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Abstract—The interaction between an ensemble of cylinders

and an inhomogeneous plane wave is introduced and is de-

termined, in the present paper, through a rigorous theo-

retical approach. Scattered electromagnetic field generated

by an indefinite number of infinite circular cylinders is an-

alyzed by the application of the generalized vector cylin-

der harmonics (VCH) expansion. The exact mathematical

model relied upon to represent this scenario considers the

so-called complex-angle formalism reaching a superposition

of vectorial cylindrical-harmonics and Foldy-Lax Multiple

scattering equations (FLMSE) to account for the multi-

scattering process between the cylinders. The method was val-

idated by comparing the numerical results obtained with the

use of the finite element method and a homemade Matlab

code.

Keywords—electromagnetic scattering, inhomogeneous wave

dispersion, lossy media, multi-cylinders scattering, vectorial

cylindrical-harmonics.

1. Introduction

In the last decades, researchers were focusing on solving

Maxwell’s equations in order to determine the field scat-

tered by a single or by multiple objects with a specific ge-

ometry. Geometrically, electromagnetic scattering has al-

ready been analyzed in a thorough manner. In fact, spheri-

cal, spheroidal, cylindrical, conical, and ellipsoidal objects

may be found in literature, in several works devoted to

canonical scattering [1]–[6]. In addition to the cases men-

tioned above, many other complex scenarios have been ex-

amined, such as spheres, cylinders, and axially symmetric

objects [7]–[13]. Ensembles of different configurations of

scatterers are also considered [14]–[17]. Moreover, differ-

ent physical and chemical characteristics of materials con-

stituting the scatterer have been analyzed [18]–[21]. Over

the years, the problem of describing the interaction between

the electromagnetic field and a set of cylinders has led to

the development of numerous exact theoretical models that

are increasingly simplified [8]–[10].

In this paper, an accurate method for showing an ellipti-

cally polarized inhomogeneous plane wave as an expan-

sion of vector cylindrical-harmonics (VCH) is presented.

Moreover, in order to analyze the multi-scattering pro-

cess, the so-called T-matrix approach [22], [23] is used,

applying Foldy-Lax multiple scattering equations (FLM-

SEs) [24], [25] to ensure continuity of tangential compo-

nents of the electromagnetic fields on the surface of each

scatterer. The general representation of an electromagnetic

wave as an inhomogeneous wave has continuously attracted

a lot of researchers’ interest. An electromagnetic wave that

propagates in a lossy medium is represented by a complex

wave vector with two components: a phase vector and an

attenuation vector. A completely lossless medium is an

ideal scenario that does not exist in nature. In fact, a wave

typically propagates in a lossy medium.

In 1987, the first study related to an inhomogeneous ellipti-

cally polarized plane wave was presented by Ivlev, describ-

ing the propagation in its elemental structure and investi-

gating the energy fallout as well [26], [27]. The first appli-

cation proposed subsequently by Ivlev was on an indefinite

cylinder. The Adler-Chu-Fano formulation with phase and

attenuation vectors [28] was adopted in these studies, lead-

ing to meaningful and elegant results with a high degree of

complexity.

The present study shows how the representation of the in-

cident field as VCHs superposition could be reached with

much greater simplicity through the use of the complex-

angle [29] formulation. Also, this approach will be gener-

alized for a scenario involving scattering caused by a cylin-

der immersed in a lossy medium. Our goal is to use these

simplified models and to introduce a concept of losses in

the propagation medium in a minimally invasive way. The

results will be suitable for updating models, codes, and

software presented in the literature to describe real sit-

uations with a minimal impact on the code itself. The

paper provides numerical comparisons of different phe-

nomena involving cylindrical vector waves. In addition,

the study focuses on the analysis of an ensemble of infi-

nite lossy cylinders immersed in a lossy medium, and on

its results. A multi-paradigm numerical computing envi-

ronment (Matlab) was used to implement the various for-

mulations,while the proper model was simulated with the
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use of Comsol Multiphysics – commercial software based

on FEM.

The article is divided into 4 parts. Section 2 introduces

two principal formalisms required to properly represent an

inhomogeneous wave and illustrates the formulas needed

to switch between both of them. Subsequently, theoretical

aspects are described in order to obtain a representation

of an inhomogeneous elliptically polarized electric field

as a superposition of VCHs. Section 3 shows numerical

validations concerning results obtained in Matlab and the

ones generated with the use of Comsol Multiphysics. In

the same section, new results are also presented for the

scattering of an elliptically polarized plane wave at oblique

incidence from n-cylinders in a lossy medium. Finally, in

Section 4, conclusions are given, along with potential fu-

ture developments.

2. Theoretical Approach

From literature, two formalisms are known to be used for

representing an inhomogeneous wave propagating in a lossy

medium. The first one, characterized by better features as

well, is the formalism known as Adler-Chu-Fano formu-

lation. Its propagation vector has a complex nature with

kkki = βββ i + iααα i represented by phase and attenuation vectors

βββ i,ααα i ∈ℜ, respectively. The other one has a complex prop-

agation vector as well, represented by the superposition of

real and imaginary parts kkki = kR + ikI. This vector forms

a complex angle with the axis of the Cartesian reference

system ϑ̄i = ϑR + iϑI [29], see Fig. 1. The symbol ϑ̄ was

used to underline the complex nature of the angle.

This study shows that a field expressed as a superposition

of basic cylindrical waves through the use of the complex-

angle formalism may be represented with relative simplic-

ity. The following wave, in which vectors αi and βi are

creating angles ζi and ηi in relation to the z axis, are also

placed on the same plane passing through the z axis, and

are forming a real angle ϕ with the x axis (see Fig. 1). In

this particular case, the following relations exist between

the two formalisms [29]:

cosϑR =
kRβ cosξ + kIα cosη

√

k2
Rβ 2 − k2

I α2 +2(kRkI)2
, (1)

sinϑR =
kRβ sinξ + kIα sinη

√

k2
Rβ 2 − k2

I α2 +2(kRkI)2
, (2)

ϑI =
1
2

atanh

(

2βα
k2

)

, (3)

where η and ξ are the angles that the vectors ααα and βββ ,

respectively, form with the z axis. Equations (1) and (2)

play a fundamental role in assigning a value to ϑR avoiding

its indetermination. Plane ϕ = 0 was considered due to

its simplicity, although the following considerations can be

easily expanded to each plane with ϕ 6= 0.

The solution of the scalar Helmholtz equation provides the

following scalar formula [30]–[36]:

ψm = Aeimϕ Zm(kρρ)eikzz−iωt , (4)

where ρ , φ , z are three variables independent of the cylin-

drical coordinate system, A is a complex constant, while

kρ and kz are the projections of the propagation vector on

the plane z = 0 and the on the z axis, respectively. The last

two components are defined as shown below:

k2
ρ + k2

z = k2 , (5)

with kx = kρ cosϕ and ky = kρ sinϕ being projections of

the transversal vector kρ on the plane z = 0. The function

Zm(kρρ) describes the first, second, third, and fourth Bessel

functions as Jm(kρρ), Ym(kρρ), H(1)
m (kρ ρ), and H(2)

m (kρρ),
respectively. Hence, the harmonic vector is characterized

as [31]–[36]:

M = ∇× (ẑ0ψ) , N =
1
k

∇×M . (6)

Fig. 1. The figure on the left represents the complex wave vector of an inhomogeneous plane wave with phase and attenuation vectors.

The figure on the right represents the same vectors with the complex-angle formulation.
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It is always possible to define electric and the magnetic

fields as a superposition of these vectorial functions:

E =
+∞

∑
m=−∞

(amMm +bmNm) , (7)

H =
k

iωµ

+∞

∑
m=−∞

(amNm +bnMm) . (8)

Let us consider a simple inhomogeneous plane wave, us-

ing the formalism presented for the first time by Frezza

et al. [36], [37]. Any obliquely polarized elliptical field,

with respect to the surface of a cylinder, can be represented

as a linear combination of two components, one vertical

(v0) and one horizontal (h0), each multiplied by its polar-

ization coefficient (Evi and Ehi, respectively):

E(r) =
[

Eviv0(ϑ̄i,ϕi)+Ehih0(ϑ̄i,ϕi)
]

eik·r

=
+∞

∑
m=−∞

[amMm(k∗r)+bmNm(k∗r)] , (9)

imposing the following definitions [36]:

am =
Ehi

kρ
(−i)m−1e−imϕi , (10)

bm = −
Evi

kρ
(−i)me−imϕi , (11)

ki = k∗
(

sin ϑ̄i cosϕix0 + sin ϑ̄iϕiy0 + cos ϑ̄iz0
)

, (12)

Mm = mmeimϕ eikzz−iωt , (13)

Nm = nmeimϕ eikzz−iω ,t (14)

with:

mm = im
Zm(kρρ)

ρ
ρρρ0 − kρ

∂ρZm(kρρ)

∂ρ
ϕϕϕ0 , (15)

nm = i
kzkρ

k
∂ρZm(kρρ)

∂ρ
ρρρ0 −

mkz

k
Zm(kρρ)

ρ
ϕϕϕ0+ (16)

+
k2

ρ

k
Zm(kρρ)z0 ,

having indicated, by k∗, the complex conjugate of the

wavenumber k and by ρρρ0, ϕϕϕ0 the unit vectors of the

cylindrical coordinate system. Considering several paral-

lel cylinders in free space, let us analyze their scattering

with the defined incident field, as shown in Fig. 2.

An arbitrarily assigned number L of dielectric cylinders,

with relative permittivities ε j, with j = 1, . . . , N, infinite

length and radii r j in a free-space filled by a lossy medium,

in general dissipative, with relative permittivity εe, relative

permeability µe, and electric conductivity σe is considered.

The incident field, as usual, is an elliptically polarized in-

homogeneous plane wave. In order to apply Foldy-Lax

multiple scattering equations, the external field on the sur-

face of the q-th cylinder, also referred to as the exciting

field, needs to be taken into consideration. The exciting

Fig. 2. Depiction of the problem.

Fig. 3. Given three reference systems (O, P, Q), the following

figure shows the reciprocal directions of vectors ρρρ with respect to

an external observation point V.

field (Eq
ex) is the superposition of the incident field (Ei)

and all fields scattered by the cylinders (Ep
s ), see Fig. 3:

Eq
ex = Ei +

L

∑
p=1
p6=q

Ep
s . (17)

The incident field may be expressed as a function of vector

cylindrical harmonics centered on the q-th cylinder [36]:

Ei(kρρρq) = [Evivvv+Ehihhh]eik·ρρρqeik·(ρρρ−ρρρq) = (18)

=
+∞

∑
m=−∞

[

ãmM(1)
m (k,ρρρ −ρρρq)+ b̃mN(1)

m (k,ρρρ −ρρρq)
]

,

with:

ãm = ameik·ρρρq , b̃m = bmeik·ρρρq (19)

with k indicating the wavenumber of the host medium (see

Fig. 2) and with ρρρq indicating the radial direction centered

in the q-th cylinder (see Fig. 3). The exiting field of the

q-th cylinder is:
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Eq
ex(kρρρq) =

+∞

∑
m=−∞

[

wq
mM(1)

m (k,ρρρ−ρρρq)+ vq
mN(1)

m (k,ρρρ−ρρρq)
]

, (20)

while the scattered electric field from p 6= q-th cylinder is:

Ep
s (kρρρ p) =

+∞

∑
m′=−∞

[

T M
m′ wp

m′M
(3)
m′ (k,ρρρ −ρρρ p) (21)

+T N
m′vp

m′N
(3)
m′ (k,ρρρ −ρρρ p)

]

,

with T M
m′ and T N

m′ indicating the scattering coefficients

in the dielectric cylinder case, i.e. the T-matrix coeffi-

cients [24], [25]:

T M
m = −

J′m(kiρ a)

H ′(1)
m (kiρ a)

, (22)

T N
m = −

Jm(kiρ a)

H(1)
m (kiρ a)

, (23)

while coefficients wp
m′ and vp

m′ represent the unknowns of

our problem. By applying the addition theorem to the

VCHs function, we obtain:

M(3)
m′ (k,ρρρ −ρρρq) =

+∞

∑
m=−∞

Amm′M(1)
m (k,ρρρ −ρρρq) , (24)

N(3)
m′ (k,ρρρ −ρρρq) =

+∞

∑
m=−∞

Amm′N(1)
m (k,ρρρ −ρρρq) , (25)

M(1)
m′ (k,ρρρ −ρρρq) =

+∞

∑
m=−∞

Bmm′M(1)
m (k,ρρρ −ρρρq) , (26)

N(1)
m′ (k,ρρρ −ρρρq) =

+∞

∑
m=−∞

Bmm′N(1)
m (k,ρρρ −ρρρq) , (27)

with:

Amm′ = H(1)
m−m′(k|ρρρ p −ρρρq|)e

−i(m−m′)ϕpq , (28)

Bmm′ = J(1)
m−m′(k|ρρρ p −ρρρq|)e

−i(m−m′)ϕpq . (29)

By replacing all fields inside the FLMSEs and using the

orthogonal properties of the VCHs, the following linear

system is obtained:

wq
m = ãm +

+∞

∑
m′=−∞

∑
p=1
p6=q

Amm′T M
m′ wp

m′ , (30)

vq
m = b̃m +

+∞

∑
m′=−∞

∑
p=1
p6=q

Amm′T N
m′vp

m′ . (31)

At this point, the linear system may be solved and coef-

ficients wq
m and vq

m may be determined. With the field

scattered by the q-th cylinder, writable as a superposition

of VCHs, as:

Eq
s =

+∞

∑
m=−∞

[

eq
mM(3)

m (k,ρρρ−ρρρq)+ f q
mN(3)

m (k,ρρρ−ρρρq)
]

, (32)

the coefficients of the q-th cylinder may be written as fol-

lows:

eq
m = T M

m wq
m , (33)

f q
m = T N

m vq
m , (34)

and the total scattered field may be obtained:

Es =
L

∑
q=1

Eq
s . (35)

3. Validation and Numerical Results

Results of the comparison between the formulation and

the canonical case of electromagnetic scattering were vali-

dated. In this research paper, three infinite lossy die-

lectric cylinders have been considered with a radius of

a1 = a2 = a3 = 0.125 m. The three cylinders are cen-

tered at the following z plane coordinates: C1 = [−0.5,0],
C2 = [0,0], and C3 = [0.5,0] m. A 1 V/m plane wave with

a frequency of 300 MHz is impinging on these cylinders.

Fig. 4. Comparison of spatial distribution (on the x-y plane) of

the absolute value of the x component of the scattered electric field

|Esx |. In particular, Matlab (top) and Comsol (bottom) results are

shown. (For color pictures see the electronic version of the paper).

In Figs. 4 and 5, results obtained with Matlab and Com-

sol in the case of ke = 1− i 1/m for the environment and

kc = 2−0.5i 1/m for all cylinders (arbitrary parameters) for

an incident wave directed at ϑi = π/2 and ϕi = 0 rad are

displayed. In particular, the absolute values of the x and

y components of the scattered electric field (the z compo-

nent is null) are shown. As noted, the results are perfectly

compatible.
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Fig. 5. Comparison of spatial distribution (on the x-y plane)

of the absolute value of the y component of the scattered electric

field |Esy |. In particular, Matlab (top) and Comsol (bottom) results

are shown.

Subsequently (see Fig. 6), the most general case of an inho-

mogeneous plane wave with ϑ complex value was shown.

In particular, we have considered the following values for

the complex angle: ϑ = π/6(1+ 0.5i) rad and ϕ = π/4
rad (arbitrary parameters). The remaining parameters have

remained the same as in the previous case. To obtain these

Fig. 6. Spatial distribution of the absolute value (on the x-y plane)

of the x (top) and y (bottom) components of the scattered electric

field |Esx |, |Esy | obtained with Matlab.

results, N = 5 was used as the number of terms for the

VCHs series [38].

In Fig. 6, the contribution of the complex angle is high-

lighted by the direction of the scattered wave which creates

an attenuation effect spreading in the same direction.

4. Conclusions

An accurate method allowing to express an inhomoge-

neous, elliptically polarized plane wave in terms of vec-

toral cylinder harmonics, needed to solve the problem of

multi-scattering generated by an ensemble of cylinders, is

presented. Determination of the expansion coefficients and

application of the so-called Foldy-Lay equations required

to use the complex-angle formalism contribute to the de-

termination of the solution to the electromagnetic problem.

A light and elegant formalism has been reached thanks

to such an approach. The procedure was validated with

some numerical results as well as with comparisons per-

formed via simulations in the COMSOL environment. In

particular, the results were compared with regard to scatter-

ing created by three lossy dielectric cylinders of a circular

cross-section and infinite length. Perfect compatibility was

reached in all scenarios. The cylindrical harmonics defined

with the complex angle share the same properties as simple

cylindrical harmonics, thanks to the minimal invasiveness

of the formalism.
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