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Abstract—Regular fully filled antenna arrays have been widely

used in direction of arrival (DOA) estimation. However, prac-

tical implementation of these arrays is rather complex and

their resolutions are limited to the beamwidth of the array

pattern. Therefore, higher resolution and simpler methods

are desirable. In this paper, the compressed sensing method

is first applied to an initial fully filled array to randomly select

the most prominent and effective elements which are used to

form the sparse array. To keep the dimension of the sparse

array equal to that of the fully filled array, the first and the

last elements were excluded from the sparseness process. In

addition, some constraints on the sparse spectrum are applied

to increase estimation accuracy. The optimization problem is

then solved iteratively using the iterative reweighted l1l1l1 norm.

Finally, a simple searching algorithm is used to detect peaks

in the spectrum solution that correspond to the directions

of the arriving signals. Compared with the existing scanned

beam methods, such as the minimum variance distortion-

less response (MVDR) technique, and with subspace ap-

proaches, such as multiple signal classification (MUSIC) and

ESPIRT algorithms, the proposed sparse array method offers

better performance even with a lower number of array ele-

ments and in severely noisy environments. Effectiveness of

the proposed sparse array method is verified via computer

simulations.

Keywords—compressed sensing, direction of arrival (DOA) es-

timation, sparse array.

1. Introduction

The performance of many modern communication systems

depends directly on the precision of estimating the direc-

tion of arrival of the signals that impinge on the antenna

arrays used [1]–[2]. High directional beamforming that is

a feature of antenna arrays is important not only for good

performance but also for achieving high-resolution direc-

tion of arrival (DOA) estimates. It is known that the an-

gular resolution (i.e. the angular distance between the two

closely spaced sources) of an aerial array is limited by its

beamwidth which, in turn, is reversely proportional to the

array dimension or aperture size. This means higher reso-

lutions may be obtained by increasing array dimensions (i.e.

using a larger number of array elements) – an approach re-

lied upon by current massive MIMO systems. However,

high cost of implementation and fault diagnosis associated

with such large arrays continues to remain the key practi-

cal constraint. To obtain high resolution DOA estimators,

many methods have been proposed in the literature [2]–[6].

These methods may be divided into three basic cate-

gories, according to their mathematical formulations. The

first category is based on the array beam scanning (or

beamforming) concept, such as delay-and-sum (DS) beam-

former [7] and the minimum variance distortion-less re-

sponse (MVDR) beamformer [8], where array elements

may either be distributed uniformly along linear or pla-

nar forms, or may be non-uniformly spaced arrays. The

second category is based on the subspace approach, such

as MUSIC [9], ESPRIT [10] and their variants, where the

observation space is decomposed into signal and noise sub-

spaces. The third category is based on stochastic optimiza-

tion algorithms, such as genetic algorithm (GA) [11], parti-

cle swarm optimization (PSO) [12] or maximum likelihood

methods [13].

The second and the third types usually perform well, but

their computational complexity is generally high, especially

when dealing with a large number of array elements. Less

attention has been attached to the first category, due to the

main beam limitation. However, among these three types

of DOA estimations, the array beamforming method enjoys

many implementation-related advantages, such as simplic-

ity, versatility, effectiveness and low costs when controlling

only a part of array elements, instead of all of them, i.e.

when optimizing only the most effective and prominent ar-

ray elements, instead of optimizing all of them [14]–[17].

Thus, the array beamforming methods may be relied upon

to achieve good and competitive solutions. However, their

angular resolutions are limited by the arrays’ physical aper-

tures, meaning they are unable to distinguish between two

spatial sources within beam widths of the array’s radiation
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patterns. Therefore, overcoming this limitation is currently

an important research direction. In papers [18]–[20], the

authors presented different methods based on compressed

sparse arrays for DOA estimation.

In this paper, an antenna array-based beamforming method

that utilizes a compressive sensing approach for DOA esti-

mation is presented. The proposed method is applicable to

both linear and planar array configurations. An initial reg-

ular antenna array with full density is first considered, and

then only the most effective and prominent elements are

chosen randomly to reconstruct the sparse array. To keep

the array dimension fixed, the first and the last elements

of the initial regular array were excluded from the sparse-

ness process. Next, the problem is optimized iteratively

to find the optimum sparse elements, which are used to

reconstruct the required signals and to estimate their direc-

tions. The effect of the SNR and of the minimized number

of the sparse elements on estimation performance of the

proposed method is also presented and is compared with

other existing methods. Furthermore, the resolution and the

maximum allowable number of estimated directions are an-

alyzed as well.

2. Sparse Array Method

Consider a fully filled linear array consisting of N elements

that are distributed uniformly with a separation distance

of d, receiving P signals from a far field region. For sim-

plicity, mutual couplings between the array elements are

ignored. The output signal x(k) ∈CN×1 is:

x(k) = A(θ)s(k)+n(k) , (1)

where:

k is the discrete time which is equal to k = 1, 2, . . . , L, and

L is the total number of snapshots,

s(k) ∈ CP×1 is the complex amplitude of signal s(k) =
[(s1(k) s2(k) sP(k)]T which is a vector representing signals

with size P×1,

P is the total number of signal sources that impinge on the

array,

n(k) ∈CN×1 is the complex vector of noise,

A(θ) = [a1(θ1) a2(θ2) . . . aP(θP)] is an N×P matrix of

steering vectors with a(θ) = 1√
N

[

1 e−j 2πd
λ sin(θ) . . .

e−j(N−1) 2πd
λ sin(θ)

]T
.

Here, the values of θ are between −π/2 and π/2. In gen-

eral, the directions of the received signals, i.e. s(k), are

unknown and need to be determined. In the array beam-

forming methods, the scanned beams are used to estimate

the signals’ DOA. This may be done simply by dividing the

total scanning region into a certain number of grids or an-

gles, e.g. G. By using steering vector a(θ) for N values of

θ , the discrete grid (or scan angle) matrix ΨΨΨ can be given

by ΨΨΨ(θ) =
[

a1(θ1) a2(θ2) . . . aN(θN)
]

with N×N dimen-

sion. The θ1, θ2, . . . , θN are the set of discrete points within

the scan region (or angles to be scanned). Let the signal

received by the array elements be rS(k) = [rs1 . . . rsN ]T .

The received signal is now multiplied with the scan angle

matrix ΨΨΨ as:

x(k) = ΨΨΨ(θ)rS(k)+n(k) . (2)

As a result, the scanned beam can be obtained in which

the DOAs of the source signals are visible. Then, the array

beam is scanned for each angle within the spatial spec-

trum. The peak values indicate the DOAs of the received

signals. Figure 1a shows the result of applying classic two

dimensional DS beamformer array with 5×5 elements dis-

tributed uniformly at a distance λ /2 on a rectangular grid

to estimate both azimuth and elevation angles of two sig-

nals that impinged on the array from directions 0, 0 and

−10◦, 10◦, while Fig. 1b shows the result of applying the

two dimensional standard MVDR beamformer array for

the same scenario as above. One may observe that the

DS method fails to estimate the two closely-spaced sig-

nals due to its widened beamwidth pattern which is larger

than the angular separation between the two impinged sig-

nals. On the other hand, the MVDR method offers better

resolution and is capable of accurately estimating both sig-

nals provided that the positions of the array elements are

perfectly determined and there no imperfection errors are

present.

To increase the resolution of the arrays under consideration,

the results shown in Fig. 1 are recalculated, as presented

in Fig. 2, with an increased array dimension (i.e. an array

with 10×10 elements instead of 5×5 elements). From

these results, as expected, a general improvement in the

resolution is observed, at the cost of higher computational

complexity which is undesirable and may limit the range

of practical implementations. This problem may be solved

by compressing sparse arrays, as shown below.

The mathematical formulation of compressive sensing that

takes into consideration signal x(k)∈CN×1, sparseness ma-

trix ΨΨΨs(θ) with dimension N×N, and P-sparse signal vec-

tor z with dimension N×1, may be expressed as x = Ψsz,
where P-sparse means that only P<N entries in the vector

are non-zero. The goal of the compressed sensing method

is to recover the output signal x(k) ∈CN×1 using a smaller

set of measurements, say M×1 instead of N×1, where M
is less than N. Thus, x(k)∈CN×1 will be changed to a new

vector called measurement vector y(k) ∈CM×1. Then, the

system becomes underdetermined, as it consists of linear

equations with numerous solutions, i.e. it does not have

a unique solution as long as M < N. Measurement vector

y may be related to sensing matrix ΦΦΦ of dimension M×N
as y = ΦΦΦx. In light of the above, the output of the sparse

array y(k) ∈CM×1 may be given by:

y(k) = ΦΦΦ(θ)x(k) = ΦΦΦ(θ)ΨΨΨs(θ)z(k) = Θ(θ)z(k) , (3)

where Θ(θ) is the observation matrix with dimension

M×N. P sources from only M measurements of y(k) are

then found by applying compressed sensing. It should be
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Fig. 1. Results for a 5×5 uniform planar array, classical DS method (a) and for standard MVDR method (b). (For color pictures see

the digital version of the paper).

Fig. 2. Results for a 10×10 uniform planar array, classical DS method (a) and for standard MVDR method (b).

mentioned that the system in Eq. (1) may be solved by

means of the least squares method:

min‖s‖2 subject to As = x , (4)

and its solution is:

sls = AT (AAT )−1 x . (5)

In this paper, the author expects to find the sparse solution

rather than the full solution using an iterative reweighted

optimization algorithm. Therefore, s is represented by

s = Wq, where s is the unknown source vector, W is the

weighting matrix with dimension N×N, and q may be

found from:

min‖q‖2
2 subject to AWq = x . (6)

Equation (6) is solved iteratively using the reweighted l1

norm in conjunction with the algorithm that was presented

in [21]. To detect the peaks in the spectrum solution that

correspond to the directions of the arrived signals, a simple

searching algorithm is applied to the final optimization so-

lution. Note that only M out of N array elements are used

to reconstruct the signals and estimate their DOAs. Thus,

computational complexity is greatly reduced.

3. Simulation Results

In this section, extensive simulation results are demon-

strated to illustrate the effectiveness of the proposed

method. First, performance in terms of mean squared er-

rors (MSE), signal-to-noise ratio (SNR), resolution and

computational complexity of such conventional methods as

DS, MVDR, MUSIC, ESPIRT, and the proposed method

are demonstrated to verify the superiority of the proposed

method.

In all scenarios, a full dense (filled) antenna array with

N = 30 identical elements is considered, and all received

signals are of the narrow-band variety. For regular full

dense arrays, the separation distance between their elements

is set to d = λ/2. The number of snapshots is set to L = 1.

The power of each signal source is set to 0 dBm and the

power of noises is specified. To evaluate the estimation

performance of the tested methods, MSE – representing
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Fig. 3. Results for the tested methods for N = 30, M = 10 for two sources at (−20◦, 10◦) and SNR: (a) 30 dB, (b) 10 dB, (c) 0 dB,

(d) −10 dB.

the deviation between the estimated x̌ and the actual x0
DOA values – was calculated as:

MSE = E
‖x̌− x0‖2

F

‖x0‖2
F

, (7)

where ‖ ‖2
F represents the Frobenius norm. A lower MSE

value means better estimation accuracy. To construct the

sparse array, we assume that only 8 randomly elements out

of N = 30 regular elements will remain in the resulting

compressed array. As mentioned earlier, to maintain the

array dimension unchanged, rows number 1 and 30 of the

measurement matrix will always remain. Thus, the total

number of the compressed array elements including the two

end elements will be M = 10. Then, the beam width of the

initial full dense array with N = 30 is equal to 3.38◦ and is

same as that of the compressed array with M = 10, since

the overall array dimension remained unchanged. The range

of the scanning region is chosen to be from −90◦ to 90◦.
Then, the total number of the angles that need to be scanned

is equal to 181 and the angular separation between any two

tested angles is set to be 1◦, i.e. is lower than the beamwidth

value, thus enabling to attain maximum resolution levels.

For the proposed method, first the sparse spectrum of the

reconstructed signals is found by using the algorithm that

was presented in [22]–[23]. Then, the peak values that

correspond to the estimated DOAs are calculated by using

a simple searching algorithm. Finally, the peak values are

plotted and compared with other tested methods, as shown

in the following scenarios.

In the first scenario, two uncorrelated sources located at

θ1 =−20◦ and θ2 = 10◦ with four different SNRs: 30, 10,

0, and −10 dB, are considered. Figure 3 shows the results

of applying the proposed sparse array and compares them

with those of the regular fully filled array: DS, MVDR,

MUSIC, and min norm methods. For the proposed sparse
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Fig. 4. MSE vs. SNR (a) and one sample result for SNR =−10 dB (b).

Fig. 5. MSE vs. the number of sources (a) and one sample result for four sources (b).

array method, the indices of the elements that remain af-

ter the sparseness process are also shown at the top of

Fig. 3. It may be observed that all of the tested meth-

ods, including the proposed method with sparse elements

of indices 1, 5, 10, 11, 12, 14, 15, 22, 23, and 30, per-

form very well as far as estimating the correct DOAs un-

der high SNR is concerned. This estimation degrades for

low SNR levels. For the proposed method and for each

considered SNR value, the estimated DOAs were found to

be (−20◦, 10◦), (−20◦, 10◦), (−21◦, 11◦) and (−21◦, 19◦),
meaning they differ from the true DOA angles by the fol-

lowing MSE values: 0.001, 0.0941, 0.6443, and 1.1588,

respectively. Although little deviations in the estimation of

DOA exists for SNR of −10 dB, performance of the pro-

posed method was considered to be satisfactory. Figure 3d

clearly shows the superiority of the proposed method in

comparison to all other tested methods which fail to esti-

mate the DOAs.

In the second scenario, the estimation performance in terms

of MSE of the proposed sparse and regular fully filled (or

dense) arrays under various SNR values is further investi-

gated and highlighted, as shown in Fig. 4. Sample results

at specific −10 dB SNR are shown as well. Again, superi-

ority of the proposed sparse array is evident, especially for

lower SNR values.

In the third scenario, MSE is investigated versus the max-

imum allowable number of sources (Fig. 5). It may be

observed that the maximum detectable number of source

directions is only 4 for the case of M = 8 sparse elements.

The first and the last elements were not considered here,

because they are not sparse elements. It should be noted

that many other cases have been examined and, in general,
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Fig. 6. MSE vs. the number of sparse elements (a) and one sample result for four sources for M = 2 (b).

Fig. 7. MSE vs. angular separation between sources (a) and one sample result for 1◦ angular separation (b).

it is found that the maximum detectable number of source

directions is directly proportional to the number of sparse

elements. It may be expressed as M/ logN which is equal

to 5.415 for M = 8 and N = 30.

In the next scenario, the effect that the number of sparse

elements exerts on estimation performance is studied, as

shown in Fig. 6. It may be concluded that for two source

directions and only two considered sparse elements, esti-

mation performance is unsatisfactory and the directions are

calculated incorrectly. To obtain correct directions, we need

to set the value of M to equal at least 5 elements.

Finally, the resolution of the proposed sparse array under

two closely spaced sources is investigated and shown in

Fig. 7. Performance of the proposed array still remain better

than that of the regular full dense array, especially for very

small angular distances, and this distinction vanishes for

larger angular distances.

4. Conclusions

It has been shown that the proposed sparse array based

compressed sensing method was effectively able to estimate

the required DOAs. Its resolution was found to be accu-

rate even under severe noisy environments. Moreover, the

maximum allowable number of the detected sources was

found to be proportional to the number of the sparse ele-

ments. In all tested scenarios, the output spatial spectrum
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was plotted and compared. Unlike existing DOAs meth-

ods, the sparse spectrum of the proposed method had best

spatial resolution.
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