
Paper Implementation of the Concept

of a Repository for Automated

Processing of Semi-Structural Data
Mateusz Piech, Bartosz Rakoczy, Jacek Dajda, and Marek Kisiel-Dorohinicki

AGH University of Science and Technology, Cracow, Poland

https://doi.org/10.26636/jtit.2020.136919

Abstract—Semi-structural data tend to be problematic due

to the sparsity of their attributes and due to the fact that, re-

gardless of their type, they are immensely diverse. This means

that data storage is a challenge, especially when the data con-

tained within a relational database – often a strict requirement

defined in advance. In this paper, we present a thoroughly de-

scribed concept of a repository that is capable of storing and

processing semi-structural data. Based on this concept, we es-

tablish a database model comprising the architecture and the

tools needed to search the data and build relevant processors.

The processor described may assign roles and dispatch tasks

between the users. We demonstrate how the capacities of this

repository are capable of overcoming current limitations by

creating a system for facilitated digitization of scientific re-

sources. In addition, we show that the repository in question

is suitable for general use, and, as such, may be adapted to any

domains in which semi-structural data are processed, without

any additional work required.

Keywords—document management system, ECM, JSON, work-

flow.

1. Introduction

Formulation of the concept of a repository for process-

ing semi-structural data is extremely important when at-

tempting to process data with an unknown structure, at

early stages of the system’s implementation process. Cur-

rently, no SQL database engine offers such a functional-

ity, since the given requirements related the system rule

out such a possibility. Data stored in a repository have a

complex hierarchical model which varies between the spe-

cific data sets, regardless of their type, and thus leads to

the sparsity of data. It may also be classified as semi-

structural, meaning that it is characterized by a tree-like

structure.

Our main motivation for establishing this concept was to

create a repository allowing to process hierarchical data

within a relational database. In addition to ensuring effi-

cient storage and management of data, an effective reposi-

tory must contain a set of features that have never been seen

before in similar systems, and must serve as a framework

for advanced automation of processing. In our concept,

many technical issues needed to be resolved, many with no

obvious or previously devised solutions. These include the

following:

• creation of an adequate database enabling storage

and procurement of semi-structural. Additionally, the

system needed to offer a functionality allowing to add

novel types of resources online, regardless of their

structure;

• creation of a query language, enabling to look up the

resources;

• creation of a framework for assembling and managing

the resource processing pipeline;

• establishment of a hierarchical data access strategy

providing access to individual tasks in the processing

pipeline.

The literature presents systems that have so far been used

mostly for storing semi-structural data. In contrast, in sys-

tems meant for automated processing, i.e. in enterprise

content management (ECM) solutions, structural data are

used. In our concept, we offer an innovative mix of both

of these types of systems, taking a novel approach to

ECM tools.

From our research, there emerged the concept of a system

that solves all aforementioned problems. In order to vali-

date this conceptual solution, we implemented it by build-

ing a system used to store and process digital scientific

resources. We formulated specific processing rules and

a repository structure which is universal and may be ap-

plied, without any restrictions, to any domains relying on

semi-structural data.

In this article, the most important elements of this sys-

tem are presented, addressing the issues referred to above.

Initially, we present previous work that has served as an in-

spiration for the creation of specific system modules. Next,

we present the terminology required to understand the con-

cept repository model and its additional elements, such as

the database model and system architecture. Following that,

two important aspects are explained: the query language for

semi-structural sparse data and the creation of a processing

pipeline. Lastly, the concept of the system is evaluated and

summarized, and the existing solutions and specific ideas

for future improvements are discussed.

76

Implementation of the Concept of a Repository for Automated Processing of Semi-Structural Data

2. Related Work

One of the first systems for semi-structural data manage-

ment was Lore [1]. It was designed for storing objects

with a tree structure. In their work, the authors thoroughly

analyzed the system: starting with the user interface, to in-

dexing, querying and query optimization, to physical data

storage in the database. The next iteration of the system,

as shown in [2], migrated the model along with the cor-

responding query language to an XML-based one. This

resulted in simplification of the system and transferrin the

responsibility for keeping the model to the database en-

gine. Research concerned with using native XML in rela-

tional databases, initiated then in [3], resulted in its even-

tual commercial implementation, leading to the first ever

native solution – XML Support in Microsoft SQL Server

2005 [4]. Subsequent research on the use of XML in re-

lational databases resulted in the development of a query

language, SQLxD [5], which aimed to execute searches

through XML documents in a transparent way, without

using specific XML operators.

With the rapid expansion of amounts of data transferred

via the Internet, the XML format was displaced by JSON

whose performance and compactness were superior com-

pared to XML [6], [7]. Those features encouraged its

implementation in terms of native support in relational

databases, starting with PostgreSQL 9.2 in 2012. When

tested semi-structural data scenarios in [8], it outper-

formed the solution based on the open data scheme (entity-

attribute-value model), attaining results similar to those

of a document database (MongoDB) with regards to per-

formance.

The interest in creating a repository for semi-structural data

storage, and in processing this type of data, drove other re-

search in the field. One of the most intriguing papers on this

issue is [9], in which storage for semi-structural data was

created, and in which the data were connected by a graph,

with the intention of facilitating data lookup for data min-

ing purposes. Another repository, designed as a digital

library, was project Aquarelle [10], in which SGML struc-

ture objects were processed into schemes defined by object-

oriented semantic network systems. Other than simple

repositories for semi-structural data, there are also some

general systems capable of working with this sort of data,

such as: Sinew [11] – SQL system for multi-structured

data, BioRegistry [12] – structured metadata repository for

bioinformatic databases, or a scalable analysis platform for

semi-structured data [13].

Some analyses focused also on methods for semi-structural

data storage [14]–[16], as well as on approaches to un-

structured data access and information extraction (from

HTML [17] or XML documents [18], [19]). Other re-

searchers created a new model, ORA-SS [20], to which

XML data were parsed. There was also an attempt to

create a layered view model for XML Repositories [21],

and a wrapper for XML [22]. Various ways of processing

queries and of optimizing XML repositories were also ex-

plored in [23], [24], in addition to the concept of processing

data via the ETL process [25]. Despite the abundance of

studies on semi-structural data processing, there is still an

apparent lack of research focusing on our topic of interest,

i.e. on both semi-structural data storage in JSON format in

a repository, and suitable technologies enabling the repos-

itory to perform automated processing.

3. Related Systems

The concept we have developed may be categorized as be-

ing of the ECM class, meaning that it combines systems

with solutions for:

• document management (DMS),

• electronic document flow (Workflow),

• business process management (BPM).

Nowadays, numerous systems similar to the one presented

here exist. One of the most important BPM systems on

the market is Metasonic Flow [26], which assumes that the

main units in the system are tasks organized into processes.

It is possible to assign tasks to users or to set tasks that are

to be automatically performed by the system (e.g. report

generation).

Doxis4 iECM is another noteworthy example [27], with its

core underlying idea consisting in offering various database

services (e.g. authorization, logs, data management), i.e.

elements that contribute to the overall end solution. One

of the advantages of this system is its ability to search data

based on metadata filters.

Both systems mentioned above, as well as other concerned

with this specific area, share a number of peculiar charac-

teristics (i.e. structuring tasks into processes and assigning

these to users), while only differing in terms of their fea-

tures. Conclusions reached based on the analysis of these

systems served, to a certain degree, as a point of departure

for our own work, as we noticed that none of these systems

supported the processing of dynamic structure data.

4. Architecture and Database Model

In the first stage of this research, we focused on techni-

cal aspects [28], which required the following tasks to be

performed:

• the formulation of a definition of specific elements

used in the system,

• preparation of a database model,

• preparation of a system architecture.

4.1. Terms and Definitions

The analysis of the problem revealed that a semi-structured

repository contained two kinds of elements: resources

(physical objects) and relationships (relations between ob-

77

Mateusz Piech, Bartosz Rakoczy, Jacek Dajda, and Marek Kisiel-Dorohinicki

jects, i.e. resources). Each element has its own template

which defines its type, along with its structure, consisting

of a metadata definition that contains information about re-

strictions (constraints, regexp, etc.), along with its position

(hierarchy) within the data tree. The metadata definition

maintains the schema and permits the control of meta-

data values which are based on both resources and rela-

tionships.

Fig. 1. Schema depicting two dynamic objects and their rela-

tionship within the repository.

The relationships mentioned above allow for the connec-

tion of objects at two levels, making it possible to join the

individual types in the following ways:

• resource-resource: a simple connection of two re-

sources, for example Article#1 is connected with

Article#1 because of a quotation,

• metadata-resource: a connection between a metadata

value and another resource it points to.

A simple example of a metadata-resource connection is

shown in Fig. 1, based on the data from a digital resource

repository.

4.2. Database Model

The next step for us was to create a schema model to work

with the previously described objects, and to design the

presented solution, in compliance with the applicable tech-

nological requirements, in a relational database. Otherwise,

we would have chosen a document-oriented database –

a member of the NoSQL family [29], designed for stor-

ing semi-structural objects. Relational databases have two

ways of storing such data, namely an open schema model

or a dedicated, native model (e.g. XML or JSON). The

entity-attribute-value model [30], which stores objects in

three tables, as per the model’s name, is a practical ex-

ample of the former variety. Another example would be

the inverted index model [31], which, despite being in-

tended for storing structure mapping as an index, contains

a model allowing for semi-structural data storage, thanks to

its ability to forge references between objects and attributes.

For the purpose of this particular concept, based on the

satisfactory results obtained in the course of research con-

ducted [6], [8], [32], [33], we chose a dedicated, native

method, namely JSON.

Fig. 2. Model schema for a dynamic repository in a relational

database.

Fig. 3. Flow of data being pushed into the repository.

78

Implementation of the Concept of a Repository for Automated Processing of Semi-Structural Data

Fig. 4. Final architecture of the repository.

In our initial schema, each element (resource, relationship,

template and metadata) had its own table, as shown in

Fig. 2. Unfortunately, the schema itself failed to meet all

of the authors’ expectations, since it lacked the ability to

control the structure of any data uploaded. To solve this

issue, we created an additional layer with a validation mech-

anism and object transformation abilities deployed during

all uploads. The flow of data is shown in Fig. 3, and its

in-depth description may be found in [28]. It is run both

for resources and for relationships.

4.3. Repository Architecture

The concept of the system architecture was based on layers

which separate specific responsibilities. Four main layers

may be distinguished:

UI layer – this repository access layer was split into

two independent applications. The first one, called the

client, allows to explore the repository content. The other,

called administrative, has much more critical responsibili-

ties. Depending on their rights, the user is granted access to

their tasks in the repository, as created during data stream

processing.

Controller layer – defines the communication between UI

and the repository. The communication itself is based upon

REST, with an amendable API to enable future improve-

ments for the purpose of other types of UI applications,

and for various platforms.

Business logic layer – provides the repository’s main logic.

Its key components are:

• search service – for processing data queries. Here,

an implementation of the query language (described

in Section 5) may be found;

• persistence service – a component for processing data

uploaded to the repository, validation level imple-

mentation and data control, as described in Subsec-

tion 4.2;

• configuration service – a module meant for the con-

figuration of a repository specification in accordance

with its purpose. This involves creating a proper tem-

plate and metadata, but also data processors tied to

the life cycle – in this case, the flow of documents

during the digitization process;

• user service – a module for data security control and

system roles.

Data layer – provides data access and comprises two ele-

ments. The first is a relational database (SQL) in which all

repository data are kept. Additionally, to improve search

capabilities, a full text search engine was utilized. Data are

replicated between databases and their application is com-

pliant with the CQRS design pattern [34], offering clear

separation between reading and modifying the data.

5. Query Language

The primary purpose for developing a dedicated query lan-

guage for this repository was to support the accessing and

the filtering of resources in the database. Usually, the pro-

cess of writing queries is rather complex, due to the dy-

namic and unknown structure of the objects. The query

language adheres to the principles of data-driven develop-

ment, and was developed based on the structure and the

properties of data representation adopted in the presented

model. To facilitate common data access scenarios, the

query language works in two modes – one for syntax com-

pletion, and one for fetching resources.

The stored resources, as stated above, have a tree-like struc-

ture. Thus, it is necessary to introduce a mechanism for

accessing the nested levels. While researching the already

existing technologies, we encountered a template engine

79

Mateusz Piech, Bartosz Rakoczy, Jacek Dajda, and Marek Kisiel-Dorohinicki

known as Twig1. One of its features offers stream-like ac-

cess to the nested objects, using pipe character — which

separates subsequent steps in the query. A syntax example

is presented below.

{{TOKEN_1 | TOKEN_2 | ... |TOKEN_n}}

There are three types of tokens:

1. Access to resource. Possible tokens:

• r – access to all resources,

• r(ID) – access to one resource with a given ID,

• r(TYPE) – access to all resources of a given

TYPE.

2. Access to metadata. Possible tokens:

• m(ID) – access to metadata with a given ID,

• m(NAME) – access to metadata with a given

NAME.

3. Operators. Possible tokens:

• first – select the first result,

• sum – summarize all results,

• max – select the maximum result.

The examples of query syntax are:

• summarize the total word count at pages in a book

with id = 12

{{r(12) | m(‘Page’) | m(‘Words’) | sum}},

• provide all authors of a book with id = 12

{{r(12) | m(‘Author’) | m(‘Last name’)}}

As we can see, the query language works based on two

modes, both of which are automatically translated into the

auto-generated SQL language. However, the algorithm for

creating Select differs, depending on the mode. In the syn-

tax completion feature, the next nested levels are obtained

by creating Join to a metadata table with the name or id

condition. An example of auto-generated SQL for the first

query example, after three tokens, is:

SELECT m2.label FROM Resource AS r

JOIN template metadata AS tm

ON tm.template id = r.template

JOIN metadata AS m

ON m.id = tm.metadata id

JOIN metadata AS m1

ON m1.parent = m.id

JOIN metadata AS m2

ON m2.parent = m1.id

WHERE r.id = 12 AND m.label = ‘Page’

AND m1.label = ‘Words’

1https://twig.symfony.com/

In the resource access mode, the next nested levels are

obtained using the prepared nested Select along with an un-

winding method, in line with the corresponding hierarchy.

The SQL generated for the first query example is:

S1 − > SELECT jsonb array elements(

content #> ‘Page’

) AS content FROM resource WHERE id = 12;

S2 − > SELECT jsonb array elements(

S1.content::jsonb #> ‘Words’

) AS content FROM S1;

S3 − > SELECT SUM(

S2.content::jsonb #>> ‘value’

) FROM S2;

The query language presented in this section is simple and

has been designed for accessing and filtering resources in

the repository. Its main advantage is that it allows to create

queries with no knowledge of the structure of the resource

representation and the metadata hierarchy. Moreover, its

extension allowing to support more operators is straight-

forward and simply requires the implementation of SQL

generation. The drawback of this solution is related to

its performance, since the auto-generated SQL queries are

never as fast as those hand-written by an expert. How-

ever, due to the optimization possible via the indexes in

the database, performance is fully acceptable and does not

overshadow the benefits achieved as a result of the superb

functionality of the query language.

6. Data Processing

The process of adding resources to the repository is

pipeline-based, thereby enabling us to split it into smaller

elements, and thus to distribute tasks between a larger group

people. The first step towards achieving this objective was

to introduce states to the resource, an approach which pro-

vides information as to what phase of the workflow the pro-

Fig. 5. The workflow of a scanned book.

80

Implementation of the Concept of a Repository for Automated Processing of Semi-Structural Data

cessed element finds itself in. The next step was to create

a graph, showing changes between the states. An exam-

ple of such a graph for the process of scanning a book in

a digital archive is presented in Fig. 5. A node in such

a graph represents the state which it is in. The edges con-

tain information about the required metadata that needs to

be filled in before proceeding to the next stage. Successful

validation allows the state change to take place.

6.1. User Roles and Restrictions

Processing would make no sense without the ability to

distribute the workload between individual system users.

Bearing this in mind, the next element we adapted for the

purpose of the repository was related to the roles that the

users play in the system. The most important role is that

of the administrator who has the ability to create new roles

and assign them to users. The next role in the hierarchy is

that of a coordinator who manages the process and whose

task is to define roles for the respective stages, i.e. opera-

tors for process stages (e.g. scanners, graphic designers or

editors). There are two restriction levels here: for the entire

application or for a specific resource.

During resource processing, more restricted metadata (i.e.

those that are not made public) are also filled in, for exam-

ple information about the person processing the resource

or internal system markings. Therefore, each process has

a configured, hierarchical metadata structure which is visi-

ble in the public portion of the system.

7. Concept Application

7.1. Technical Requirements

The crucial part of the implementation of any concept in-

volves the choice of the right relational database. Currently,

all most popular relational databases support JSON:

• PostgreSQL 9.2 (2012),

• Oracle Database 12c release 1 (2013),

• MySQL 5.7 (2015),

• Microsoft SQL Server 13.00 (2016).

In the presented implementation, PostgreSQL version 10.4

was used, and our choice was influenced mostly by the

comparison of the performance of the engines [36]. Even

though the choice of any particular engine has no bear-

ing on whether the presented concept is operational or

not (since it only affects its performance), it was possible

to use any relational database compliant with the techni-

cal requirements and in accordance with the authors’ in-

terests.

Since the requirement for a relational database was the only

specific constraint we were given, the remaining parts, such

Fig. 6. A visualization of the structure used for normalization

and validation of repository input data.

as UI or the business logic layer, could be chosen arbitrarily,

as long as the following were implemented:

• data flow (Fig. 3),

• data structure (Fig. 6),

Such features as implementation of the query language (as

described in Section 5), or use of a full text search engine

were optional and affected user experience and performance

only.

7.2. RePeKa

Our concept was used to implement a system for storing

and processing digital science resources. Archiving science

resources is a complex process, requiring numerous stages,

and is dependent on the creation of a processing pipe-

line (workflow). It begins with the data insertion stage

(scanned and processed OCR or raw data). Then, a multi-

step content analysis is conducted in which different types

of metadata are filled in – the authors, page count or re-

lations to other documents. Each step is verified by a per-

son with a proper authorization, until the resource is fi-

nally placed in the repository. The system implemented

was known as RePeKa, and its user interface may be seen

in Fig. 7.

7.3. Application to Science

In keeping with our motivations, we sought to implement

the concept in the digitization of scientific resources. Nev-

ertheless, this concept could be applied in multiple fields

of science and areas of knowledge. One of the most rele-

vant areas, where this work might be of benefit, is that of

forensic analysis. Examples of research based on hierar-

chical or semi-structural data may be found in [37]–[39].

Biological sciences, for which entity-attribute-value models

have been used to date, are another area where our concept

may exert a major impact [41, 40]. Further potential appli-

cations are related to repositories used in of ecology [42],

neuroscience [43] or telemedicine [44].

81

Mateusz Piech, Bartosz Rakoczy, Jacek Dajda, and Marek Kisiel-Dorohinicki

Fig. 7. RePeKa interface.

8. Evaluation

In this research, we implemented the concept in the form of

the RePeKa system, and then evaluated it in terms of func-

tionality and performance. First of all, we compared our

solutions with the existing systems and, secondly, expanded

the range of tests originally performed [28].

8.1. Functionality Evaluation

Comparing the RePeKa system with the solutions referred

to in the related systems section, we may notice some dif-

ferences in the functionalities available in each of them.

Those differences are listed below:

• Data set:

– RePeKa – capable of processing any data set of

any structure, without requiring any changes in

the system architecture. Additionally, capable

of creating relations between elements of a set

at any level of the structure tree;

– Other systems – none of the remaining systems

is capable of processing semi-structural data;

• Authorization:

– RePeKa – the ability to connect any user au-

thorization module, e.g. LDAP;

– Other systems – depending on the system, in-

ternal or external modules used;

• Process automation:

– RePeKa – has the capacity to connect any au-

tomatic task to the process, for example: report

generation, sending an email or performing au-

tomatic optical character recognition (OCR);

– Other systems – simple task automation (report

generation, sending an email) available only

in the Metasonic Flow system. It is, however,

lacking the option to connect its own task im-

plementation to the process, whereas RePeKa

does have the capacity to do so;

• Set search-through:

– RePeKa – capable of building queries of any

complexity level thanks to the mechanism im-

plemented for the query language;

82

Implementation of the Concept of a Repository for Automated Processing of Semi-Structural Data

– Other systems – metadata-based dataset

searches available in the Doxis4 iECM system.

Although the concept has been implemented in the form of

the RePeKa system which was less advanced when com-

pared with Metasonic Flow or Doxis4 iECM, it offered the

most important functionalities required for completing the

task identified – i.e. ensuring digital document workflow.

This is due to the capabilities of both systems which (when

compared with each other) render RePeKa superior in terms

of the features available. These features, coupled with the

option of keeping datasets of a semi-structural nature, mean

that our system is a noteworthy candidate when choosing

a repository for the processing of this type of data.

8.2. Performance Evaluation

The database model presented here has been tested in pre-

vious research [28]. It was compared with the entity-at-

tribute-value model in terms of memory consumption and

performance. Both models were implemented in the same

database (PostgreSQL), and both approaches offered the

same functionalities. The solutions were tested for many

different data sets of various sizes structure complexities.

Three test cases were also prepared to simulate real case

scenarios for the repository. A summary of the results of

tests performed with the use of the same hardware config-

uration are as follows:

• on average, a twofold improvement in terms of data

writing and disk size requirements was attained,

• an increase in speed of 2 to 4 times was achieved,

depending on the query complexity, with better per-

formance reached for queries including object rela-

tions.

Additionally, along with the introduction of new functions,

such as the query language (Section 5), we tested the per-

formance of the system for different data models: the one

presented in this concept, the one based on entity-attribute-

value, and the MongoDB-based solution (which is a doc-

ument database). Tests were performed on the same hard-

ware configuration as that mentioned previously (3.2 GHz

quad-core Intel i5-4460 processor with 16 GB of RAM and

256 GB of Intel solid-state storage), on a data set consist-

ing of 10 million objects and 10 million relations between

them. We chose two test cases for the query language: one

for syntax completion and the other for content fetching.

8.3. Syntax Completion

The following queries were used to test syntax completion

performance:

• syntax completion for all objects of a given type

(QT1):

{{r(‘Book’) | m(‘Page’) | m(‘Words’) | * }}

• syntax completion for a single object (QT2):

{{r(12) | m(‘Page’) | m(‘Words’) | * }}

The time required to reach the next stage (separated by

the pipe character “|”) was measured. There are 3 stages

in each query, marked S1, S2 and S3. The results are dis-

played in Figs. 8 and 9. One may notice that for QT2, the

results assume similar values – with our model having the

Fig. 8. Results of the QT1 tests.

Fig. 9. Results of the QT2 tests.

advantage. In QT1, however, this concept (containing in-

formation about the potential structure) highly outperforms

the others. For the proposed model, the size of the dataset

does not impact the time required for processing. In other

models, the effect of dataset size is more apparent – in the

case of EAV, the time linearly dependent on query complex-

ity, while for MongoDB, this process required a lookup of

the entire set, and was the major cost of the whole operation

(processes from 0 to S1).

8.4. Content Fetching

In QT1 and QT2 queries, we exchanged the “*” sign for

aggregate sum operand and ran the tests, marking them Q1

and Q2. The results, presented in Figs. 10 and 11, show that

MongoDB yields the best results in the case of query Q2.

This was to be expected, since it is a document-oriented

83

Mateusz Piech, Bartosz Rakoczy, Jacek Dajda, and Marek Kisiel-Dorohinicki

Fig. 10. Results of the Q1 tests.

Fig. 11. Results of the Q2 tests.

database. However, Q1 relational databases perform better

(due to the huge number of rows to aggregate), and the

pro-posed model, using JSON, is faster than EAV (which

is also true for Q2).

9. Conclusion

The objective of this research was to formulate a reposi-

tory concept used for processing resources based on semi-

structural data. The main achievements of our repository

concept are presented below:

• a semi-structural database model, allowing for the

storage of resources with a hierarchical structure.

Furthermore, the open schema model facilitates the

configuration of any resource type – thanks to this

feature, the resulting solution is universal and thus

its implementation is feasible in any domain;

• the query language for resource exploration. Its cre-

ation was made possible via the introduction of struc-

ture control for the respective resources kept by the

database;

• its advanced data processor configurator, based on

state changes, coupled with the configuration of roles

responsible for the respective stages. In concert with

the remaining features of the concept, this makes the

design of any data flow configuration possible.

9.1. Future Work

Implementation of this novel system has proven that the

goals set are achievable. It has been confirmed that the

concept developed in the course of this research is effective.

However, analysis of the end product shows that the cur-

rent solution should be treated merely as a starting point –

a platform for further extension. Our subsequent goal is to

use intelligent data processing automation in order to en-

sure that the extract, transform and load data process (ETL)

is performed in the subsequent stages without the need for

any user control – with a virtual, intelligent supervisor de-

ployed only.

Acknowledgements

The research presented in this paper has been conducted

as part of an R&D project, co-financed by the EU and by

and the Polish Ministry of Digitization, titled: European

technological legacy - dissemination of historical and con-

temporary technical science publications via an innovative

IT system, AGH University of Science and Technology,

2016-2019.

References

[1] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom,

“Lore: A database management system for semistructured data”,

ACM SIGMOD Rec., vol. 26, no. 3, pp. 54–66, 1997

(doi: 10.1145/262762.262770).

[2] R. Goldman, J. McHugh, and J. Widom, “From semistructured data

to XML: Migrating the Lore data model and query language”, in

Proc. of the 2nd Int. Worksh. on the Web and Databases WebDB’99,

Philadelphia, PA, USA, 1999 [Online]. Available:

http://infolab.stanford.edu/lore/pubs/xml.pdf

[3] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt,

and J. Naughton, “Relational databases for querying XML docu-

ments: Limitations and opportunities”, in Proc. of the 25th Int. Conf.

on Very Large Data Bases VLDB’99, Edinburgh, Scotland, 2008,

pp. 302–314 [Online]. Available:

http://www.vldb.org/conf/1999/P31.pdf

[4] M. Rys, “XML and relational database management systems: in-

side Microsoft SQL Server 2005”, in Proc. of the ACM SIG-

MOD Int. Conf. on Manag.t of Data, Baltimore, MD, USA, 2005,

pp. 958–962 (doi: 10.1145/1066157.1066301).

[5] R. Marcjan and J. Wyrostek, “Processing XML documents on the

basis of quasi-relational model and SQLxD language”, Studia Infor-

matica, vol. 32, no. 2A, pp. 111–120, 2011

(doi: 10.21936/si2011 v32.n2A.253).

[6] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison

of JSON and XML data interchange formats: a case study”, in

Proc. of the ISCA 22nd Int. Conf. on Comp. Appl. in Indust. and

Engin. CAINE 2009, San Francisco, CA, 2009, USA, 2009, vol. 9,

pp. 157–162 [Online]. Available:

https://www.cs.montana.edu/izurieta/pubs/IzurietaCAINE2009.pdf

[7] G. Wang, “Improving data transmission in web applications via the

translation between XML and JSON”, in Proc. 3rd Int. Conf. on

Commun. and Mob. Comput., Qingdao, China, 2011, pp. 182–185

(doi: 10.1109/CMC.2011.25).

84

Implementation of the Concept of a Repository for Automated Processing of Semi-Structural Data

[8] M. Piech and R. Marcjan, “A new approach to storing dynamic data

in relational databases using JSON”, Computer Science, vol. 19,

no. 1, 2018 (doi: 10.7494/csci.2018.19.1.2505).

[9] H. Dayani-Fard and I. Jurisica, “Dynamic semi-structured repository

for mining software and software-related information”, U.S. Patent

No. 6,339,776, 2002 [Online]. Available:

https://patents.google.com/patent/CA2284949A1/en

[10] V. Christophides, M. Dörr, and I. Fundulaki, “A semantic network

approach to semi-structured documents repositories”, in Research

and Advanced Technology for Digital Libraries, First European Con-

ference, ECDL’97 Pisa, Italy, September 1-3, 1997 Proceedings,

C. Peters and C. Thanos, Eds. LNCS, vol. 1324, pp. 305–324. Berlin,

Heidelberg: Springer, 1997

(doi: 10.1007/BFb0026735).

[11] D. Tahara, T. Diamond, and D. J. Abadi, “Sinew: a SQL system for

multi-structured data”, in Proc. of the ACM SIGMOD Int. Conf. on

Manag. of Data, Snowbird, UT, USA, 2014, pp. 815–826

(doi: 10.1145/2588555.2612183).

[12] M. Smaı̈l-Tabbone, S. Osman, N. Messai, A. Napoli, and M. D. De-

vignes, “BioRegistry: A structured metadata repository for bioin-

formatic databases”, in Computational Life Sciences First Interna-

tional Symposium, CompLife 2005, Konstanz, Germany, September

25-27, 2005. Proceedings, R. Berthold et al., Eds. LNCS, vol. 3695,

pp. 46–56. Berlin, Heidelberg: Springer, 2005

(doi: 10.1007/11560500 5).

[13] D. Tsirogiannis et al., “Scalable analysis platform for semi-

structured data”, U.S. Patent No. 9,613,068, 2017 [Online]. Avail-

able: https://patents.google.com/patent/US9613068B2/en

[14] D. Florescu, “Managing semi-structured data”, Queue, vol. 3, no. 8,

pp. 18–24 2005 (doi: 10.1145/1103822.1103832).

[15] R. Agrawal et al., “System and method for organizing reposito-

ries of semi-structured documents such as email”, U.S. Patent No.

6,592,627, 2003 [Online]. Available:

https://patents.google.com/patent/US6592627B1/en

[16] D. L. Draper, D. B. Christianson, and K. L. Komissarchik, “Method

and apparatus for storing semi-structured data in a structured

manner”, U.S. Patent No, 6,581,062, 2003 [Online]. Available:

https://patents.google.com/patent/US20060265410

[17] J. Komissarchik and E. Komissarchik, “System and method for facts

extraction and domain knowledge repository creation from unstruc-

tured and semi-structured documents”, U.S. Patent No. 8,682,674,

2014 [Online]. Available:

https://patents.google.com/patent/US7756807

[18] F. S. Tseng and W. J. Hwung, “An automatic load/extract scheme for

XML documents through object-relational repositories”, J. of Syst.

and Softw., vol. 64, no. 3, pp. 207–218, 2002

(doi: 10.1016/S0164-1212(02)00044-4).

[19] C. C. Huang and C. M. Kuo, “The transformation and search of semi-

structured knowledge in organizations”, J. of Knowl. Manag., vol. 7,

no. 4, pp. 106–123, 2003 (doi: 10.1108/13673270310492985).

[20] G. Dobbie, X. Wu, T. W. Ling, and M. L. Lee, “ORA-SS: An Object-

Relationship-Attribute Model for Semi-Structured Data”, Tech. Rep.,

School of Computing, Singapore, 2000 [Online]. Available:

https://pdfs.semanticscholar.org/9371/

c2ae3e59e2c8b107b39525318ca3ce36c90d.pdf

[21] R. Rajugan, T. S. Dillon, E. Chang, and L. Feng, “A layered view

model for XML repositories and XML data warehouses”, in Proc. of

the 5th Int. Conf. on Comp. and Inform. Technol. CIT’05, Shanghai,

China, 2005, pp. 206–215 (doi: 10.1109/CIT.2005.15).

[22] L. Liu, C. Pu, W. Han, D. Buttler, and W. Tang, “Building an ex-

tensible wrapper repository system: A metadata approach”, in Proc.

of the 3d IEEE Comp. Soc. Metadata Conf., Bethesda, MD, USA,

1999.

[23] M. Mani and N. Sundaresan, “System and method for query pro-

cessing and optimization for XML repositories”, U.S. Patent No.

6,654,734, 2003 [Online]. Available:

https://patents.google.com/patent/US6654734B1/en

[24] S. E. Madnick and M. D. Siegel, “Query and retrieving semi-

structured data from heterogeneous sources by translating struc-

tured queries”, U.S. Patent No. 6,282,537, 2001 [Online]. Available:

https://patents.google.com/patent/US6282537B1/en

[25] D. Skoutas and A. Simitsis, “Ontology-based conceptual design of

ETL processes for both structured and semi-structured data”, Int. J.

on Semantic Web and Inform. Syst. (IJSWIS), vol. 3, no. 4, pp. 1–24.

2007 (doi: 10.4018/jswis.2007100101).

[26] Metasonic Flow, “User Manual V5.3.5”, Metasonic AG Pfaffenhofen

[Online]. Available: https://www.metasonic.de/

[27] Doxis4 iECM, “Doxis4 Architecture”, Ser Solutions [Online]. Avail-

able: https://www.sergroup.com/en/technology.html

[28] M. Piech et al., “Model for dynamic and hierarchical data repository

in relational database”, Computer Science, vol. 19, no. 4, 2018

(doi: 10.7494/csci.2018.19.4.3088).

[29] J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database”,

in Proc. 6th Int. Conf. on Pervasive Comput. and Appl., Port Eliza-

beth, South Africa, 2011, pp. 363–366

(doi: 10.1109/ICPCA.2011.6106531).

[30] P. P. S. Chen, “The entity-relationship model – toward a unified

view of data”, ACM Trans. on Database Syst. (TODS), vol. 1, no. 1,

pp. 9–36 1976 (doi: 10.1145/320434.320440).

[31] K. Y. Whang, B. K. Park, W. S. Han, and Y. K. Lee, “In-

verted index storage structure using subindexes and large objects

for tight coupling of information retrieval with database manage-

ment systems”, U.S. Patent No. 6,349,308, 2002 [Online]. Available:

https://patents.google.com/patent/US6349308B1/en

[32] Z. H. Liu, B. Hammerschmidt, D. McMahon, Y. Liu, and

H. J. Chang, “Closing the functional and performance gap between

SQL and NoSQL”, in Proc. of the Int. Conf. on Manag. of Data,

San Francisco, CA, USA, 2016, pp. 227–238

(doi: 10.1145/2882903.2903731).

[33] G. L. S. T. J. Whittaker, “Improving performance of schemaless

document storage in PostgreSQL using BSON”, CPSC 438 Fi-

nal Project, April 29, 2013, New Haven, CT [Online]. Available:

https://www.geoffreylitt.com/resources/Postgres-BSON.pdf

[34] M. Fowler, “CQRS”, Martin Fowler’s Blog, 2011 [Online]. Avail-

able: https://martinfowler.com/bliki/CQRS.html

[35] DB-Engines Ranking of Search Engines [Online]. Available:

https://db-engines.com/en/ranking/search+engine

(accessed on 2019-09-01)

[36] N. H. Lim, “PostgreSQL [9.5.0] vs MariaDB [10.1.11] vs MySQL

[5.7.0]”, 2016 [Online]. Available: http://nghenglim.github.io/

PostgreSQL-9.5.0-vs-MariaDB-10.1.11-vs-MySQL-5.7.0-year-2016

(accessed on 2019-09-01)

[37] J. Dajda, R. Dębski, M. Kisiel-Dorohinicki and K. Piętak, “Multi-

domain data integration for criminal intelligence”, in Man-Machine

Interactions 3, A. Gruca, T. Czachórski, and S. Kozielski, Eds. Ad-

vances in Intelligent Systems and Computing series (AISC), vol. 242,

p. 345–352. Springer, 2014 (DOI: 10.1007/978-3-319-02309-0 37).

[38] M. R. Durose, A. D. Cooper, and H. N. Snyder, “Collecting and

Processing Multistate Criminal-history Data for Statistical Analysis”,

US Department of Justice, Office of Justice Programs, Bureau of

Justice Statistics, 2019 [Online]. Available:

https://www.bjs.gov/content/pub/pdf/cpmchdsa.pdf

[39] A. J. Singer et al., “Victimization, fear of crime, and trust in crimi-

nal justice institutions: A cross-national analysis”, Crime & Delin-

quency, vol. 65, no. 6, pp. 82–844, 2019

(doi: 10.1177/0011128718787513).

[40] R. S. Chen et al., “Exploring performance issues for a clinical

database organized using an entity-attribute-value representation”,

J. of the Amer. Med. Inform. Assoc., vol. 7, no. 5, pp. 475–487,

2000 (doi: 10.1136/jamia.2000.0070475).

[41] P. M. Nadkarni et al., “Organization of heterogeneous scientific data

using the EAV/CR representation”, J. of the Amer. Med. Inform.

Assoc., vol. 6, no. 6, pp. 478–493, 1999

(doi: 10.1136/jamia.1999.0060478).

[42] O. J. Reichman, M. B. Jones, and M. P. Schildhauer, “Challenges

and opportunities of open data in ecology”, Science, vol. 331,

no. 6018, pp. 703–705, 2011 (doi: 10.1126/science.1197962).

[43] M. Wiener, F. T. Sommer, Z. G. Ives, R. A. Poldrack, and B. Litt,

“Enabling an open data ecosystem for the neurosciences”, Neuron,

vol. 92, no. 4, pp. 617–621 2016

(doi: 10.1016/j.neuron.2016.11.009).

85

Mateusz Piech, Bartosz Rakoczy, Jacek Dajda, and Marek Kisiel-Dorohinicki

[44] V. Tiwari and R. S. Thakur, “An extended views based big data

model toward facilitating electronic health record analytics”, in

Telemedicine Technologies, H. D. Jude and V. E. Balas, Eds. Aca-

demic Press, 2019, pp. 193–199

(doi: 10.1016/B978-0-12-816948-3.00013-1).

Mateusz Piech is currently

pursuing a Ph.D. in Com-

puter Science at AGH Uni-

versity of Science and Tech-

nology. His research interests

include development of semi-

structured data models. More

specifically, his work examines

different approaches to storing

dynamic criminal data in rela-

tional databases, which is also

the main topic of his dissertation. He is interested in reac-

tive programming and big data.

https://orcid.org/0000-0002-0146-5921

E-mail: mpiech@agh.edu.pl

AGH University of Science and Technology

Mickiewicza 30

30-059 Cracow, Poland

Bartosz Rakoczy is currently

a Research and Testing Assis-

tant at AGH University of Sci-

ence and Technology. He re-

ceived his M.Sc. in Computer

Science from the same univer-

sity. His main areas of interest

cover proper use of soft skills

in IT, team leading and man-

agement. His deepest passion,

however, is game design. Part

of his work is also focused on forensic science, as well as

on storing and analyzing criminal data.

https://orcid.org/0000-0002-9324-069X

E-mail: brakoczy@agh.edu.pl

AGH University of Science and Technology

Mickiewicza 30

30-059 Cracow, Poland

Jacek Dajda currently works

at the Department of Com-

puter Science, AGH University

of Science and Technology in

Cracow. He conducts research

concerning information systems

(specifically analytical systems

for public security applica-

tions), software engineering and

databases.

https://orcid.org/0000-0001-8617-4981

E-mail: dajda@agh.edu.pl

AGH University of Science and Technology

Mickiewicza 30

30-059 Cracow, Poland

Marek Kisiel-Dorohinicki is

currently the Head of the De-

partment of Computer Science

at AGH University of Science

and Technology. His research

focuses on intelligent software

systems, and specifically on

utilizing agent technology and

evolutionary algorithms. He

also deals with other soft

computing techniques, such as

neural networks or fuzzy systems.

https://orcid.org/0000-0002-8459-1877

E-mail: doroh@agh.edu.pl

AGH University of Science and Technology

Mickiewicza 30

30-059 Cracow, Poland

86

