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Abstract—In this paper a dynamic spectrum access (DSA)

concept is explored for mitigating the paucity of spectral band-

width in cognitive radio (CR) for opportunistic, dynamic ac-

cess of the spectrum without any interference. Dynamic spec-

trum access schemes are proposed for a distributed cognitive

radio network consisting of one secondary user (SU) and many

primary users (PUs). The SU has to make decisions for ac-

cessing PU channels within discrete time slots. The design

of sensing and access strategies that govern channel choice in

each slot for near-optimal throughput performance of the SU

may be formulated as a partially observable Markov decision

process (POMDP). Furthermore, it is considered that the SU

incurs a cost whenever it switches to a different channel. The

switching cost is expressed in terms of delay, packet loss and

packet overhead. In this work, the SU access policy based on

a myopic approach is proposed and evaluated.

Keywords—cognitive radio, distributed detection, energy detec-

tor, myopic policy, spectrum sensing.

1. Introduction

According to a survey by the US Federal Communications

Commission (FCC), utilization of the radio spectrum in

the 30–3000 MHz frequency bands equaled, in the US,

just 5.2% in 2004–2005 [1]. The spectrum utilization rate

is also characterized by variations based on geographical

locations. This underutilization of the spectrum resources

creates a new communication paradigm to exploit it dy-

namically. A solution under which the licensed spectrum

is shared among unlicensed users is a promising approach

allowing to cope with the issue of spectrum scarcity. Dy-

namic spectrum access (DSA), i.e. a method allowing the

spectrum to be accessed dynamically depending on current

needs is a promising solution to this problem. DSA is sup-

ported by spectrum agile devices, such as cognitive radio

(CR), which may opportunistically identify vacant portions

of the spectrum known as white holes, and may transmit

using them while maintaining limited interference, so as

not to affect the licensed users.

In this paper, a simple, heuristic spectrum sensing policy

deployed in a distributed POMDP CRN framework com-

prising 1 SU and N PUs is presented. In addition, a less

complex access policy relying on the myopic approach with

immediate two-stage reward in a similar environment of

1 SU and N PUs, where N >1, along with energy con-

straints and channel switching costs, is proposed.

2. Related Works

A variety of spectrum sensing techniques for CR is pro-

posed in [2]. These techniques range from simple energy

detection to advanced schemes based on cyclostationary

feature detection. A survey of available schemes presented

in [3] reveals that energy detection (ED) is the easiest and

most widely used sensing approach. Its advantage lies in

the fact that it does not need any a priori information con-

cerning the primary user (PU) channel transmission char-

acteristics, is easily implementable and has low computa-

tional complexity. The disadvantage, however, is that ED

takes a long sensing time for the detection of low SNR

primary signals. Besides, the sensing threshold in ED is

an important parameter. The receiver operating character-

istic (ROC) curve and the interference limits determine the

threshold values. In [4], dynamic estimation of noise power

is proposed. It eliminates the performance-related restric-

tions of ED due to the estimation error of noise signal

power.

The authors describe the concept of the adaptive threshold

in [5]. It is based on the signal-to-interference noise ratio

(SINR). Bazerque et al. in [6] proposed that spectrum sens-

ing may be performed either in a centralized or distributed

manner. The centralized and distributed approaches may

be either cooperative or non-cooperative. The centralized

approach involves the collection of data from each SU at

the center and taking the final decision based on a spe-

cific rule. Cooperative spectrum sensing is studied in [6]

to reduce the detection time and to improve robustness. An

OFDM-based system is proposed in [7], wherein the deci-

sions from all local SUs are taken and given to the center.

The center makes the final decision on the bias and/or logi-

cal combinations. However, due to the existence of different

channel conditions, the approach is not optimal.
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A sequential detection procedure is proposed in [8], where

the samples are taken sequentially and the log-likelihood

ratio is computed for each SU. This approach makes use

of two thresholds. If the ratio falls within the upper and

lower threshold, the next sample is taken. Otherwise, a de-

cision is made. An improvement to the previous approach

is made in [9] and is known as sequential shift chi-square

test. The improvement consists in introducing a bound to

the number of sensing samples. In [10], the authors pro-

posed a consensus-based algorithm for sensing policy. It

considers a distributed environment where the SU makes

the decision based on local observations only. The previous

works take into account a cooperative distributed environ-

ment in which the SUs cooperate with each other make the

final decision. Also, the observations of all SUs are taken to

a fusion center in order to make the final decision, meaning

that the approach is centralized.

Very few works are concerned with distributed non-

cooperative environments. In this project, we have con-

sidered a distributed scenario with 1 SU and N PUs.

The PUs and the SU are working independently, with-

out any knowledge of each other’s state. Under the en-

ergy constraint, we have developed a heuristic access pol-

icy for SU. Also, another algorithm has been developed

which takes into account the switching cost that the SU

incurs when it switches to a channel other than the cur-

rent channel. The objective is to minimize the switching

cost.

3. Heuristic Approach to Energy

Efficient Detection

Consider a CRN comprising a set N PUs, i.e.

P = {1,2, . . . ,N} and 1 SU. The channel is intended for

use by the PU, but while it is not transmitting, it is sensed

and used by SUs. The propagation condition has been

taken as an unfading channel. Time is k-slotted and is non-

negative k = {1,2,3, . . .}. The statistics of primary network

traffic are such that the occupancy of the primary channel

in time slot k follows N independent discrete time Markov

processes comprising two states. The state of channel i
in time slot k may be either busy (0) or idle (1), which

is denoted by a theta vector θi,k ∈ (0,1). The state vec-

tor of N PUs at the beginning of time slot k is denoted

as Θk = {θ1,k,θ2,k, . . . ,θN,k}. The transition probability

of the theta vector is Pi,k = [p00 p01; p10 p11]. The sensing

model is:

P(Yi,k = 0|θi,k = 0) = α , (1)

P(Yi,k = 0|θi,k = 1) = β , (2)

P(Yi,k = 1|θi,k = 0) = 1 − α , (3)

P(Yi,k = 1|θi,k = 1) = 1 − β . (4)

The considered framework is a partially observable Markov

decision process (POMDP) environment, where the SU

does not have a complete knowledge of the states of

PUs. In this case, the SU senses the spectrum available

at a given time slot and decides to access a free chan-

nel. The observations may therefore result in some colli-

sions, thereby decreasing the overall throughput. To keep

the energy low and due to the limited sensing ability of

the SU, a heuristic approach to its access-related actions is

formulated.

The cost incurred when the SU switches to a channel other

than its current channel c and assumed as λ . The SU

notices the state of the system at the beginning of time slot

k as Yk = [Θk,c]. Since the SU cannot observe the state of

the channel directly, it has to infer that state from partial

sensing outcomes. For this, πi,k denotes the conditional

probability that channel i is sensed as idle, given the past

and present states of the channel:

πi,k = P(θi,k = 1|Y1,Y2, . . . ,Yk) . (5)

The probability that channel i is idle in time slot k + l de-

pends on the probability of channel i being idle in previous

time slot k and the transitional probability of state. πi,k+1 is

therefore a recursive function of its previous value. πi,k+1
is calculated for two scenarios. The first scenario is con-

cerned with the sensed channel:

πi,k+1 =

[p11πi,k + p01(1 − πi,k)]β
[p11πi,k + p01(1 − πi,k)]β +[p10πi,k + p00(1 − πi,k)]α

,

(6)

when Yi,k = 0, and

πi,k+1 =

[p11πi,k+p01(1−πi,k)](1−β )

[p11πi,k+p01(1−πi,k)](1−β )+[p10πi,k+p00(1−πi,k)](1−α)
,

(7)

when Yi,k = 1.

For the unsensed channel, it is:

πi,k+1 = p00πi,k + p01(1 − πi,k) . (8)

The proposed algorithm is given as Algorithm 1.

Algorithm 1: A direct algorithm signifying the impor-

tance of parameter πi,k

1. Input vector: Sk = [1,2, . . . ,N].
2. Output: SU accesses any of the above channels

based on sensing policy.

3. For i = 1 to N calculate |π j,k| End for

4. If |π j,k| > γ then access j
5. Else do not access j
6. End if
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3.1. Simulation Results

The simulation was performed using Matlab software.

A CRN consisting of 1 SU and N PUs is considered. Monte

Carlo simulation is carried out with 104 iterations, which

is also the number of available time slots. The initial θi
for t = 0 is taken as 0.5. The observations at each time

slot are generated based on Eqs. 1–4. For each time slot,

πi is generated for channel i, where i ∈ {1,2, . . . ,N} from

Eqs. 6–8. Next, πi is compared with the threshold value γ
that varies from 0.2–0.7. The throughput of SU against the

threshold values is defined as:

T hroughput =

Total no. o f accesses
Total time slot

· (1 − Probability o f collision) .

Based on the simulation, the number of slots found to be

idle is: 4012.3 and the number of busy slots is: 5987.7.

The results given by the heuristic algorithm are shown in

Figs. 1–3. As may be observed from Figs. 1–2, the through-

put and the probability of collision decrease. This is clearly

understandable, because as the threshold value increases,

the number of primary channels open for access to SU will

decrease, thus reducing throughput. Figure 3 shows that the

probability of collision varies as the number of accesses by

the SU increases until it reaches full saturation. As the

number of accesses by SU increases, the number of SU’s

Fig. 1. Throughput vs. γ .

Fig. 2. Probability of collision vs. γ .

Fig. 3. Probability of collision vs. number of accesses.

collisions with the licensed user grows, explaining the vari-

ation shown in Fig. 2. So, a trade-off is achieved between

the probability of a collision and throughput at a particular

threshold value. The value of the threshold should be such

that the quality of service is not compromised for PUs.

Since this is a heuristic approach, it just offers an insight

into the basic understanding of the parameter πi,k for access

into the activity of SU in an environment with distributed

PUs, while maintaining the required QoS.

4. Energy Efficient Detection Using

Myopic Policy

For a greater convergence with the optimal solution, we

propose a myopic policy for sensing and for access ac-

tions undertaken by SU. Let ak = [1,2,3, . . . ,10] denote

the access action of SU in a given time slot k, where 0

means no access action. Here, we introduce the concept of

a reward. Every action and state of SU carries with itself

a certain reward. The SU considered here incurs a switch-

ing cost whenever it has to switch to other channels. The

switching cost mentioned here and incurred by SU is ex-

pressed in terms of delay, packet loss, and packet overhead.

This is because when the SU changes from one frequency

to another, both the SU transmitter and receiver should be

coordinated properly. If they are not coordinated, the SU

transmitter may start sending packets even when the SU

receiver is not ready. This incurs a delay, also it may lead

to packet loss at the receiver. The packet loss initiates a re-

transmission which is considered as packet overhead. The

significance of the reward lies in the fact that it helps the

SU analyze how useful its access actions are in the long

run. The usefulness is stated here in terms of minimizing

the number of frequent channel changes.

The SU cannot make the observations directly, since the

problem is considered for a POMDP environment. It has

to sense the observations and make decisions. In the heuris-

tic solution proposed in Section 3, no attempt is made to

reduce the number of occasions on which SU switches to

another PU channel in order to reduce the switching cost.

Therefore, a sensing and access policy is needed that allows
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SU to switch the channel whenever the necessity arises.

Obtaining the optimal policy for a general POMDP is of-

ten intractable. In fact, based on [11], it is clear that the

complexity for obtaining the optimal solution for spectrum

sensing and accessing opportunistically is of the order of

NT , where N is the number of channels in the spectrum

of interest and T is the total time horizon. In this regard,

a myopic policy with an immediate two-stage reward is

proposed as a simple solution that achieves near-optimal

performance.

4.1. Myopic Policy Solution

For a given state-action pair ([θk,ak],ck), we assume the

immediate reward earned by SU accessing channel i in time

slot k as:

r([θk,c],ak) =







0, if ak = 0
1, if ak = c,θc,k = 1
l − λ , if ak 6= c,θa,k = 1

. (9)

The maximum reward is 1 when the SU makes the de-

cision to access the same channel in the next time slot

and that channel happens to be idle also. Let us define

Sk ∈ {1,2, . . . ,N} as the state of SU in time slot k. Since

the transition probabilities of vector S do not remain con-

stant and depend on the current state and action, they are

derived as:

P(Sk+1|Sk,ak) =














p11 with probability πi,k if ak = c
p01 with probability 1 − πi,k if ak = c
p11 · πi,k+p01 · (1−πi,k) with probability 1 if ak 6= c
0 if ak = 0

. (10)

The two-stage reward is formulated as the sum of the re-

ward in the current state and the reward in the immediate

future time slot. Thus, the reward depends on the current

reward and on the transitional probabilities of the state. The

reward is:

R(Sk,ak,ak+1) =

r(Sk,ak)+ ∑
Sk+1

r(Sk+1,ak+1).P(Sk+1|Sk,ak) . (11)

The SU senses the observation and, hence, the two-stage

reward becomes the expected two-stage reward and is:

E[R(Sk,ak,ak+1)] =

E[r(Sk,ak)]+ ∑
Sk+1

E[r(Sk+1,ak+1)].P(Sk+1|Sk,ak) . (12)

The SU sensing policy then proceeds to sensing those chan-

nels for which the parameter πi,k is greater than a certain

threshold γ . The access policy starts choosing only those

channels in the discrete time slot k for which the expected

two-stage reward is the highest:

ak = argmax(E[R(Sk,ak,ak+1)]) . (13)

4.2. Simulation of the Myopic Approach

The simulation is carried out using Matlab with CRN and

the same environment as given in Subsection 3.1, con-

sisting of 1 SU and N PUs. Based on the sensed chan-

nels, the SU calculates the maximum two-stage reward in

each time slot and accesses only those primary user chan-

nels that are characterized by the maximum two-stage re-

ward. As far as channel quality is concerned, parame-

ter πi,k is taken, since it describes the probability of the

primary channel being idle in time slot k. The switch-

ing cost λ is taken as 0.3. For a particular access policy,

a particular threshold value of 0.48 is taken for which the

total reward accumulated is the highest.
The two-stage reward myopic policy is an alternative for

the intractable optimal solution while maintaining a certain

quality standard. Figure 4 shows that overall throughput is

acceptable. As shown in Fig. 1 and Fig. 4, the throughput

is improved from 0.4 to 0.65. Figure 4 shows throughput

against the probability of collision. Throughput increases

as the probability of collision increases. This is counterin-

tuitive, since the collision rate should decrease the through-

put of the network. But since the threshold values increase,

the number of accesses by SU decreases, as may be seen

from Fig. 6. Therefore, the probability of a collision of SU

decreases as well. The total reward earned by the SU and

the number of accesses show similar variations with respect

Fig. 4. Throughput as a function of probability of collision.

Fig. 5. Total reward as a function of threshold.
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Fig. 6. Number of access of PU by SU as a function of threshold.

Fig. 7. Access action for πi,k = 0.48.

to the threshold values as those seen in Figs. 5–6. This

implies that the total reward that a SU earns is directly

proportional to the number of times it is allowed to use

a PU channel. Figure 7 shows the access action of SU for

the threshold value of 0.48. This value is chosen to ensure

that the chance of finding a busy channel is not lower, while

also keeping in consideration the total reward accumulated.

The maximum throughput value of 0.65, as shown in Fig. 4,

is meaningful for the result in [12].
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