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Abstract—Functional decomposition is a technique that allows

to minimize Boolean functions that cannot be optimally min-

imized using other methods, such as variable reduction and

linear decomposition. A heuristic method for finding non-

disjoint decomposition has been proposed lately. In this paper,

we examine how the usage of different graph theory techniques

affects the computation time and the quality of the solution

obtained. In total, six different approaches were analyzed.

The results presented herein prove the advantages of the pro-

posed approaches, showing that results obtained for standard

benchmark M-out-of-20 functions are better than those pre-

sented in previous publication. Results obtained for randomly

generated functions prove that time complexity and scalability

are significantly better when using the heuristic graph color-

ing algorithm. However, quality of the solution is worse, in

general.

Keywords—logic synthesis, functional decomposition, non-dis-

joint decomposition, index generation functions.

1. Introduction

The growing use of Field Programmable Gate Arrays

(FPGAs) has led to a significant increase in interest in ef-

ficient Boolean function minimization methods. Specific

functions known as index generation functions (IGFs) have

been gaining in popularity among researchers. Several

examples of IGFs applications are presented in the litera-

ture [1], e.g. in connection with IP address tables, terminal

access controllers and computer virus scanning circuits.

Those functions represent the following mapping:

F : DN →{1,2, . . . ,K} , (1)

where DN is a set of K different binary N-bit vectors, called

registered vectors. The function maps a unique integer

value to each of them. If the input does not match any of

the registered vectors, the function produces a zero value.

The important property of index generation functions is that

those functions are not fully defined. Thus, logic synthe-

sis algorithms may be used to find a representation of the

function using a number of variables that is lower than N.

In particular, the optimum number of variables is:

κ = dlog2(K +1)e . (2)

Scientists focus mostly on two minimization techniques,

i.e. reduction of variables and linear decomposition. How-

ever, those methods do not provide an optimized represen-

tation for all functions [1], [2]. Therefore, new solutions and

papers concerned with these issues are emerging. Recent

studies [3]–[6] investigate the application of functional de-

composition in minimization of index generation functions.

Functional decomposition [7] is a method, in which

a Boolean function F(X) with numerous input variables

X = {x1, x2, . . . , xn} is divided into two functions (denoted

in this paper as G and H functions) having fewer vari-

ables, i.e. F = H(U,G(V,W)). The decomposition scheme

is shown in Fig. 1 [3]. The input variables of function G
are called bound variables, while variables from set U are

called free variables. The main problem is to obtain op-

timal sets of input variables for both functions. Memory

utilization results are the best when the number of input

variables of function H equals κ .

Fig. 1. Functional decomposition scheme.

The notion of partition algebra [8] and r-admissibility [9]

may be used to address the problem of finding sets U and V
form (U ∪V = X , U ∩V = /0). However, it is often the case

that the introduction of an additional set W ⊆ U allows

to further minimize a Boolean function, even though the

number of inputs of function G was increased. Such a de-

composition scheme is called non-disjoint decomposition.

Therefore, proposing an efficient method for performing

such a decomposition is very important. In particular, the
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form of set W and truth tables of functions G and H need

to be found.

The exact method of finding functional decomposition con-

sisting in using an SMT solver was proposed in [4]. How-

ever, it is a complex solution and may be used only for small

values of K. Therefore, proposing a heuristic method is

a very important task. The other method uses a graph col-

oring problem [3]. This paper examines how the usage of

different techniques affects the computation time and qual-

ity of the received solution. It provides results obtained

for random functions and standard benchmark IGFs, i.e.

M-out-of-N that do not have an optimum linear decompo-

sition [2] and cannot be minimized using variable reduction

algorithms.

The rest of the paper is organized as follows. A brief

overview of partition description, partition algebra, and

r-admissibility is presented in Section 2. Section 3 intro-

duces graph theory algorithms and describes how they are

applied in finding functional decomposition. An evalua-

tion of the proposed approaches is presented in Section 4.

Section 5 concludes the paper.

2. Partition Algebra

The notion of partition algebra [8] and r-admissibility [9] is

shortly introduced in this part of the paper. Let S be a finite

set. Consider a collection of subsets of S. If their union

is S, then we call it a cover of S. A blanket is a cover

B = {B1, B2, . . . , Bk} of a non-empty and distinct subset

of S, called blocks, whose union is S. A set system is

a blanket in which the blocks satisfy that Bi ⊆ B j ⇒ i = j.
A partition is a set system, where the blocks are disjoint,

i.e. Bi ∩B j = /0 (i 6= j).
Notice that for IGFs, the F(X) is an isomorphic function

between domain DN and the set T = {1,2, . . . ,K}. Each

block of partition Pa includes these elements of the set T
which have the same value at the xa position.

Let Pa and Pb be two partitions on the same set. We define

the following relation ≤ for partitions:

Pa ≤ Pb ⇔∀Bi ∈ Pa : (∃B j ∈ Pb : Bi ⊆ B j) . (3)

Multiplication of the partitions may be defined, i.e. P =
PaPb if P is the partition with the largest blocks such that

P ≤ Pa and P ≤ Pb. This partition may be easily calcu-

lated by finding intersections of all blocks of Pa and Pb.

The following theorem can be formulated using the theory

introduced above.

Theorem 1: A function F has a functional decomposition

F = H(U,G(V )) if and only if ∃PG ≥ PV : PU PG ≤ PF [8].

The quotient partition may be used to determine sets U
and V . This is a partition of Pa over Pb whose blocks

are those of Pa and elements are the elements of the

product PaPb. We denote this partition Pa|PaPb. Using the

quotient partition, we define r-admissibility of the set

{P1,P2, . . . ,Pk} in relation to the partition PF in the fol-

lowing manner:

r = k + dlog2
(

γ(P1P2 . . .Pk|P1P2 . . .PkPF)
)

e , (4)

where γ(P1P2 . . .Pk|P1P2 . . .PkPF) is the number of elements

in the largest block of the quotient partition. PF corresponds

to the characteristic partition of function F , i.e. the parti-

tion whose blocks include these elements that map onto the

same value of F(X). Notice that for any IGF, the charac-

teristic partition equals PF = {1,2, . . . ,K}.

The concept of r-admissibility may be interpreted as fol-

lows: if a set of partitions is r-admissible, then there exists

a decomposition in which function G has r−k outputs,

function H has r inputs and W ⊆ U is also an input to

function G. In the best case scenario, W = /0. By choos-

ing a set U in which r is as small as possible (V = X\U),

we may easily determine the number of input variables of

function H. In that case, k = |U | and function G has r−|U |
outputs. A necessary condition for r-admissibility is pre-

sented in lemma 1 [8].

Lemma 1: Set P is r-admissible if and only if all subsets

of P are s-admissible, where s ≤ r.

This lemma may be used to easily form set U . To demon-

strate the application of r-admissibility, let us consider

example 1.

Table 1

Example function

x1 x2 x3 x4 F(X)

0 1 1 0 1

1 1 0 1 2

0 0 0 0 3

1 1 1 0 4

0 0 0 1 5

0 1 0 0 6

Example 1: Consider an IGF shown in Table 1 and no-

tice that K = 6 and N = 4. The following partitions are

calculated:

• P1 = {1,3,5,6;2,4}⇒ r = 1+ dlog2(4)e = 3,

• P2 = {1,2,4,6;3,5}⇒ r = 1+ dlog2(4)e = 3,

• P3 = {1,4;2,3,5,6}⇒ r = 1+ dlog2(4)e = 3,

• P4 = {2,5;1,3,4,6}⇒ r = 1+ dlog2(4)e = 3.

All partitions are 3-admissible. Thus, we may use parti-

tion multiplication to further search for functional decom-

position of an input function. The following partitions are

obtained:

• P1P2 = {1,6;3,5;2,4}⇒ r = 2+ dlog2(2)e = 3,

• P1P3 = {1;3,5,6;4;2}⇒ r = 2+ dlog2(3)e = 4,

• P1P4 = {5;1,3,6;2;4}⇒ r = 2+ dlog2(3)e = 4.

• P2P3 = {1,4;2,6;3,5}⇒ r = 2+ dlog2(2)e = 3,

• P2P4 = {2;5;1,3,4,6}⇒ r = 2+ dlog2(3)e = 4,

• P3P4 = {1,4;2,5;3,6}⇒ r = 2+ dlog2(2)e = 3.
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Fig. 2. Graphs obtained in two iterations: (a) graph representing

an example function, (b) regenerated graph.

Based on lemma 1, it is known that there is no partition

with k = 3 that is 3-admissible. Therefore, the following

input variables may be used to form set U : x1 and x2.

Since V = X \U , we get the following set V : {x3, x4}.

Moreover, the number of outputs from function G equals

r − |U | = 3− 2 = 1. Two different forms of set U could

be used as well: {x2, x3} and {x3, x4}. Both these pairs

are also 3-admissible. A question regarding the existence

of a disjoint decomposition of this function, i.e. whether

W = /0, is discussed in next section.

3. Graph Theory and Its Application

As mentioned in the previous section, r-admissibility may

be used to determine the input variables to form U and V
sets. Additionally, the minimal number of input variables

to function H is found. The graph theory may be used to

address two more problems:

1. which variables should form a set W?

2. what values are mapped to function G outputs?

Let Γ = (NΓ,EΓ) be an undirected graph, where each node

(called also a vertex) v ∈ NΓ represents a block of PV and

each edge e = (Bi,B j)∈ EΓ represents an unmergeable pair

of PU |PU PF partition. Two blocks Bi and B j are unmerge-

able if partition Pi j obtained from PV by merging those

two blocks satisfies the following condition: PUPi j � PF .

In that case, calculating PG (the characteristic partition of

function G) consists in finding the coloring of the graph.

The problem of graph coloring consists in assigning a color

to each node, so that no two adjacent nodes have the same

color assigned. The same value of function G is assigned

to the nodes colored using the same color.

In order to find non-disjoint functional decomposition by

using the graph coloring problem [3], the following steps

are required:

1. calculate r-admissibility of an input function,

2. choose set U such that r is at its minimum,

3. V = X\U ,

4. generate graph Γ based on PU |PUPF and PV partitions,

5. while the chromatic number of the graph χ(Γ) is

larger than 2r−|U| add a variable from set U to

set W ,

6. unless W = U , regenerate the graph and go back to

the previous step.

It should be remembered that r−|U | is the number of out-

puts of function G. Thus, the number of different val-

ues specified with so many variables is β = 2r−|U| at the

most. Therefore, the chromatic number of graph Γ cannot

be larger than β to represent a function using functional

decomposition scheme.

The key part of the presented procedure is choosing the

right variable to be added to set W . In the original pa-

per [3], a node with the maximum degree is chosen. If

there are several nodes with the same degree, we choose

the first one found. Furthermore, this node must correspond

to the block of PV partition, which contains at least two el-

ements p, q that ∃e1,e2∈EΓ : {p} ∈ e1∧{q} ∈ e2 and belongs

to different blocks in PV Pi partition. As a result, xi ∈ U is

added to set W . Different approaches to the choice of the

node are analyzed further on in this section.

We use partition multiplication to calculate PV ′ partition

and regenerate the graph, i.e. PV ′ = PV Pi. This new par-

tition contains more blocks than a partition PV . Thus, the

regenerated graph has more nodes. On the other hand, the

number of edges remains unchanged.

Example 2: Consider the function shown in Table 1. As

reported in the previous section, we have U = {x1,x2},

V = {x3,x4}, and r = 3 through the application of r-
admissibility. By using partition algebra, the following par-

titions are calculated:

• PU = P1P2 = {1,6;3,5;2,4},

• PU |PU PF = {(1)(6);(3)(5);(2)(4)},

• PV = {1,4;2,5;3,6} = {B1,B2,B3}.

The process of creating PG is presented in Fig. 3. It starts

with moving blocks B1 and B2 to the first block of PG and

a block B3 to the second block. However, based on the

PU |PUPF partition, element 4 should be separated from 2.

Thus, the miniterm 1,4 needs to be divided. Since vectors 1
and 4 differ at position x1, this variable is added to set W .

To automate the process, we construct graph Γ. Notice that

we get three blocks Bi (based on partition PV ), which will

be represented by nodes in the graph. Furthermore, we get

three unmergeable pairs: (1,6), (3,5) and (2,4). There-

fore, B1 is unmergeable with B3, since 1 ∈ B1 and 6 ∈ B3.
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Fig. 3. Creation of PG partition.

Similarly, B3 is unmergeable with B2 and B2 is unmerge-

able with B1. Thus, we get graph Γ presented in Fig. 2a.

This graph is 3-colorable. However, χ(Γ) = 3 > 2r−|U| = 2.

Thus, disjoint decomposition of this function does not exist,

i.e. W 6= /0.

In order to find non-disjoint decomposition, we need to add

a variable to set W . We look for a variable that separates

1 ∈ B1 from 4 ∈ B1. Therefore, the node that represents

block B1 will be split into two nodes, which might lead to

decreasing the chromatic number of the graph. It may be

noticed in Table 1 that vectors one and two differ at posi-

tion x1. Therefore, we add this variable to set W . Having

W = {x1}, a new partition PV ′ is calculated:

PV ′ = PV P1 = {1;4;2;5;3,6} = {B
′

1,B
′

2,B
′

3,B
′

4,B
′

5}.

Partition PU remains the same. Graph Γ is now 2-colorable

(see Fig. 2b). Thus, non-disjoint decomposition is found.

The same output value from function G is assigned to the

nodes colored using the same color. The truth tables ob-

tained are presented in Table 2.

Table 2

Decomposed function

Function G
x1 x3 x4 G
0 1 0 0

1 0 1 0

0 0 0 1

1 1 0 1

0 0 1 0

0 0 0 1

Function F
x1 x2 G F
0 1 0 1

1 1 0 2

0 0 1 3

1 1 1 4

0 0 0 5

0 1 1 6

In the presented procedure, the node with the maximum

degree is used to determine the variable to be added to

set W . This method was based on the observation that

χ(Γ) ≤ ∆(Γ) + 1, where ∆(Γ) is the maximum node de-

gree. Thus, reduction of the upper bound on the chromatic

number by splitting the node with the maximum degree

may lead to a lower value of χ(Γ). In this paper, we ex-

amine a different approach, i.e. the application of the max-

imum clique problem. This proposal is based on the fact

that χ(Γ)≥ ω(Γ), where ω(Γ) is the size of the maximum

clique. Thus, by choosing a node from that clique, we may

decrease the lower bound on the chromatic number.

Clique C of Γ is a subset of NΓ such that every two ver-

tices of C are adjacent, i.e. ∀u,v∈C{u,v} ∈ EΓ. The maxi-

mum clique problem (MCP) consists in finding a clique

that is not contained in any other clique and its cardinal-

ity is the largest among all cliques. For example, in the

graph presented in Fig. 2a, we have clique C = {B1,B2,B3}
whose cardinality is equal to 3. This clique is the maxi-

mum. On the other hand, C′ = {B1,B2} is a clique as well,

but C′ ⊂ C. MCP is a well-studied problem. Various ap-

proaches have been proposed in the literature [10], both

exact and heuristic, to solve this problem. The SageMaths

[11] clique maximum() function can be used to find the

maximum clique in an undirected graph. It uses the Cli-

quer software [12] to solve the MCP problem by default,

which implements an exact branch-and-bound algorithm.

The main weakness of this approach is that no polynomial-

time (exact) algorithm is known for the MCP, i.e. it is clas-

sified as NP-complete. The fastest algorithm solves the

problem in time O(20.249·|NΓ|) [13]. Thus, it was decided

that a random variable addition to set W should be ana-

lyzed. This method was chosen because it is a less time

consuming approach. However, the solution quality might

be low. Furthermore, each application of this method may

lead to different results.

In paper [3], the exact coloring algorithm using mixed in-

teger linear programming (MILP) was relied upon to find

the coloring. However, usage of the exact coloring algo-

rithm does not guarantee that the optimum result will be

found [4]. Moreover, its complexity is high, i.e. it is an

NP-complete problem. Thus, we examine the application

of the heuristic coloring algorithm and its influence on the

received results. In particular, the Welsh-Powell [14] algo-

rithm is considered in this paper.

One of the recent studies [15] shows that it is a very efficient

algorithm, but the solution quality is sometimes bad. Time

complexity of this algorithm is O(|NΓ|
2). We will learn

how relevant this is in the next section. Any other heuristic

or meta-heuristic methods may be used to provide better

time-efficiency than the exact coloring algorithm.

4. Evaluation

In this section, we evaluate six different approaches:

1. A1 – application of the maximum clique problem and

the exact coloring algorithm,

Table 3

Linear decomposition results

K κ Pavg Popt

20 5 5.21 787

30 5 6.16 0

40 6 6.98 20

50 6 7.48 0
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Table 4

Results for different values of K

Results for K = 20
A1 A2 A3 A4 A5 A6

|W | = 0 16 15 16 15 16 15

|W | = 1 103 78 103 67 99 83

|W | = 2 80 96 80 102 75 77

|W | = 3 14 23 14 29 23 38

|W | = 4 0 0 0 0 0 0

|W |avg 1.43 1.60 1.43 1.68 1.49 1.65

|W |rel 1.00 1.12 1.00 1.17 1.04 1.15

Trel 2.49 1.59 2.39 1.67 1.64 1.00

Results for K = 30
A1 A2 A3 A4 A5 A6

|W | = 0 590 406 590 406 590 406

|W | = 1 259 379 247 373 261 387

|W | = 2 133 196 145 201 131 189

|W | = 3 3 3 3 3 3 3

|W | = 4 0 0 0 0 0 0

|W |avg 0.54 0.79 0.55 0.80 0.54 0.79

|W |rel 1.00 1.47 1.03 1.48 1.00 1.45

Trel 2.96 1.45 2.77 1.19 2.78 1.00

Results for K = 40
A1 A2 A3 A4 A5 A6

|W | = 0 81 52 81 51 81 51

|W | = 1 210 151 216 165 216 156

|W | = 2 326 338 297 305 278 325

|W | = 3 294 319 302 337 313 301

|W | = 4 69 109 81 124 92 147

|W |avg 2.06 2.29 2.09 2.34 2.12 2.34

|W |rel 1.00 1.11 1.01 1.13 1.03 1.14

Trel 2.37 1.25 2.06 1.15 1.94 1.00

Results for K = 50
A1 A2 A3 A4 A5 A6

|W | = 0 540 388 540 388 540 388

|W | = 1 270 201 275 208 263 207

|W | = 2 141 260 124 246 149 275

|W | = 3 40 138 48 142 42 125

|W | = 4 4 4 1 1 2 1

|W |avg 0.69 1.16 0.68 1.15 0.70 1.14

|W |rel 1.02 1.71 1.00 1.69 1.03 1.68

Trel 21.82 1.53 22.10 1.25 22.87 1.00

2. A2 – application of the maximum clique problem and

a heuristic coloring algorithm,

3. A3 – application of finding a node with maximum

order and the exact coloring algorithm,

4. A4 – application of finding a node with maximum

order and a heuristic coloring algorithm.

5. A5 – application of random variable selection and

the exact coloring algorithm,

6. A6 – application of random variable selection and

the heuristic coloring algorithm.

In this experiment we generated random IGFs with N = 32
and K = {20, 30, 40, 50}. For each value of K, 1000 func-

tions were generated. All functions were firstly minimized

using the linear decomposition algorithm [2]. The results

obtained were presented in Table 3. Pavg denotes the av-

erage number of variables after linear decomposition and

Popt denotes the number of functions that have an optimum

linear decomposition. For those functions that do not have

an optimum linear decomposition, we looked for functional

decomposition. Table 4 summarizes the results obtained.

The following parameters are presented:

• |W | = 0, 1, . . . , 4 – the number of functions with

a particular size of set W ,

• |W |avg – the average size of set W ,

• |W |rel – the value calculated using the following

equation: Wavg/W ∗
avg, where W ∗

avg is the minimum

average size among all approaches,

• Trel – the average computation time for a particular

approach divided by the minimum average computa-

tion time of all approaches.

The most remarkable result to emerge from the data is that

the application of MILP has led to the lowest average size of

set W . No significant difference in the obtained results was

observed between A1, A3, and A5 approaches. However,

the approach proposed in the original paper [3] provided

the best results only for K = 20 and K = 50. On average,

the application of MCP has led to the best results, i.e. value

of |W |rel obtained using this approach is the lowest for three

different values of K.

Even though solution quality is very good, all these ap-

proaches are very time consuming. The average computa-

tion time for different values of K is presented in Fig. 4.

The results presented confirm usefulness of the Welsh-

Powell algorithm. Approaches relying on this algorithm
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guarantee the lowest computation time. Moreover, the com-

putation time does not increase significantly depending on

the value of K. This study shows that selection of the graph

coloring algorithm is much more important than the ap-

proach adopted to select the variables. The use of a heuris-

tic graph coloring algorithm leads to slightly worse solution

quality. However, time complexity is much better, e.g. ap-

proaches relying on the Welsh-Powell algorithm were over

20 times faster for K = 50.

Fig. 4. Average computation time for different values of K.

Surprisingly, the number of functions whose decomposi-

tion led to |W | = 4 is large for K = 40. However, that

number is close to zero for other values of K. The num-

ber of functions with |W | = 2 and W = |3| is also quite

high. Thus, the average size of set W is significantly

higher. The reason for this rather extraordinary result is still

unclear.

Table 5

Number of minimized functions using functional

decomposition

K A1 A2 A3 A4 A5 A6

20 213 212 213 213 213 213

30 985 984 985 983 985 985

40 980 969 977 973 980 980

50 995 991 988 985 996 996

The number of minimized functions using each approach is

presented in Table 5. For K = 20, most functions have the

optimum linear decomposition. Thus, we did not search

for the functional decomposition of those functions. No-

tice that the second approach has led to one less successful

functional decomposition, i.e. decomposition was not found

because W = U . For higher values of K, most of the func-

tions were minimized using the approaches described in this

paper. Notice that the use of the exact coloring algorithm

typically leads to a higher number of minimized functions.

The single most significant observation to emerge from the

results is that approaches A5 and A6 approaches result in

the highest number.

Interestingly, for K = 20 and K = 40, we were able to find

an optimum linear (Table 3) or a functional decomposition

of every input function using approaches A1, A5, or A6

approaches.

The experiments confirm the assumption that random vari-

able selection is time-efficient. The fastest approach for

all values of K was A6. Contrary to expectations, qual-

ity of the solution obtained while using this approach was

relatively good. However, this approach leads to different

results in each execution of the algorithm.

Consider M-out-of-N functions. They are often chosen as

benchmarks functions to evaluate the efficiency of IGF

decomposition algorithms. They consist of K =
(N

M

)

vec-

tors, whose length is N and Hamming weight is M. It

was proved [1] that the optimum linear decomposition of

a 2-out-of-20 coder does not exist. To the best of our

knowledge, the optimum decomposition of a 4-out-of-20

function was not found either [2]. We use the described

approaches to further minimize both functions. The inputs

to the algorithm are truth tables of both functions after lin-

ear decomposition. The results obtained were presented in

Table 6, where “–” means that the algorithm did not stop

within the allocated time, i.e. the period of 60 minutes.

Notice that the use of MILP for M = 4 has led to timeouts.

Thus, the presented results prove that IGFs with many vec-

tors should be minimized using a heuristic graph coloring

algorithm.

In this paper, we do not analyze other standard benchmark

functions, i.e. M-out-of-16, 1-out-of-20, and 3-out-of-20

functions. Those functions have optimum linear [1], [2]

or disjoint functional decomposition [4].

Table 6

Results for M-out-of-20 functions

Approach
M = 2, K = 190 M = 4, K = 4845
Time [s] |W | Time [s] |W |

A1 0.17 1 – –

A2 0.05 2 19.33 3

A3 0.25 2 – –

A4 0.04 2 17.92 3

A5 0.17 1–3 – –

A6 0.02 2–3 7.98 2–4

For each approach, the computation time and the result

obtained were presented. We analyze only the computa-

tion time of steps 3–5 from the procedure described in

Section 3. We run the algorithm ten times, applying ap-

proaches A5 and A6. In the table, we present the minimum

and the maximum number of variables in set W . Moreover,

we present the time needed to find the solution with the

minimum size of set W . Notice that for M = 4, the size

of W might be equal to 2, 3 or 4. Similarly, for M = 2,

quality of the solution varies. Thus, the algorithm relying
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on random variable selection needs to be executed multiple

times in order to find the best solution.

The table is interesting in several ways. As far as we know,

no other authors have found non-disjoint functional de-

composition with |W | = 1 for a 2-out-of-20 function using

a heuristic approach. Moreover, this solution is optimal. It

was proved using the SMT-based exact method [4]. We also

believe that the result obtained for a 4-out-of-20 function,

i.e. |W | = 2, is the one that is best-known.

In order to highlight the significance of the results obtained,

we analyze the total memory size using the scheme pre-

sented in Fig. 1. If both functions G and H are implemented

using memories, the total size in bits equals:

S = 2|V∪W | · (r−|U |)+2r ·κ . (5)

The results obtained are presented in Table 7. On average,

the memory size was reduced by 10% using the approach

presented in this paper due to the minimization of set W
size. The results presented highlight the usefulness of the

approach proposed in this paper.

Table 7

Memory size (S) for M-out-of-20 functions

M Paper |U | |V | |W | r S

2
[4] 4 5 2 8 2560

This paper 4 5 1 8 2304

4
[4] 6 9 3 13 135168

This paper 6 9 2 13 120832

On the other hand, the memory size using linear de-

composition only, equals:

SL = 2p ·κ , (6)

where p denotes the number of variables after linear de-

composition, i.e. K = 20⇒ p = 9 and K =40⇒ p = 15 [2].

The memory size for K = 20 is SL = 4096 bits. Functional

decomposition has led to minimizing memory usage by

43.75%. Moreover, for K = 40, minimization by 71.63%
has been achieved, i.e. SL = 425984. These results prove

how important functional decomposition is.

During the experiment, we also tested whether the first-fit

approach to variable selection leads to good results, i.e.

variables were added in order of occurrence in set U . Our

results were below expectations in terms of solution qual-

ity. For example, we obtained |W | = 4 for both 2-out-of-

20 and 4-out-of-20 functions using the Welsh-Powell algo-

rithm. On the other hand, this method was on average faster

than other approaches. Since the solution quality achieved

is bad, we decided to omit the results.

5. Conclusion

In this paper, application of the graph theory in non-disjoint

decomposition of index generation functions was investi-

gated. Several possible modifications of the original method

were described [3] and the results obtained were analyzed.

The research has highlighted the importance of selection

of the graph coloring algorithm selection. In general, the

results prove that methods using the Welsh-Powell algo-

rithm are time-efficient and provide relatively good solution

quality. The method using random variable selection to

set W was the fastest one. On the other hand, approaches

using the exact coloring algorithm led to the best results in

terms of solution quality. However, they are much more

time-consuming and led to timeouts for functions with

a large set of input vectors.

Novel solutions were found for non-disjoint decomposi-

tion of standard benchmark functions, i.e. 2-out-of-20 and

4-out-of-20 functions. They guarantee minimization of

memory usage by approximately 10% compared to previous

results [4]. These results have further strengthened confi-

dence in the usefulness of functional decomposition. A sig-

nificant minimization of memory requirement is achieved

compared to a scenario in which linear decomposition is

applied only.

The approach relying on random variable selection is very

fast and may lead to very good solutions. This method has

some limitations stemming from the fact that each execution

of the algorithm might lead to a different result. Therefore,

this approach needs to be applied multiple times in order

to assess the quality of the provided solution.
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