-6016-8671
E-mail: mosorow@kis.p.lodz.pl
Institute of Applied Computer Science
Lodz University of Technology
Stefanowskiego 18/22
Lodz, Poland

12


