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Abstract—Digital predistortion (DPD) using baseband signals

is commonly used for power amplifier linearization. This pa-

per is devoted to this subject and aims to reduce DPD com-

plexity. In this study, we propose a structure that allows to

decrease the number of DPD parameters by using multiple

blocks, with each one of them dedicated to characterizing the

non-linear behavior and/or memory effects. Such a structure

is based on the feedback Wiener system, involving a FIR filter

used as a feedback path to reproduce the PA inverse dynam-

ics. A memory polynomial block (MP) is inserted as the final

element to minimize the modeling errors. A relevant model

identification method, based on an iterative algorithm, has

been developed as well. The proposed architecture is used for

the linearization of a commercial class-AB LDMOS RF PA by

NXP Semiconductors, in wideband communication systems.

Comparison of performance with the conventional generalized

memory polynomial model (GMP) shows that the proposed

model offers similar results, with its advantage consisting in

the reduced number of parameters.

Keywords—digital predistortion, feedback Wiener model, GMP

mode, parameter identification, power amplifier.

1. Introduction

The key challenge in the design of radio frequency (RF)

power amplifiers (PA) is to achieve high efficiency char-

acteristics by using transistors at their near-to-saturation

point [1]. Under such operating conditions, PA non-

linearities and memory effects create significant signal dis-

tortions in both time and frequency domains, such as, for

instance, scattered constellations and asymmetries in spec-

tral regrowth [2]–[5]. These effects are more pronounced

in the case of high-power fluctuations in multi-band and

multi-carrier signals [6], [7]. So, such a behavior de-

grades the transmitter’s efficiency and decreases transmis-

sion quality. One solution relied upon to minimize these

effects, while simultaneously respecting spectral masks and

without compromising efficiency, is to apply linearization

techniques.

Several linearization techniques have been developed to

mitigate PA non-linearities at high levels, and consequently

to improve PA linearity versus power efficiency trade-off.

Predistortion methods have been proposed as a solution

with high potential to overcome nonlinear effects [8]–[10].

These techniques aim to introduce inverse non-linearities

that compensate the PA gain, as well as phase and memory

effects distortions [11], [12]. Depending on the position

of the predistorter and on the provided signals, three types

of predistortion techniques may be distinguished: those ap-

plied in RF [11], in intermediate frequencies (IF) [13] and

in baseband (BB) [14]. From all linearization techniques

referred to above, baseband digital predistortion (DPD) re-

ceives the most attention. It is widely deployed in modern

wireless systems, as it allows to achieve good lineariza-

tion performance through the use of reduced sampling fre-

quency, without additional RF elements, and is, therefore,

more cost effective.

In DPD and due to the complexity of the PA behavior, non-

linear mathematical functions are required to sufficiently

describe the inverse of PA characteristics [15]. In the state-

of-the-art, the commonly used models are derived from

the Volterra series [16]–[18]. Among them, one may dis-

tinguish the memory polynomial (MP) model [19], [20],

the generalized memory polynomial (GMP) model [21] or

the non-linear auto-regressive moving average (NARMA)

model [22]. Other models, such as the block-oriented non-

linear system (for instance Hammerstein and Wiener) [23],

vector-switched models [24], decomposed vector rotation

models [25], and neural network models [14] are used as

well.

The use of a large number of terms is suitable for mak-

ing the DPD more accurate, but unfortunately, this comes

at the cost of a complicated implementation and long lead

times required to estimate the coefficients. In this study,

we focus on reducing the number of the model’s parame-

ters and we propose to study and use the feedback Wiener

(FW) model [23] as a predistorter. To generate PA mem-

ory effects, a filter block with time delays is used in its
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feedback path. A low order MP model may also be cas-

caded with the FW block for modeling errors in wideband

applications [26]. The discussed DPD function using the

proposed structure, referred to, in this paper, the feedback

Wiener with memory polynomial (FWMP), and its identi-

fication algorithm are presented and tested using a 2-stage

20 W class-AB LDMOS RF PA by NXP Semiconductors.

Studies concerned with model complexity and focusing on

optimizing the number of model coefficients and draw-

ing comparisons with the performance of the GMP model

show a good compromise between linearization accuracy

and model complexity.

This paper is organized as follows. In Section 2, we in-

troduce a new, less complex, block-oriented model based

on the feedback Wiener system. The identification process

of a predistorter using the proposed FWMP model is de-

scribed in Section 3. Linearization performance experimen-

tal tests using the proposed structure and a comparison

with the MP and GMP models are described in Section 4.

Finally, conclusions and some perspectives are given in

Section 5.

2. Block-oriented Model Description

A block-oriented model will be used in this study for the

implementation of the predistorter (Fig. 1). It has been es-

tablished by relying on the circuit-based approach, allowing

to take into account the fundamental non-linear properties,

memory effects and the bilateral behavior of the active de-

vices [26].

As shown in Fig. 1, this structure is based on a combination

of two blocks: a feedback Wiener system which models the

main PA behavior, i.e. interaction between non-linearities

and memory effects, and an MP model for the remaining

modeling errors. The FW block itself is made up of two

sub-blocks: a feed-forward memory-less non-linearity and

a feedback finite impulse response (FIR) filter, where q−1

is the unit time delay.

The main signals of the FWMP model may be formulated

as:

x(n) is the output of the FW system, such as:

x(n) =
P

∑
p=1

cp ·w(n)p =
P

∑
p=1

cp ·
[

g0 · Min(n)−d(n)
]p

, (1)

where cp are the non-linear terms of the non-linearity func-

tion, g0 is the complex gain and P is the non-linearity order.

Min is the model input. F(ω) is a FIR filter and its output

d(n) may be formulated as:

d(n) =
M

∑
m=1

bm · x(n−m) , (2)

where M is the memory depth of the FIR filter. Signal x(n)
is used as an input for the MP model:

Mout(n) =
Pa−1

∑
p=0

Ma−1

∑
m=0

apm · x(n−m) · |x(n−m)|p , (3)

where Mout is the model output, while Pa and Ma are the

non-linearity order and memory depth, respectively.

Note that, since non-linearities and memory effects are

treated separately in the FW block, the proposed model

has the advantage of an additive evolution in its first block,

meaning that after incrementing a parameter in the FW

block, only a single increment in the number of model

coefficients occurs. As a result, the total number of coeffi-

cients is given by:

NFW MP =

FW
︷ ︸︸ ︷

(P+M)+

MP
︷ ︸︸ ︷

(Pa ×Ma) . (4)

3. DPD using FWMP Model

The DPD is based on the estimation of the inverse PA

characteristics to compensate its static and dynamic non-

linearities. In the case of the proposed model, Fig. 2 shows

the principle of the off-line DPD estimation process based

Fig. 1. Feedback Wiener memory polynomial model.
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on the minimization of the quadratic criterion (cost func-

tion) according to the output errors – Eq. (5). Note that G
is the PA linear gain used for output normalization.

J =
N

∑
n=1

εi(n)2 + εQ(n)2 , (5)

where N is the length of the signal used (the number of

samples).

Fig. 2. Offline DPD identification.

As mentioned before, the FWMP model shown in Fig. 1 is

composed of two separated blocks, so the identification of

such a model class is complex, because of the intermedi-

ate unmeasured signals. In other words, the identification

of one block requires the simulation of the previous block.

In our case, the unmeasured signals are w(n), x(n) and

d(n). The key-term separation principle is a good solution

for the identification of this model by separating the model

into non-linear static and linear dynamic blocks [23]. So,

the identification process will be performed in two phases,

starting with identification of the FW block followed by the

simulation of the intermediate signals. Then, characteriza-

tion of the MP block will follow.

3.1. FW Block Identification

The use of a feedback loop in the FW block renders its one-

step identification impossible. We propose, in Fig. 3, an

Fig. 3. Identification of the FW block.

iterative process to estimate it using the measured PA out-

put and input complex envelope noted by y∗(n) and u∗(n),
respectively. So, in the case of DPD, the measured output

data y∗ will become the input of the FW model (Min = y∗),
and the measured input data u∗ will become its output.

The FW vector of coefficients θ FW is estimated as:

θ FW = [g0 b1 · · · bM c1 c2 · · · cP] . (6)

The FW model for N samples, based on Eqs. (1) and (2),

can be rewritten as:

x(n) = ϕT
FW (n, iter) ·θ FW , (7)

with:

ϕFW (n, iter) =
[
y∗(n) − x(n−1)

· · ·− x(n−M) w(n) w(n)2 · · ·w(n)P]
.

During this iterative process, and in order to avoid the prob-

lem of overparametrization [23], we set the first coefficient

of the non-linear function c1 in Eq. (1) to 1. Note that

during the first iteration of this process, the memory-less

function is off. We choose to start the identification process

with the estimation of the FIR filter, due to its stability.

The iterative identification process of the FW block (Fig. 3)

is:

1. Initialization of w(n), x(n) and the FW coefficients –

Eq. (6), as:

w(n) = y∗(n),
x(n) = u∗(n),
θ FW = [1 0 · · · 0 1 0 · · · 0];

2. Identification of the new feedback filter F(q−1) co-

efficient bm and the complex gain g0:

θ FW (1) = [g0 b1 · · · bM],
ϕFW (n,1) = [y∗(n) − x(n−1) · · ·− x(n−M)],

θ FW (1) can be obtained from:

θ FW (1) =
(
φ H ·φ

)−1 φ H · x , (8)

where φ = [ϕT
FW (1,1) ϕT

FW (2,1) · · · ϕT
FW (N,1)].

A QR decomposition function (qrd) is used to avoid

matrix inversion problems in
(
φ H ·φ

)
as:

qrd(φ H ·φ) = Q ·R , (9)

where Q is an orthogonal unit vectors and R is an

upper triangular matrix. Equation (8) becomes:

θ FW (1) =
(
R−1 ·QH)

φ H ·u∗ . (10)

Based on Eqs. (1)–(2) and using the FW model

obtained, we simulate the new intermediate signals

noted as d(n), w(n) and x(n);
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Fig. 4. Identification of the MP block.

3. Estimation of all FW block coefficients θ FW –

Eq. (6) using previously simulated intermediate sig-

nals, based on Eqs. (7) and (10);

4. Minimization of the quadratic criterion J =
N
∑

n=1
ε2(n);

5. Repetition of steps 3-4 until a desirable normalized

mean square error (NMSE) is reached, or until the

adding of another iteration does not reduce the cost

function J, where:

NMSEdB = 10 log10







N
∑

n=1

∣
∣u∗(n)− x(n)

∣
∣2

N
∑

n=1

∣
∣u∗(n)

∣
∣2







. (11)

with x(n) being the model output obtained at the last

iteration.

3.2. MP Block Identification

After the convergence of the FW model, it will be fixed, as

shown in Fig. 4, and the simulated output signal x(n) will

be used as an input of the MP block.

The MP model coefficients apm can be obtained using the

least squares (LS) algorithm [27] and the system regression

derived from relation (3). Thus, for a set of N samples, the

optimal coefficients vector θ MP is obtained by solving the

following optimization problem:

min
θ MP

(J) where J =
1
N

N

∑
n=1

∣
∣u∗(n)−u(n)

∣
∣2 . (12)

u(n) = ϕT
MP(n,θ MP) ·θ MP is the model output with:

ϕMP(n,θ MP) =
[

x(n) · · · x(n−m)|x(n−m)|p · · ·

x(n−Ma)|x(n−Ma)|
Pa

]

θ MP =
[

a00 · · ·apm · · ·a(Pa−1)(Ma−1)

]

.

The offline estimation of the θ MP vector is:

θ MP =
(
φ H ·φ

)−1 φ H ·u∗ , (13)

where φ =
[

ϕT
MP(1,θ MP)ϕT

MP(2,θ MP) · · · ϕT
MP(N,θ MP)

]

.

4. Experiments and Results

4.1. Experimental Setup and Signal Acquisition

In this section, we present the experimental validation

of the proposed FWMP model and the comparison of

its linearization performance with that of a GMP model.

The test bench used is shown in Fig. 5. A 2-stages

20 W class-AB LDMOS RF power amplifier by NXP Semi-

conductors has been used to validate the proposed model. It

has a linear gain of 28 dB and its 1 dB compression point is

around 41.7 dBm, corresponding to an output power back-

off (OBO) of 0 dB. A vector signal generator (SMBV100A

by Rohde & Schwarz) is used for up-converting the base-

band signal that was generated beforehand using Matlab

Fig. 5. Experimental setup.

Fig. 6. Instantaneous AM/AM and AM/PM characteristics for

a 64-QAM input signal with 7.5 dB PAPR.
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and uploaded to the VSG, with a carrier frequency of

3.7 GHz. The sequence used is a filtered 10 MHz 64-

QAM modulated signal with a peak-to-average power ratio

(PAPR) of approximately 7.5 dB.

At the PA output, the RF signal was acquired at a sampling

frequency of 40 GHz and then numerically down-converted

and demodulated using a 4-channels oscilloscope (LeCroy

WaveMaster 816Zi-A). The input and output baseband sig-

nals are synchronized in the time domain using Matlab.

Non-linearities and memory effects of the used PA may be

observed from the dynamical AM/AM and AM/PM func-

tions in Fig. 6. We can see that the gain is compressed by

PA when the input level increases.

4.2. Experimental Results

In our study, the merit value refers to the NMSE criterion

given by Eq. (11) which translates the modeling accuracy.

So, to determine the DPD structure using the FWMP model

in terms of the trade-off between performances and com-

plexity, an exhaustive search is performed in Fig. 7.

Fig. 7. Determination of the most relevant FWMP model struc-

ture.

We mapped NMSE in the time-domain versus the number

of coefficients by testing all possible structures. A single

set of input and output signals measured is used in this

mapping and is the same during the process of identifying

all structures. Each point in the map corresponds to an

NMSE value using a set of FWMP parameters P, M, Pa
and Ma – see Eqs. (1)–(3). Here, 1715 combinations were

tested with P = 1:7, M = 0:4, Pa = 1:7, and Ma = 1:7.

During the optimization phase, we determined that it takes

less than 10 iterations for the model to converge to the

lowest NMSE, so for each structure, we iterated the model

10 times to obtain the final coefficients.

As shown in this NMSE map, an increase in the number

of coefficients allows to improve estimation performance.

It may also be noticed that for the same number of coef-

ficients, several values of NMSE may be identified. For

example, for structures with 10 coefficients, the lowest

NMSE of approx. −35.6 dB, is obtained with the model or-

ders (P = 7, M = 2, Pa = 1, Ma = 1), while the worst result

of approx. −22 dB is obtained for (P = 1, M = 2, Pa = 1,
Ma = 7). These results show the importance of an offline

DPD evaluation determining the best FWMP structure, i.e.

using a minimum number of coefficients for a given NMSE

requirement.

Figure 8 shows the parameter orders of the FWMP mod-

els, with different numbers of coefficients (up to 20 coef-

ficients), which ensure the best performance in terms of

NMSE.

Fig. 8. Composition of the best structures obtained with different

numbers of coefficients.

We can see from Fig. 8 that the FW block is the one that

contributes the most to the description of the DPD func-

tion. An FW non-linearity order P of 7 is sufficient to de-

scribe the non-linear behavior of the PA used. Also, for

structures with up to 10 coefficients, we realize that it is

more relevant to use only the FW block, while starting from

11 coefficients, the deployment of the MP block provides

better performance.

Table 1

Comparison of complexity (number of FLOP) and

performance of different model structures

P M NMSE [dB]
No. of FLOPs

Add. Multipl.

NL

7 0 –35.53 6 28

8 0 –35.57 7 36

9 0 –35.64 8 45

10 0 –35.64 9 55

11 0 Unstable 10 66

FW 7 2 –35.67 8 31

To show the importance of using the feedback loop (FIR

filter), in Table 1 a comparison between complexity (num-
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ber of FLOPs) and performance of the individual cases is

presented, in which:

• only the memoryless polynomial is used,

• only the FW is used.

A floating point operation (FLOPs) describes the arithmetic

operation on floating point numbers.

We can see from Table 1 that the best NMSE with only the

NL function, close to the one obtained with the complete

FW block, is obtained with a non-linearity order of 10, but

at the cost of a significant increase in the number of FLOPs.

Moreover, the NL function becomes unstable starting from

the non-linearity order of 11. It also needs to be noted

that the introduction of the feedback filter helps improve

the NMSE, with only a slight increase in the number of

FLOPs.

By tracking the evolution of the lowest NMSE in each

column (red line in Fig. 7), we can note that there is

no significant enhancement of the NMSE after 10 coef-

ficients. Zooming on the area between 10 and 20 coeffi-

cients enables a precise measuring, which helped us choose

a structure with 15 coefficients as a point of reference for

our study. This structure, obtained with (P = 7, M = 2,
Pa = 3, Ma = 2), offers a good trade-off between modeling

accuracy and model complexity.

4.3. Comparison of the FWMP Structure with the MP

and GMP Models

To show the importance of the FW block in the proposed

cascaded model, we performed a set of experiments - both

with and without the FW block. Thus, partial mapping was

performed using the MP model only (Eq. (3)) with 10 to

20 coefficients (see red triangles in Fig. 9).

Fig. 9. Comparison of FWMP and MP models.

As one may notice in Fig. 9, introduction of the FW block

in the general case allows to reach a lower NMSE. So,

whatever the number of coefficients is, the FWMP model

allows to improve NMSE. For example, in the reference

case of a model with 15 coefficients, the FW introduces

additional dynamics that improve the NMSE by approx.

1 dB.

Below, we compare FWMP with a GMP model [21].

As a reminder, the GMP model is given by the following

relation:

Mout(n) =
Pa−1

∑
p=0

Ma−1

∑
m=0

apm ·Min(n−m) · |Min(n−m)|p

+
Pb

∑
p=1

Mb−1

∑
m=0

Lb

∑
l=1

bpml ·Min(n−m) · |Min(n−m− l)|p

+
Pc

∑
p=1

Mc−1

∑
m=0

Lc

∑
l=1

cpml ·Min(n−m) · |Min(n−m+ l)|p , (14)

and its number of coefficients NGMP may be obtained by:

NGMP = Pa ·Ma +Pb ·Mb ·Lb +Pc ·Mc ·Lc . (15)

In order to compare FWMP with the GMP model, we de-

ployed them under the same conditions, and plotted the

obtained NMSE with structures comprising from 1 to 50

coefficients. The purple dots show the results for the GMP

model (Fig. 10). In this case, 345945 combinations were

tested with Pa = 1:7, Ma = 1:4, Pb = 1:7, Mb = 1:7, Lb =

1:5, Pc = 1:7, Mc = 1:7, Lc = 1:5.

Fig. 10. Comparison of FWMP and GMP models.

The first remark concerns the greater number of potential

structures to be tested, observed in the case of the GMP

model. In fact, and as expressed in Eq. (15), there are

8 sizing parameters applicable to the GMP model: non-

linearity orders (Pa, Pb and Pc), memory depths (Ma, Mb,

and Mc), and lagging and leading delay tap lengths

(Lb and Lc). That is the major drawback of the GMP

model, where the number of combinations increases rapidly

along with the model orders. In the case of FWMP from

Eqs. (1)–(3), we reduce the number of sizing parameters

to 4: non-linearity orders (P and Pa), filter order M and

memory depth Ma.
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Fig. 11. Linearization system scheme.

The second remark concerns the performance of both

models. As can be concluded from Fig. 10, for structures

with up to 27 coefficients, both models offer almost the

same performance, with the FWMP model having the ad-

vantage of low complexity. Beyond that, the GMP model

shows a slight improvement, for example of 0.23 dB in the

case of a structure with 50 coefficients.

Based on these comparisons, the best GMP and FWMP

structures with 15 coefficients, allowing the lowest NMSE,

have been extracted and used as a DPD function to linearize

the PA behavior. The number of arithmetic operations of

each model is presented in Table 2.

Table 2

Comparison in terms of complexity (number of FLOPs)

of the two used models

Model Model structure

FLOPs
per block

Total

Add. Multipl. Add. Multipl.

FWMP
P = 7, M = 2 8 31

13 43
Pa = 3, Ma = 2 5 12

GMP

Pa = 7, Ma = 1 6 28

12+2 48Pb = 2, Mb = 2, Lb = 1 3 10

Pc = 2, Mc = 1, Lc = 2 3 10

As shown in Table 2, and in comparison with the GMP

model, the proposed FWMP model is characterized by

a lower number of arithmetic operations.

Figure 11 illustrates the experimental process in which the

input signal is predistorted using Matlab software and then

uploaded to VSG, which provides the RF predistorted signal

to be injected to the PA. Both time and frequency exper-

iments are performed for FWMP and GMP models under

the same conditions. Review of these results allows to de-

termine the contribution of the proposed model.

In the time-domain, the linearized AM/AM and AM/PM

characteristics of the LDMOS PA used, obtained using

the two models, namely FWMP and GMP, are shown in

Figs. 12 and 13, respectively. We can see that the FWMP

Fig. 12. Linearized AM/AM and AM/PM characteristics using

FWMP model.

model offer good linearization performance, similar to that

of the GMP structure. No significant differences between

the studied models are noticed and the obtained results

show the robustness and the effectiveness of both solutions.
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Fig. 13. Linearized AM/AM and AM/PM characteristics using

GMP model.

4.4. Results in Frequency Domain

It is known that the PA non-linearities create spectral re-

growth distortions and adjacent channel noise [28]. To de-

termine the performance of FWMP in the frequency do-

main, in Fig. 14, we present the measured PA output spec-

tra, both with and without DPD, using the two models.

According to the obtained spectra, we may see in Fig. 14

that the linearization performance of both models is similar

and that the suppression of sideband noises caused by PA

non-linearities and memory effects is effective.

Table 3 presents a comparison between the adjacent chan-

nel power ratio (ACPR) obtained using the two models

and different adjacent channel bandwidths ∆WL/U (5 and

10 MHz). As a reminder, ACPR at the PA output is based

on the discrete Fourier transform Y (ω) of y(n) and is used

to evaluate out-of-band distortion, provided that L and U
are the lower and the upper adjacent channel frequencies,

respectively. M is the main channel frequency.

ACPRdBc =

∫

∆WM
Y (ω)dω

∫

∆WL/U
Y (ω)dω

, (16)

Fig. 14. Output spectra measured using FWMP and GMP lin-

earizer.

Table 3

Comparison of ACPR achieved

∆W [MHz] ACPR [dB] Original DPD GMP DPD FWMP

5 Lower –32.82 –42.37 –43.77

5 Upper –32.59 –41.66 –42.84

10 Lower –35.52 –43.84 –45.16

10 Upper –35.31 –43.45 –44.56

Results shown in Table 3 confirm those obtained in Fig. 14,

where the performance of GMP and FWMP was similar,

and allow for a 10 dB ACPR improvement compared with

the original signal. These results confirm the contribution

of the FWMP structure in sizing the optimal linearizer.

5. Conclusion

Power amplifier non-linearities and memory effects have

been discussed in this paper, and a new cascaded structure

has been proposed as a low complexity linearizer. This

model, based on the feedback Wiener system, ensures the

correction and an overall improvement of the spectral dis-

tortions over a wide range of frequency bands.

The measurement system and the identification method

were presented as well. Experimental results obtained for

a commercial class-AB LDMOS PA by NXP Semiconduc-

tors demonstrated that the performance of the FWMP struc-

ture is better than that of the MP model and similar to

that of the GMP model. Spectral analysis also shows an

improvement in the out-of-band emission by up to 10 dB

of ACPR, which may increase the power efficiency of the

transmitter. The proposed model contributes to reducing

the number of parameters, which is a considerable gain in

term of the number of combinations to be tested during the

model identification process.

We can finally conclude that the FWMP model may out-

perform other DPD structures in reducing spectral regrowth
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or ACPR, without increasing model complexity. However,

since the proposed model is a 2-stage cascaded DPD, iden-

tification of its coefficients is more complicated. To deal

with this drawback, a new way to identify its complex

coefficients, based on iterative estimation, is proposed. Fu-

ture work will focus on using the DPD FWMP model in

on-line identification for a reconfigurable PA, where differ-

ent learning architectures may be used for stage-by-stage

identification.
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