
Paper Security Verification

in the Context of 5G Sensor Networks
Piotr Remlein and Urszula Stachowiak

Poznań University of Technology, Poznań, Poland

https://doi.org/10.26636/jtit.2021.153221

Abstract—In order to develop reliable safety standards for 5G

sensor networks (SN) and the Internet of Things, appropri-

ate verification tools are needed, including those offering the

ability to perform automated symbolic analysis process. The

Tamarin prover is one of such software-based solutions. It al-

lows to formally prove security protocols. This paper shows

the modus operandi of the tool in question. Its application

has been illustrated using an example of an exchange of mes-

sages between two agents, with asynchronous encryption. The

scheme may be implemented, for instance, in the TLS/DTLS

protocol to create a secure cryptographic key exchange mech-

anism. The aim of the publication is to demonstrate that

automated symbolic analysis may be relied upon to model

5G sensor networks security protocols. Also, a use case in

which the process of modeling the DTLS 1.2 handshake pro-

tocol enriched with the TCP SYN Cookies mechanism, used

to preventing DoS attacks, is presented.

Keywords—5G, automated symbolic analysis, Internet of

Things, security protocols, sensor networks.

1. Introduction

New communication technologies, such as 5G, are vulner-

able to various type of attacks. Devices in such networks

deal with huge volumes of seemingly non-valuable data.

This means that security rules in such systems are often

disregarded by equipment manufacturers, and that users

usually do not care about maintaining proper protection

mechanisms. The advent of 5G shows that negligence in

the implementation of security measures is an enabler of at-

tacks aimed at harming private and public property. Thus,

security of 5G-based sensor networks (SN) or IoT systems

is an important issue exerting a significant impact on the

development of these technologies [1].

To achieve adequate level of security, newly developed sys-

tems rely on cryptographic protections that were known

previously. However, they are often quite clumsy in terms

of design, and the level of security of new solutions is not

properly verified. Therefore, it is important to achieve a for-

mal proof of security at the design stage. For this purpose,

tools for automatic security verification relying on symbolic

analysis are often used [2], such as Tamarin [3].

This paper describes how Tamarin may be used in testing

and validation of security protocols. The paper addresses

issues related to the security level of 5G sensor networks

and the Internet of Things with respect to the characteristics

of 5G SN devices.

This paper is structured as follows. In Section 2, a brief de-

scription of selected security standards for 5G SN and IoT

is presented. Section 3 contains an introduction to Tamarin

software. The manner in which this software may be used

for protocol security analysis is described, with a simple

message exchange between two agents in an IoT or a sen-

sor network, with asynchronous encryption in the transport

layer security (TLS) protocol, supporting secure exchange

of cryptographic keys, used as an example. Section 4 shows

how to search for errors in the model based on the simple

example of a Diffie-Hellmann algorithm model. Sections 5

and 6 describe how Tamarin software may be used to vali-

date security protocols based on the DTLS 1.2 handshake.

Reference to TLS version 1.2 is given and a model rep-

resenting migration from TLS-over-TCP to TLS-over-UDP

is examined. The Jun Kim model with a modification of

the DTLS protocol aimed at adding a collateral TCP SYN-

Cookies mechanism [4], [5] is described as well. Datagram

TLS seems to be another promising protocol in 5G SN ap-

plications, where the broadly understood system resources,

such as computational power, operating memory, the num-

ber of round-trips necessary to commence the sending of

application messages, and the energy used for computing

and data transmission, are usually very limited. The sum-

mary and conclusions are presented in Section 7.

2. Selected Security Mechanisms

for 5G SN and IoT

The limited hardware resources of 5G SN devices often

do not allow for the full implementation of typical security

mechanisms and advanced cryptographic algorithms. Thus,

special security protocols should be developed, such as TLS

and datagram transport layer security (DTLS). They are

designed to offer specific security rules relied upon while

communicating. TLS is a better version of the secure socket

layer (SSL) and the terms are often used interchangeably.

TLS utilizes the transmission control protocol (TCP).

DTLS is designed for applications whose communications

use the user datagram protocol (UDP) and is designed to be

no different from TLS. It should also provide a degree of

107

Piotr Remlein and Urszula Stachowiak

security that is similar to the one offered by TLS. Because

DTLS is based on UDP, communications are unreliable.

It is less resource intensive, making it better suited for 5G

SN than TLS. The DTLS protocol solves two problems that

TLS can experience with datagram transport. In the case of

DTLS, it is not possible to use stream ciphers. Therefore, it

is possible to decode records from datagrams individually,

because the order of delivery of datagrams may differ from

the original order. Unlike TLS, it utilizes explicit transport

layer messages [6].

These protocols support confidentiality, integrity and au-

thentication at the transport layer. Both of them use asym-

metric encryption and the X.509 certification protocol.

They use traditional security mechanisms but can also be

modified to fit the limited hardware resources of IoT and

5G SN devices [7]. The cryptographic system parameters

used during a single session are agreed upon using the

TLS handshake protocol. Communication participants can

choose the protocol version and the cryptographic algo-

rithms. Optionally, both sides can authenticate each other

and define a shared secret key. TLS supports three modes

of key agreement: elliptic curve Diffie-Hellman (ECDHE),

pre-shared key (PSK), and PSK with ECDHE [8].

The TLS handshake consists of three main phases. The

first of them is the key exchange phase, where the keys and

cryptographic parameters are established to allow encryp-

tion of the transmission. In this phase, the client transmits

a ClientHello message that includes a random, one-time

identifier named “once”. The response has the form of

a ServerHello message that specifies the negotiated cryp-

tographic parameters of the connection. The participants

negotiate a shared communication key. Then, in the server

parameter exchange phase, other security parameters that

are required for authentication are specified. In order to do

this, the server sends two types of messages: EncryptedEx-

tensions and CertificateRequest.

The third and final phase is concerned with server authenti-

cation and, optionally, client authentication. The same set of

commands is exchanged: Certificate, CertificateVerify, and

Finished [8]. The TLS protocol is a hardware resource in-

tensive solution and may lead to overloading the system.

It requires additional steps to be taken when setting up

communication and calls for significant amounts of mem-

ory for storing the certificates. Version 1.3 from 2018 is

the most recent iteration of TLS/DTLS. This specification

skips many of the outdated cipher algorithms. Version 1.3

is optimized for efficiency and is intended for IoT applica-

tions [8], [9].

3. Introduction to Tamarin

To verify the security level of a specific protocol, com-

putational or symbolic analyses are relied upon. Symbolic

verification is a relatively quick method that is less detailed

than the calculation-based approach. During the process of

creating new protocol models, large assumptions are used.

Hence, the idea of creating software solutions to increase

the level of automation while using this method was con-

ceived. This type of automated analysis has been inten-

sively researched over the past years. Tools of this type

use preprogrammed functions with cryptographic primi-

tives and have a predefined model of intruder/attacker be-

haviors. Their usefulness was proven during the analysis

of TLS protocol’s version 1.3. Automated symbolic anal-

ysis was used at the pre-implementation verification stage.

Although this type of analysis is used on a frequent basis,

the solutions obtained are characterized by a high level of

discrepancy between what can be demonstrated by tradi-

tional computational methods and what is offered by fully

automatic tools [6], [10].

Tamarin is an open-source software-based solution de-

signed for symbolic analysis and verification of security

protocols. It consists of a collection of tools capable of

solving many more problems than alternative tools, such as

ProVerif, Scyther, and Maude-NPA [4], [11]. Tamarin was

designed by the Information Security Group at ETH Zurich.

Research is currently underway on new security protocol

verification techniques potentially applicable to this tool.

Actual security protocols for 5G systems or the IEC 9798

standard are being modeled as well [10], [12], [13].

Tamarin’s operation is based on a dedicated language, in

which the analyzed protocols are modeled and rules are

created for agents – both those involved in information ex-

change and attackers. The models created may be used for

automated generation of proofs related to the analyzed pro-

tocols. Proofs are always performed according to similar

principles, i.e. a logically justified number of messages ex-

changed between agents is created for the protocol under

investigation. Then, the degree to which these messages

are susceptible to a specific attack method is verified. If all

known attacks taken into account in the analysis prove to

be ineffective, then a symbolic proof of security for the ex-

amined instances is obtained. Otherwise, Tamarin provides

a counterexample describing the attack.

This type of software performs proofs while working in

two modes. The first is fully automated, uses heuristics

to find counter-arguments for the performed proofs. This

mode, however, does not always allow to obtain an unam-

biguous answer in the form of a security proof. This is

due to the complex nature and numerous message relation-

ships of the investigated model under. The second, interac-

tive mode allows a counterexample to be generated using

a graph that includes the agents involved in a given type of

attack (Fig. 1). This makes it possible to understand how

a specific attack can be carried out. Tamarin was created

using the Haskell programming language [10], [12], [13].

During the phase focusing on the protocol’s security level,

an intruder/attacker model and a communication channel
model are created in addition to the symbolic protocol

model. The intruder model is based on a set of theorems and

algorithms that formalize the knowledge and the capabili-
ties of the attacker. One of the most common models used

in Internet security research to describe intruder behavior

is the Dolev-Yao model. It is also used in Tamarin. Here,

108

Security Verification in the Context of 5G Sensor Networks

Fig. 1. Tamarin tool interactive mode.

the attacker can eavesdrop on the transmission, adding in-

formation from the message to the fact set. The foe can use
knowledge about functions, terms and equations that are

not marked as secret. The model also allows the attacker

to rely on deduction to derive new facts, and to prepare
messages with false facts it is familiar with. One may con-

clude that the Dolev-Yao model in which the intruder can

eavesdrop on information and send modified data to legiti-
mate agents participating in the communication process is

a man-in-the-middle type of attack [12]–[14].

Recently, it has been observed that the Dolev-Yao model
is not accurate enough for IoT applications. For example,

it does not take into account physical attacks which are

a common cause of security breaches in 5G SN and IoT
networks [14]. Difficulty with modeling rather complex at-

tacker behaviors observed in 5G SN and IoT networks is

a major disadvantage as well. Here, the activities of the
intruder are not always obvious. The intruder often col-

lects sensitive information and passes it to another agent
for exploitation. This makes it necessary to model the in-

truder’s behavior related to specific incidents within sensor

networks [14].

Protocols studied with the use of Tamarin are modeled by

a set of messages exchanged between agents participating

in the communication process. Tamarin does not take into
account a scenario in which messages may be lost. It is

also necessary to define constraints related to the order in

which messages are transmitted using the protocol model.

In the Tamarin model, a specific rule represents the send-

ing of a message and generates an Out(message) fact. At
the same time, the message is added to the intruder’s

knowledge set through the embedded rules. The sending

of a particular message is considered complete when the
fact Out(message) is transformed into In(message). The

occurrence of an In(message) fact models the arrival of

the message at the destination [12]. Tamarin’s operation is
based on a set of translation rules that describe the behavior

of the model at the inference stage. The rules specify tran-

sitions between states defined in the model of the system
or the protocol under analysis. At the inference stage, all

potential combinations of the defined rules are analyzed.
A simple model of an exchange of messages between two

agents using asymmetric encryption is described below.

The code snippet begins with the name of the model that
is being proven, in this case the name is “example”. The

next line is the command that starts the main “begin” block,

where custom and built-in functions are defined at the be-
ginning.

The example shows only the built-in asymmetric-

encryption mechanisms that are necessary for the model

to work:

• p(K) – a function that generates a public key from

the private key K,

• aenc(m, pubK) – asymmetric encryption – a function

that encrypts messages m with pubK key, using an

asymmetric encryption algorithm,

109

Piotr Remlein and Urszula Stachowiak

• adec(m, K) – an asymmetric decryption function that

decrypts an “asymmetrically encrypted” message m

with key K.

It is worth noting that K and pubK are chained using the

p() function, so that pubK = p(K). Also, if used in the way

described above, i.e., with a public key for encryption and

private for decryption, the model represents the confiden-

tiality property. There is, although, no reason not to swap

pubK and K to encrypt with a private key, thus modeling

integrity/undeniability.

In Tamarin, the rules are defined based on the following no-

tation: [Conditions/facts preceding] -- [Action Facts]->

[Conditions/facts following]

The main parts of the defined rules are presented in square

brackets. The first one refers to the definition of condi-

tions that must be fulfilled to initiate a given rule. The

next part is used to define facts representing the given con-

dition, used to prove lemmas. The last part defines the

requirements (consecutive facts) which trigger subsequent

rules. There may be an optional “let in” fragment in the

syntax. This fragment primarily defines variables the use

of which should improve code clarity.

In the presented example, the first key distribution rule

(1 distribute keys) generates a private key and a public key.

The public key so created is then distributed to the two par-

ties involved in the message exchange.

Example 1

1. Theory example

2. Begin

3. Builtins: asymmetric-encryption

4. Rule 1 distribute keys :

5. [Fr(∼privateK)]-->[!Priv($X,∼privateK), !Pub($X,

pk(∼privateK)), Out(pk(∼privateK))]

6. Rule 2 agent1 sent :

7. [Fr(∼rand), !Pub($agent1, publicK)]--

[Send($agent1, aenc(∼rand, publicK)),

8. Secret(∼rand), Role(‘agent1 ’)]->[Out(aenc(∼rand,

publicK))]

9. Rule 3 agent2 receive :

10. let received rand = dec(encrypted msg,privateK) in

11. [!Priv($agent2, privateK), In(encrypted msg)]--[

Recv($agent2, encrypted msg),

Secret(received rand), Role(‘agent2 ’)]->[]

12. Lemma 1 executable : exists-trace

13. "Ex agent1 agent2 m #i #j.

Send(agent1,m)@i & Recv(agent2,m) @j "

14. Lemma 2 secret : all-traces

15. "All m #i. Secret(m) @i & Role(‘agent1 ’) @i

==> (not (Ex #j. K(m)@j))"

16. End

In the description of the rule mentioned above, there is
a definition of the Fr() fact that is the random value gen-

erated. The next section with facts is omitted because it
is empty (square brackets omitted). The last part refers to

!Priv() and !Pub() facts, assigning public and private keys

to agents 1 and 2, and defines the Out() fact. The Out() fact
models the sending of a message through a public channel

that is also accessible to attacking agents. In this case, the

Out() fact serves the purpose of revealing the public key to

the attacker. In order to indicate that it is a permanent fact,
it is preceded by an exclamation mark. Such a fact is read,

but not consumed, i.e. it does not disappear from the set
of available facts when the rule containing it on the left is

triggered.

In the next code snippet, the second rule (2 agent1 sent) is
defined. This rule accepts the public key, generates a ran-

dom number and sends it, in an encrypted form, along with

the public key. Using the Fr() fact, a random number is
generated by the Pub() fact, the public key is accepted, and

using the Out() fact, the encrypted random number is sent.

The next section of this rule defines the following facts:
Send() – the fact reports that agent1 has sent a message,

Secret() – the fact specifies that the value should be secret,
Role() – the fact that specifies an identity.

In the (3 agent2 receive) rule, the following facts are de-

fined: In() to receive the message, Priv() to retrieve the pri-
vate key and adec() function to decode the message. The

decrypted message is substituted by the received rand pa-

rameter in the let-in block. The next part of this rule is
similar to the previous one, except that the Recev() fact is

used to inform that the message was received by agent2.

Although this is not shown in the example, it is possible to
specify constraints when the rule definitions are presented.

The constraints are triggered by the use of action facts.

Their purpose is to refine the set of further analyzed proto-
col usage scenarios, for instance ensuring that agent1 and

agent2 are always two distinct agents. Then the lemmas that
Tamarin will require to be met to prove protocol security

are defined. Two lemmas are used to check the feasibility

of the model defined in the example and to check whether
confidentiality of the transmitted messages is ensured. The

first one is used to check if there exists agent1 that sends

a message to agent2 (whether the model allows, at the very
least, communication between agents) and the second one

checks if value n, being the secret of agent1, has not been
disclosed to the attacker, represented by the absence of fact

K(n) at any given time j in the public channel. In Tamarin,

two modes of lemmas can be identified, namely “exist-
trace” and “all-trace”. The first requires one condition to

be satisfied. The other lemma requires that all conditions be

satisfied.

In Tamarin, variables are defined by specific prefixes: ∼ de-

notes a new variable, defined by the Fr() fact, $ denotes

a variable that is public and thus does not need to be en-
tered by Fr(), # denotes a temporary variable. The lack

of a prefix before a variable name indicates a variable to
which the message being sent is rewritten [12].

4. Simple Example of Error Detection

In this section, the Diffie-Hellman (DH) algorithm will be

demonstrated, allowing two agents to establish a shared

symmetric encryption key without the agents having to

transmit any secret data over an untrusted network. A de-

tailed description of the algorithm and its properties can be

found in [15]. The presented model is a modification of

the solution provided by the Tamarin authors [10], [12].

110

Security Verification in the Context of 5G Sensor Networks

The aim of the modification was to prove that when adding

the second half of the Diffie-Hellman algorithm, the two

sides of communication will create the same session key.

However, Tamarin responded to such a model by means of

a counter example, so this modification demonstrates how

the software can be used to identify initially unnoticeable

reasoning errors while modeling new protocols. The fol-

lowing section also explains the exact meaning of symbolic

analysis in the context of modeling security properties.

At the beginning of the model, information is provided on

the types if built-in functions and cryptographic primitives

used. For the DH algorithm it will be: “diffie-hellman

built-in”. Adding this element gives the model access to

the cryptographic basis of the DH algorithm – the power

operator, “∧”. As the analysis performed by Tamarin is of

the symbolic variety, it only means that:

• the operator symbol “∧” has appeared in the model.

It has no assigned function,

• symbol “∧” satisfies the following relationship:

(a ∧b) ∧c = (a ∧c)∧b.

Due to the fact that Tamarin performs symbolic analysis in

the protocol model, it is impossible to determine the values

of variables or the implementation of functions. Only their

mutual dependencies are defined for functions. The variable

values are not considered in Tamarin either. In other pro-

gramming languages, no different types of variables (terms)

exist. In Tamarin, a term can be understood as a symbolic

name assigned to a value. Variables in Tamarin, however,

have their sorts specifying their properties, mainly in the

context of security.

The next step is to define function symbols, the number of

arguments for each of them, and information who can use

such functions. Again, since Tamarin carries out a sym-

bolic analysis, only a name needs to be defined. There is

no way to determine, nor a need to specify what the imple-

mentation of the function is. We know as much about the

function as follows from the mathematical definition of this

concept. The model uses: mac/2, g/0, macKey/0 [private].

Note that if the function is [private], the attacker cannot

deduce its value for given arguments, even if he knows all

of them. As a result, a 0-argument (i.e. constant) macKey

function will remain unknown to the attacker, unless sent

unsecured in a network message.

Labeled translation rules constitute another peculiar ele-

ment. The model proposed in [3] takes into account a half

of the process of determining the shared session key, i.e.

encrypting the private key by one of the parties, sending

it over the network to the other party, and combining the

received value with its private key through the other party

in order to obtain the session key. In order to enable the

parties to authenticate each other, the transmitted message

will have a MAC code built on the basis of a secret shared

MAC key (macKey constant) known only to the parties,

but not to the attacker. The model consists of the following

rules shown in Example 2.

Example 2

1. // Model of the first step of the DH algorithm. A sends

// its ‘‘encrypted’’ private key to B

2. Rule Step1 A sends encrypted private key to B:

3. [Fr(threadId :fresh), Fr(privateKeyA :fresh)] --[]->

[Out(<g ∧(privateKeyA :fresh),mac(macKey,

<g ∧(privateKeyA:fresh), A :pub, B :pub>)>),

SendingAnEncryptedPrivateKey(threadId:fresh,

A :pub, B :pub, privateKeyA:fresh)]

1. // The second step model of the DH algorithm. B takes

// A’s ‘‘encrypted’’ private key and ‘‘encrypts’’ it with

// his private key to obtain the session key.

2. Rule Step2 B accepts encrypted private key A:

3. [SendingAnEncryptedPrivateKey(threadId, A, B,

privateKeyB:fresh),

4. In(<encryptedPrivateKeyA, mac(macKey,

<encryptedPrivateKeyA, B, A >)>)]

5. --SessionKeyApproval(threadId,

encryptedPrivateKeyA ∧(privateKeyB:fresh))]->[]

The first rule allows an initiator of communication with

a publicly known name A to start the process of nego-

tiating the session key with a recipient with a publicly

known name B. Both identifiers are stored in public vari-

ables which do not guarantee the uniqueness of the values

at the time of their introduction. To start the negotiation

process, initiator A obtains a fresh or a secret unique value

for the protocol thread identifier (variable tid) and a fresh

value for variable x, representing the private key of A. In

the same step, A “encrypts” its private key by raising con-

stant g to the power of x, and then places the obtained value

in the message.

Occurrence of the SendingAnEncryptedPrivateKey fact

in a multiset together with a message containing

g∧privateKeyA triggers the second rule. This rule means

that if the system state elements are: the Sending

AnEncryptedPrivateKey fact and a message contain-

ing this “encrypted” key, the recipient indicated by

the sender can receive the message and process the

g∧privateKeyA = encryptedPrivateKeyA value using his pri-

vate keyPrivateKeyB (which is a fresh variable) as follows:

g∧privateKeyA∧privateKeyB.

The recipient assumes that this value is the session key,

taking into account that if it swapped the roles with the

other side, the other side would get the same key.

In the second rule, the verification of the MAC code mes-

sage is implicitly written. The requirement for the exis-

tence of the In() fact conforms to the fact produced in

the first step only if this fact contains a message with the

MAC signature based on the constant macKey. This means

that the binding of the parameters of the Out() fact gener-

ated by the rule: Step1 A sends encrypted private key to B

and the In() fact required by the rule: Step2 B accepts en-

crypted private key A can be understood as rewriting the

value from the source variable – a parameter of Out() to

the target variable – a parameter of In(). The macKey is

the exception here, as it is not a variable, but a constant.

Therefore, its value must be the same in the fact consumed

by the Step2 B accepts encrypted private key A rule and in

111

Piotr Remlein and Urszula Stachowiak

the fact present in the multiset. This technique is known in

computational logic as pattern matching.

The next step is to write down the lemma to specify the

security-related protocol properties. The lemma shown as

Example 3 states that the attacker has no way of knowing

the value negotiated as the session key at any time, even

before it is actually agreed upon.

Example 3

1. Lemma Session key is never revealed: all-traces

2. "All #t1 #t2 threadId sessionKey.

SessionKeyApproval(threadId, SessionKey)

3. @ #t1 & K(sessionKey) @ #t2 ==> F "

The following lemma can be read as such. In every pos-

sible trace produced by Tamarin, the condition should be

preserved for any moment in time #t1 and #t2 and for any

thread id of threadId and any session key sessionKey, if

the recipient has accepted the session key at any time #t1

and the opponent knows this key at any time #t2, then this

is an impossible situation (empty predicate set, logically

always equal to untruth).

Since the right side of the implication is always false, the

only possibility for the entire implication to be true is if the

left side of the implication is false as well. So, each trace

produced by Tamarin should conform to Example 4.

Example 4

1. "All #t1 #t2 threadId sessionKey. Not

(SessionKeyApproval (threadId,

2. sessionKey) @ #t1 & K(sessionKey) @ #t2)"

It may be formulated in a much simpler way. In none of

the produced scenarios (traces) there is such a value that

would be accepted as the session key and would be known

to the attacker.

As an experiment, we will try to corrupt the protocol by

introducing a rule that will expose a macKey constant over

the unsecured network at any time Tamarin finds suitable

(i.e., with no time nor causal restrictions), giving the op-

ponent access thereto. The interpretation of this fact may

be as follows: knowing the macKey constant, the adversary

can spoof the MAC code in any message and, consequently,

impersonate the initiator. The recipient, thinking that it is

negotiating the session key with the initiator, will accept

it after the negotiation. However, this will be the session

key established not between the initiator and the recipient,

but between the attacker and the recipient. The attacker, as

one part to the communication process, knows the session

key negotiated, which leads to the falsification of lemma

Session key is never revealed.

The third rule that models such a leak is:

Rule mac key reveal: [] -- [macKeyReveal()] ->

[Out(macKey)]

It has a blank left side, so it can be executed at any time.

As expected, as a result of the analysis of such a protocol

model by Tamarin, we obtain an example of a trace for

which the lemma Session key is never revealed is not true.

Tamarin has thus shown a relationship between the secrecy

of two seemingly unrelated protocol elements: the MAC

key and the negotiated session key.

Further, a less security-stringent version of the correct-

ness condition can be used by replacing the lemma:

Session key is never revealed by: If the mac key does

not leak before (Example 5).

Example 5

1. Lemma If the mac key does not leak before : all-traces

2. "All #t1 #t2 threadId seassionKey.

SessionKeyApproval(threadId, sessionKey)

3. @ #t1 & K(sessionKey) @ #t2 ==> Ex #t3.

macKeyReveal() @ #t3 & #t3 < #t1 "

This lemma is constructed so that it is acceptable for the at-

tacker to know the session key, but only if before accepting

this key as the session key, the adversary gets to know

the macKey (revealing the macKey is equivalent to the

macKeyReveal() label in the trace). In this case, Tamarin

shows the correctness of the protocol – the fulfillment of

the lemma for all possible traces. In practice, this proof can

be interpreted, as the macKey must remain secret, but only

until the parties determine the session key. Afterwards, its

secrecy does not matter.

Here, an attempt will be made to address the problem of

implementing only “half” of the DH algorithm. It will be

shown that if B accepts session key x in communication

with A and A accepts session key y in communication with

B, then keys x and y will be identical.

For this purpose, the first step is to add the SessionKeyAp-

proval label informing who accepted the key and in commu-

nication with whom. Therefore, it is necessary to modify

the Step2 B accepts encrypted private key A rule so that is

assumes the form given as Example 6.

Example 6

1. Rule Step2 B accepts encrypted private key A :

2. [SendingAnEncryptedPrivateKey(threadId, A, B,

privateKeyB:fresh),

3. In(<encryptedPrivateKeyA, mac(macKey,

<encryptedPrivateKeyA, B, A >)>)]

4. --[SessionKeyApproval(threadId,

encryptedPrivateKeyA ∧(privateKeyB:fresh),

A, B)]-> []

This change does not affect the operation of the protocol,

but only the set of information available for the purpose

of inference. Therefore, verification of the previously used

lemmas is not performed and a new one is introduced – see

Example 7.

Example 7

1. Lemma Both sides get the same session key : all-traces

2. "All #t1 #t2 threadId1 threadId2 sessionKey1

sessionKey2 A B.

3. (SessionKeyApproval(threadId1, sessionKey1, A, B)

@ #t1 &

4. SessionKeyApproval(threadId2, sessionKey2, B, A)

@ #t2) ==> (sessionKey1 = sessionKey2)"

112

Security Verification in the Context of 5G Sensor Networks

Fig. 2. A trace that does not meet the lemma – visualization of the attack.

It should be read as follows. If any party A has accepted

the sessionKey1 session key negotiated with B (at any time

#t1) and party B has accepted the sessionKey2 session key
negotiated with A (at any time #t2), then both keys are

equal. Tamarin is able to construct a counterexample for

such a lemma, which means that assembling the “entire use
case” of the DH algorithm from “two halves” does not en-

sure the correct operation of the protocol. In consequence,
a situation is feasible where the parties using the same al-

gorithm can generate different session keys.

To read such an attack scenario, it is necessary to examine

the trace constructed by Tamarin (Fig. 2).

An explanation of the graphic notation used by Tamarin

is required here. In rectangular frames, Tamarin shows the
rules used. The notation x.1, x.2, x.3, x.4 refers to those

variables that appear, in the rules, under the same name x,

but have different values in specific rule instances (one rule
can be used many times). The ovals show the opponent’s

actions based on the rules built into the opponent’s model
in Tamarin. In the trace of the attack scenario, we see four

instances of the Step1 A sends encrypted private key to B

rule: two resulting from the interaction of side A with side
B, and two resulting from the interaction of side B with side

A. It is worth noting that each time such a rule is applied,

the private key of the initiating party is drawn anew (fresh

variable). So, we have two sides A and B and four private

keys: x, x.1, y and y.1. Either because of the attacker or

because of a network property that does not keep the order
of messages, sessions start to intertwine. As a result, party

B (peer of the first session) accepts the session key from its

first private key (y) and the second private key A(x.1), while
party A (peer of the second session) accepts the session key

generated from its first private key (x.1) (x) and the second
private key B(y.1). On the A side, the g∧y∧x.1 session key

is created and on the B side – g∧x∧y.1. Even if the ,∧

operator is used, two session keys will exist: g∧x∧y.1 and
g∧x.1∧y, and since x and y are fresh, this guarantees that

values x, x.1, y, and y.1 are different. Consequently, keys

g∧x∧y.1 and g∧x.1∧y accepted as session keys by B and
A, respectively, are different. This is in contradiction to the

lemma.

This problem can be solved by limiting the application

of the Step1 A sends encrypted private key to B rule to the

same initiator A and communication partner B at any given

time. In other words, A is allowed to initiate negotiations

with B only once in the entire trace. To do this, a label

needs to be added first to the rule shown in Example 8.

Then, an auxiliary mechanism is relied upon to determine

which traces generated by Tamarin can be considered wor-

thy of further analysis. This mechanism is called a restric-

113

Piotr Remlein and Urszula Stachowiak

Example 8

1. Rule Step1 A sends encrypted private key to B :

2. [Fr(threadId :fresh), Fr(privateKeyA :fresh)]--

3. [StartEstablishingSessionKey(A:pub, B:pub)]->

[Out(<g∧(privateKeyA :fresh),

mac(macKey, <g∧(privateKeyA:fresh), A :pub,

B :pub>)>),

4. SendingAnEncryptedPrivateKey(threadId :fresh,

A :pub, B :pub, privateKeyA:fresh)]

tion. In this case, the restriction should allow only one

label named StartEstablishingSessionKey to be present in

the trail for a given initiator A and peer B (Example 9).

Example 9

1. Restriction Only one session between A and B :

2. "All A B #t1 #t2. (StartEstablishingSessionKey(A, B)

@ #t1 &

3. StartEstablishingSessionKey(A, B) #t2) ==> #t1

= #t2 "

Constraints are constructed similarly to lemmas. The above

limitation can be understood as follows: for any initiator A

and its peer B and for any moments in time #t1 and #t2, if

at time #t1 and at time #t2 there is a label StartEstablish-

ingSessionKey(A, B) in the trace, #t1 and #t2 are always the

same moment. For such a supplemented protocol model,

Tamarin is no longer able to produce an attack scenario.

Examples of the implementation of common restrictions

can be found in [12].

5. Model of DTLS 1.2 Handshake

In this section, the use of the Tamarin prover to model

security protocols and to verify their correctness is pre-

sented. The analysis concerns the DTLS 1.2 handshake

protocol with the optional TCP SYNCookies mechanism

modeled by the authors on the basis of documentation [19]

and models provided by the Tamarin tool developers and

Jun Kim [3]–[5].

In TLS/DTLS, a handshake is a step that is meant to nego-

tiate symmetric encryption-decryption keys by the parties

to the connection, one for each of them, without any con-

fidential information being transmitted over an unsecured

connection. The use of symmetric cryptography as a means

of securing the connection and asymmetric cryptography

only as a means of securely establishing symmetric keys

stems from significant differences in the speed of operation

and, hence, the device load. Asymmetric algorithms are,

in general, more resource-demanding, but they guarantee

a higher level of security. Such a mixed approach is espe-

cially appealing to applications in resource-constrained IoT

environments.

The TLS handshake, in both version 1.2 and 1.3, has a cer-

tain disadvantage that is impossible to leave out when dis-

cussing IoT applications. These mechanisms are security

measures for TCP connections established at the transport

layer and both rely on the properties of this protocol. The

use of stream ciphers for security-related data is only pos-

sible if the lower layer guarantees the delivery of packets

in the exact order in which they were sent. Effective ex-

ecution of the handshake in a short time frame will only

be possible if the lower layer ensures the retransmission of

those messages for which no confirmation has been pro-

vided in over an extended period of time. On the other

hand, as far as the transport layer is concerned, protocols

within the TCP/IP stack, UDP may be particularly inter-

esting for IoT devices. While TCP requires the IoT device

to store the connection and application state in its mem-

ory, UDP requires connection the state-related information

only. At the same time, preventing the datagrams from

being lost and reordered does not seem too complicated,

provided that it is necessary at all. Therefore, the use of

UDP reduces the amount of system resources used, being

a big advantage of a protocol designed to work on IoT de-

vices. It should also be emphasized that saving one round

trip time per handshake when switching from TLS 1.2 to

TLS 1.3 is a relatively poor gain in a scenario where it

is always necessary to establish the TCP connection first

when performing another 3-way TCP handshake.

The DTLS protocol is a solution that combines the security-

related advantages of TLS with the simplicity of UDP. This

protocol was created by extending TLS, i.e. allowing it to

function properly on a transport layer that uses datagrams

instead of connections. The essence of such a solution is

to provide a mechanism that is as similar to TLS as pos-

sible, but copes with the characteristics of datagrams, i.e.

the potential of datagrams getting lost in the network and

changing the order of their delivery. DTLS compensates

for the deficiencies of the UDP protocol only when per-

forming a handshake. In DTLS handshake messages, there

is a field for a sequence number, similar to that in TCP

packet headers. DTLS also introduces timers responsible

for measuring the time provided for the response of the

other party.

When a predetermined value is reached, the last sent mes-

sage is retransmitted, since either the message, or the re-

sponse to it has been lost. Additionally, due to the fact

that a single authentication certificate for one or both com-

munication sides does not fit into a single datagram, DTLS

supports protocol message fragmentation and reassembly at

the receiver. In addition to establishing a DTLS “connec-

tion”, i.e. after negotiating the session keys, the protocol

maintains the properties of datagrams while handling ap-

plication traffic.

As a result, the data that the applications send through the

now-secured communication channel is encrypted in data-

grams and is sent similarly to normal unsecured traffic.

Encrypted datagrams can also get lost and can change their

order during a transmission. The task of dealing with these

anomalies is handled, however, by the application. DTLS

only needs to ensure that the receiver can perform the de-

coding operation correctly, regardless of any missing and

reordered datagrams. This is done by completely abandon-

ing the use of stream ciphers in favor of stateless ciphers.

114

Security Verification in the Context of 5G Sensor Networks

In addition, in order not to raise any alarms in an over-

zealous manner, thus unnecessarily breaking a secure ses-

sion in the event of receiving a message that is not suc-

cessfully decoded, DTLS adds an epoch number to each

message that encapsulates the application data. The epoch

is the period over which the same session keys are valid.

The re-negotiation of these keys serves as a boundary of

such an epoch. So, if a message sent by the client ending

the handshake is overtaken, for example, by a message with

the application data sent later, the server-side protocol may

consider such a situation safe, because it has the ability

to decrypt the application data (the handshake has already

ended), and the epoch number in the decrypted datagram

is greater, by one, than during the handshake. A similar

situation occurs with the assumption that session keys are

changed periodically and that a limited number of packets

or bytes can be sent with a single key.

In the presented DTLS 1.2 handshake model, aspects re-

lated to mechanisms used for compensating for loss and

reordering of datagrams may be considered as working

correctly and securely because they are equivalent to the

mechanisms known from TCP. Epoch numbers, in turn,

are a mechanism used, in particular, during the exchange

of application data. It follows that the DTLS handshake

model prepared for Tamarin should be very similar to the

TLS handshake model if the same protocol versions are

compared.

The DTLS handshake model proposed in [3] is, in fact,

similar to the TLS handshake model [5]. The first dif-

ference is that each handshake message is labeled with

a HMAC signature. We model this signature by introducing

a 1-argument HMAC function symbol unbound by any

equality features. The attacker can compute the hash know-

ing all the required arguments, but cannot deduce argu-

ments knowing the hash only. The TLS model equivalents

of C 1 and S 1 rules will therefore initially look as shown in

Example 10.

Example 10

1. Rule C 1:

2. [Fr(∼nc), Fr(∼sid)]--[]->[Out(<$C, ∼nc, ∼sid, $pc ,

HMAC(<$C, ∼nc, ∼sid

3. $pc >)>), St C 1 ($C, ∼nc, ∼sid, $pc)]

1. Rule S 1:

2. [In(<$C, nc, sid, pc, HMAC(<$C, nc, sid, pc >)>),

Fr(∼ns)]--[]->[Out(<$S, ∼ns, sid, $ps >),

3. St S 1 ($S, $C, sid, nc, pc, ∼ns, $ps)]

However, this model does not take into account one key

aspect: the mechanism of preventing DoS attacks on IoT

devices. A ready-made mechanism of this type, TCP

SYN Cookies [18], can be used when the security protocol

is based on the TCP transport layer. In the case of DTLS,

a similar mechanism must be built into the security pro-

tocol. The specification states that implementation of this

mechanism is optional. On the other hand, defense against

DoS-type attacks in the case of an IoT network is a problem

of such great importance that the mechanism in question

should definitely be taken into account in the model. It is

so due to the fact that a much greater number of “small”

devices is expected to be present in an IoT network than in

a typical computer network.

The solution proposed in [19] introduces a preliminary step

into the protocol, preceding the sending of the ClientHello

message by the client. Its task is to inform the server about

the intention of establishing a secure session, without the

server having to consume any resources. The server au-

thorizes such an attempt to start a conversation by placing

a cookie – a hashed value that contains connection param-

eters and a secret key known to the server only. Then, the

client which acts, after receiving the answer, according to

the standard procedure, confirms its authorization by attach-

ing the previously received cookie to the ClientHello mes-

sage. Only after receiving such a message and after veri-

fying the correctness of the cookie, does the server allocate

resources for the purpose of creating a secure session.

If it is only the server that allocates resources as a result

of a complex client interaction, the attacker must maintain

a sufficiently large number of fully functional malicious

clients in order to consume all server resources. It may turn

out to be unprofitable, unlike in a situation in which such

protection is not used. Then the attacker would only need

to craft an appropriate number of malicious ClientHello

messages.

Adding a preliminary step to the model [5] requires defining

two additional rules: C 0 and S 0.

The client sends the ClientHello message without a cookie.

The server does not need to support the DoS protection

mechanism, so it can respond immediately with the Server-

Hello message, and it can also request additional verifica-

tion in the form of ClientHelloVerify – see Example 11.

Example 11

1. Rule C 0:

2. [Fr(∼nc), Fr(∼sid)]--[]->

[Out(<‘client hello’, $C, $S,

∼nc, ∼sid, $pc,

3. HMAC(<’client hello’, $C, $S, ∼nc, ∼sid, $pc >)>),

St C 0($C, $S, ∼nc, ∼sid, $pc),

4. // The client in this state can receive the ServerHello

// directly St C 1($C, $S, ∼nc, ∼sid, $pc),

5. CookieFreeSession(∼sid)

6. /∗ No match in the protocol; the server will decide

/∗ whether or not to use cookies in this session by

/∗ deleting or not deleting this fact when receiving the

/∗ client hello message

7. ∗/]

The server can respond to ClientHello without a cookie by

sending ClientHelloVerify with a freshly generated cookie.

This decision is to be made by the server once per hand-

shake (Example 12).

There are some further improvements introduced to the

rules presented above. As a result of constant evaluation of

the evolving DTLS 1.2 handshake model and based on the

assessment of the produced counter-examples, the decision

was made to:

• include both sender information and receiver infor-

mation in each message to be sent,

115

Piotr Remlein and Urszula Stachowiak

Example 12

1. Rule S 0:

2. Let cookie = h(<C, S, sid , ServerSecret(S)>) in

3. [In(<‘client hello ’, C, S, nc, sid, pc,

HMAC(<‘client hello ’, C, S, nc, sid, pc >)>),

4. CookieFreeSession(sid)]--[AssignsCookie(sid, S,

C, cookie)]->

5. [Out(< ‘client hello verify ’, S, C, sid, cookie,

HMAC(<‘client hello verify’, S, C,

6. sid, cookie >)>)]

• include, in the argument, client and server state facts,

not only session identifiers and sids, but also infor-

mation about the other party,

• introduce the CookieFreeSession(sid) fact to ensure

a constant decision on whether or not to use the

cookie throughout the entire handshake. It is point-

less for the server to first require the cookie and then

resign from its verification.

Furthermore, due to the fact that the messages from the first

stage of the handshake (ClientHello in the variant with or

without cookies and optional ClientHelloVerify) require the

type of message to be specified (the first field in the message

containing a descriptive constant), the rules responsible for

receiving them also need to be modified. The same applies

to messages exchanged later.

The client sends ClientHello again, this time with a cookie.

The condition for this rule to work is that the client has

previously sent ClientHello without the cookie. So, there is

a state from which it can recover the connection parameters,

see Example 13.

Example 13

1. Rule C 1:

2. [In(< ‘client hello verify ’ , S, C, sid, cookie ,

HMAC(<‘client hello verify ’,

S, C, sid, cookie >) >),

3. St C 0(C, S, nc, sid, pc)]--[ResendsCookie(sid, C, S,

cookie)]->

4. [Out(< ‘client hello with cookie ’ , C, S, nc, sid, pc,

cookie ,

5. HMAC(<‘client hello with cookie ’, C, S, nc,

sid, pc, cookie >)>),

6. St C 1(C, S, nc, sid, pc)]

A rule that models the server’s response to ClientHello with

a cookie (Example 14).

Example 14

1. Rule S 1:

2. Let cookie = h(<C, S, sid, ServerSecret(S)>) in

3. [In(< ‘client hello with cookie ’ ,;C, S, nc, sid, pc,

cookie,

4. HMAC(<‘client hello with cookie ’, C, S, nc,

sid, pc, cookie>)>), Fr(∼ns)]--

5. [VerifiesCookie(S, C)]->

[Out(< ‘server hello ’ , S, C, ∼ns, sid, $ps

6. HMAC(<‘server hello’, S, C, ∼ns,

sid, $ps >) >),

7. St S 1(S, C, sid, nc, pc, ∼ns, $ps)]

The ServerSecret/1 function symbol annotated as [private]

has been introduced to generate the cookie. It returns, for

each server, a secret value, and since it is a private sym-

bol, the opponent cannot know this value for any of the

servers appearing in the trace. That is, of course, if the

value for the server is not sent directly over an unsecured

network at any time. The second and third steps of the

handshake remain generally unchanged, except for adding

descriptive constants to messages, as well as sender and

receiver identifiers to both messages and state-facts. It is

also crucial that the rules have been supplemented with

additional labels that will allow a conclusion on the use

and verification of the cookie to be made later: Assigns

Cookie(who, to whom), ResendsCookie(who, to whom)

and VerifiesCookie(who, from whom). The labels speci-

fied above are related to generating and assigning a cookie

to the connection, sending the received cookie back to the

server and verifying it by this server, respectively.

In order to best adapt the model described here to the

requirements of the DTLS 1.2 specification, the possibil-

ity of the server deciding not to use the ClientHelloVerify

mechanism was introduced. The server then responds to

the ClientHello message without a cookie directly with the

ServerHello message. To model this, an alternative version

of the S 1 rule was introduced, known as S 1 no cookie

(Example 15).

Example 15

1. Rule S 1 no cookie:

2. [In(<‘client hello ’, C, S, nc, sid, pc,

HMAC(<‘client hello ’, C, S, nc, sid,

3. pc>)>), Fr(∼ns), CookieFreeSession(sid)]--[]->

[Out(<‘server hello ’, S, C,

4. ∼ns, sid, $ps, HMAC(<‘server hello ’, S, C, ∼ns,

sid, $ps >)>),

5. St S 1(S, C, sid, nc, pc, ∼ns, $ps)]

6. Security of DTLS 1.2 Handshake

The model designed in the manner described above, based
on the proof performed by Tamarin, is equivalent in terms

of security to the TLS 1.2 handshake and TLS 1.3 hand-

shake protocols, if the same lemmas are used for compari-
son.

The Meier’s model [3] defines three lemmas that check the

correctness-related properties of the TLS 1.2 handshake.
The first lemma requires that both keyS and keyC session

keys be secret, both from the client’s and the server’s point

of view. In the Tamarin syntax, this is stated in the manner
presented in Example 16.

Example 16

1. Lemma DTLS session key secrecy :

2. "not(Ex S C keyS keyC #k.SessionKeys(S, C, keyS,

keyC) @ k & ((Ex #i.

3. K (keyS) @ i) | (Ex #i. K (keyC) @ i)) & not (Ex

#r. RevLtk (S) @ r) & not (Ex #r. RevLtk (C) @ r)

4.)"

116

Security Verification in the Context of 5G Sensor Networks

The above notation can be interpreted that it is impermis-
sible for both communication parties S and C to generate

a pair of session keys that would be known at any stage of
the task execution process by an attacking intruder without

leaking the private key of S and leaking the private key of

C. This property allows us to maintain four common high-
level security features: confidentiality, integrity, availability

and non-repudiation.

The second lemma (Example 17) is used to model the be-
havior of injective consensus ownership. This condition

allows for the unconditional possibility of establishing a se-
cure connection even when the adversary is able to prepare

malicious messages and send them over the network.

Example 17

1. Lemma injective agree : all-traces

2. "All sid actor peer params #i. Commit(sid, actor,

peer, params) @ i ==>

3. (Ex #j. Running(sid, actor, peer, params) @ j & j <

i & not(Ex actor2 peer2 #i2.

4. Commit(sid, actor2, peer2, params) @ i2 &

not(#i = #i2))) (Ex #r. RevLtk (actor) @ r) |

5. (Ex #r. RevLtk (peer) @ r)"

The lemma from Example 17 can be interpreted as follows:
if an actor claims that it can send application messages via

a secure channel to the peer, then such a peer had to be

seen before as working (started a handshake) with identi-
cal parameters and, in addition, there is no other pair of

actor2 and peer2 that would use the same connection pa-

rameters (session keys). The process of ensuring that actor

!= actor2 and peer != peer2 is performed by searching for

Commit(actor2, peer2, . . .) at a different moment than the
one at which Commit(actor, peer, . . .) appeared. The “!=”

operator means “not equal”. All of the above conditions

must be fulfilled, unless there has been a leak of an actor’s
private key or a peer’s private key.

The last lemma (Example 18) was introduced for the pur-

pose of assessing the feasibility of the protocol, and there-
fore its correctness, not necessarily in terms of security. It

requires the ability to establish a secure connection while

satisfying all conditions defined at the rule level, without
revealing keys.

Example 18

1. Lemma DTLS session key setup possible: exists-trace

2. "(All x y #i. Eq(x,y) @ i ==> x = y) & (Ex S C keyS

keyC #k. SessionKeys(S, C, keyS, keyC) @ k &

3. not (Ex #r. RevLtk (S) @ r) & not (Ex #r. RevLtk(C)

@ r)

4.)"

This lemma can be interpreted as follows. There is at least

one possibility that any communication party C can nego-

tiate session keys keyS and keyC by communicating with

party S without revealing the private key of party S or the

private key of party C. Additionally, the combination of two

elements labeled Eq() must always imply equality between

them. Tamarin makes it possible to show that all three

lemmas are satisfied for the Meier model. In addition, it is

necessary to introduce one more lemma to test the correct-

ness of the ClientHelloVerify mechanism (Example 19).

Example 19

1. Lemma

server accepts connections only from clients with valid

cookie: all-traces

3. "All sid S C Cparams Sparams #t0 #t2 #t3 cookie.

4. (Commit(sid, S, C, Sparams) @ #t2 &

Commit(sid, C, S, Cparams) @ #t3 &

AssignsCookie(sid, S, C, cookie) @ #t0)

5. ==> Ex #t1. (VerifiesCookie(sid, S, C, cookie)

AssignsCookie(sid, S, C, cookie) @ #t0)

(@ #t1 & (#t1 < #t2) & (#t1 < #t3)

6. & (#t0 < #t1))"

It can be read as follows. Each server in communication
with any client can confirm the successful establishment of

a secure session, which is also confirmed by the client, but

only on condition that it previously received a valid cookie
from that client.

The fulfillment of this lemma could not be proven at first.
Although no evidence of Tamarin looping while in opera-

tion was observed, Tamarin always exhausts its entire allo-

cated RAM while producing a proof.

Hypothetically, this lemma is non-provable under the re-
searched conditions due to increased model complexity

which stems from the server being allowed to choose

whether or not to use the cookie. To limit the degree of
complexity, one of the choices may be forced, with the use

of the cookie being the preferred solutions. Such an ex-

tortion could be introduced into the model by means of
a imposing a constraint on the “correct” trace, i.e. the trace

that is subject to further analysis, requiring that each server

uses a cookie at least once in every conversation with the
client – see Example 20.

Example 20

1. Restriction server required to use cookies :

2. "All S C MS Skey Ckey #t2. Running(S, C,

<‘server’, MS, Skey, Ckey >) @ #t2

3. ==> Ex #t1. VerifiesCookie(S, C) @ #t1 "

Additionally, a counter-example encountered during the

model development phase shows that a constraint is needed
in which the operations of sending and verifying cookies

between server S and client C are possible only when C !=

S. In other words, the execution trace is subject to further
analysis, provided that no client is present in it as a server

in the same session – see Example 21.

Example 21

1. Restriction no self session when running:

2. "All sid S C params #t. Running(sid, S, C, params)

3. @ #t ==> not(S = C)"

However, we decided to take a more radical path and di-

vide the presented model into two branches. One with the
server never using a cookie, and the other unconditionally

requiring the server to do so. Such an approach is practi-

cally justified, since we do not see any reason for the server

117

Piotr Remlein and Urszula Stachowiak

accepting the DTLS “connection” to allow a no-cookie and
cookie handshake simultaneously.

The cookie-free solution is created by commenting the
S 0 rule, which allowed the server to send the Client

HelloVerify message. This solution meets the first three

lemmas. It is clear that the fourth lemma, server ac-
cepts connections only from clients with valid cookie, is

always fulfilled for the no-cookie model, as the left side

of the implication can never be true.
Instead, a cookie-enabled solution is created by comment-

ing the S 1 no cookie server rule, allowing it to respond
with a ServerHello message to a ClientHello message with-

out a cookie. In addition, the client’s ability to move from

the “ClientHello sent” state to the “ServerHello received”
state was blocked. This solution meets the first three lem-

mas. In the case of the fourth lemma, it produces a coun-

terexample which can be understood as follows:

• Client C starts a handshake with server S, thus

initiating session sid. During that handshake, the

ServerHello message is spoofed. The client receives
a ServerHello message from an attacker with mali-

ciously planted cryptographic parameters. This leads

the client to believe that the handshake with the im-
postor may be continued and, as a result, the client

claims the establishment of DTLS session keys with

the host it considered to be S.

• Much later, server S receives a valid ClientHelloWith-

Cookie message and claims it has verified the cookie

in session sid with client C. This is a violation of the
fourth lemma’s time constraints. In parallel, there is

another handshake in progress between server S and

client C, using session identifier sid.1. Note that the
attacker has enough information sniffed during the

aforementioned handshake to spoof the ClientHand-

shakeFinished message of the current handshake in
order to make it look like part of session sid. Also,

server S is still waiting to finish the handshake with
client C as part of session sid. As a result, the at-

tacker can lead the server to believe it has negotiated

a secure session sid with C, which is a prerequisite
of the fourth lemma. And because client C claims

establishing a secure session sid before the server

verifies the cookie, lemma four is not fulfilled.

However, the attacker’s actions are enough for the client

to establish a safe session with the attacker, with the latter

thinking he is talking to the server. The attacker can now
position himself between the client and the server using

the classic man-in-the-middle attack. This is in line with

the proposed protocol model, as it examines the possibility
of leakage of session keys and not the possibility of the

attacker planting their own. In practice, protocols such as
DTLS are secured against MITM with the help of PKI –

requiring the server at least to have a certificate verifiable

by an external, trusted oracle (a certificate authority). This
is beyond the scope of the presented model.

It is worth noting that we are defending the server from

DoS attacks, and the attacker’s (malicious client’s) actions

have nothing to do with simplicity. Especially they cannot
be executed if the client is to be stateless. As this is the

only counterexample (attack scenario), the protocol anal-
ysis ends with the conclusion that with the exception of

the MITM scenario (not considered in terms of security

and producing the only counterexample in terms of cook-
ies), the modeled DTLS protocol retains its security prop-

erties and the cookie mechanism works correctly. Based on

the evidence, the DTLS 1.2 handshake with the additional
ClientHelloVerify mechanism is a security equivalent of the

TLS 1.2 handshake and the TLS 1.3 handshake.

7. Conclusions

There is no doubt that guaranteeing the appropriate level

of security in 5G SN or IoT networks is an important re-
quirement for the reliability of these networks.

Research focusing on improving the security of existing

solutions, as well as on ensuring new and secure types of
connections between devices operating within 5G SN or

IoT networks, and on ensuring fully secure services ren-

dered with the use of such networks, is ongoing. The de-
ployment of new solutions involves the creation of new

security protocols. In order to automate the process of

checking correctness of the security protocols proposed,
relevant software tools are created, such as Tamarin.

This paper presents how an automatic symbolic analysis
tool can be used at the design stage to perform the security

analysis and to verify the correctness of operation of newly

proposed protocols used in 5G SN or IoT environments, as
well as in other modern sensor networks.

References
[1] M. Nadimpalli, “Internet of Things – future outlook”, Int. J. of

Innov. Res. in Comp. and Commun. Engin., vol. 5, no. 6, 2017
[Online]. Available: https://www.rroij.com/peer-reviewed/internet-
of-things-future-outlook-85898.html

[2] S. Helme, “Perfect forward secrecy – an introduction”, 2014 [On-

line]. Available: https://scotthelme.co.uk/perfect-forward-secrecy

[3] Tamarin prover [Online]. Available: https://github.com/
tamarin-prover/tamarin-prover/blob/develop/examples/classic/
TLS Handshake.spthy

[4] J. Y. Kim, R. Holz, W. Hu, and S. Jha, “Automated analysis of secure
Internet of Things protocols”, in Proc. of the 33rd Ann. Comp. Secur.

Appl. Conf. ACSAC 2017, Orlando, FL, USA, 2017, pp. 238–249
(DOI: 10.1145/3134600.3134624).

[5] J. Y. Kim, Automated-security-verification-of-IoT-protocols [On-
line]. Available: https://github.com/jun-kim/Automated-security-ver-
ification-of-IoT-protocols/blob/master/CoAP DTLShandshake.spthy

[6] T. Cole, “Interview with Kevin Ashton – inventor of IoT: Is driven
by the users”, Smart Industry the IoT Business Magazin, 2018 [On-
line]. Available: https://www.smart-industry.net/interview-with-iot-
inventor-kevin-ashton-iot-is-driven-by-the-users/

[7] T. Salman and R. Jain, “A survey of protocols and standards for
Internet of Things”, Adv. Comput. and Commun., vol. 1, no. 1, 2017
(DOI: 10.34048/2017.1.f3).

[8] E. Rescorla, The Transport Layer Security (TLS) Protocol Ver-
sion 1.3, draft-ietf-tls-tls13-28 - 20, 2018 [Online]. Available:
https://tools.ietf.org/html/draft-ietf-tls-tls13-28

[9] E. Rescorla, H. Tschofenig, and N. Modadugu, The Datagram Trans-

port Layer Security (DTLS) Protocol Version 1.3, draft-rescorla-tls-
dtls13-01-13, 2017 [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-dtls13-01

118

Security Verification in the Context of 5G Sensor Networks

[10] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The Tamarin
prover for the symbolic analysis of security protocols”, in Computer

Aided Verification 25th International Conference, CAV 2013, Saint

Petersburg, Russia, July 13-19, 2013. Proceedings, N. Sharygina and
H. Veith, Eds. LNCS, vol. 8044, pp. 696–701. Springer, 2013
(ISBN: 9783642397981).

[11] J. Thakkar TLS 1.3 Handshake: Taking a Closer Look, 2018 [On-
line]. Available: https://www.thesslstore.com/blog/
tls-1-3-handshake-tls-1-2/

[12] D. Basin, C. Cremers, J. Dreier, S. Meier, R. Sasse, and B. Schmidt,
Tamarin-Prover Manual Security Protocol Analysis in the Symbolic
Model, 2019 [Online]. Available:
https://tamarin-prover.github.io/manual/tex/tamarin-manual.pdf

[13] D. Basin, C. Cremers, J. Dreier, R. Sasse, “Symbolically ana-
lyzing security protocols using Tamarin”, ACM SIGLOG News,
vol. 4, no. 4, 2017, pp. 19–30 [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01622110/file/tamarin-tool.pdf

[14] Q. Do, B. Martini, and K. R. Choo, “The role of the adversary
model in applied security research”, Comp. & Secur., vol. 81,
pp. 156–181, 2019 (DOI: 10.1016/j.cose.2018.12.002).

[15] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE

Trans. on Inform. Theory, vol. 22, no. 6, pp. 644–654, 1976
(DOI: 10.1109/TIT.1976.1055638).

[16] The Illustrated TLS Connection [Online]. Available:
https://tls.ulfheim.net/

[17] L. C. Paulson, “Inductive analysis of the Internet protocol TLS”,
ACM Trans. on Inform. and Syst. Secur., vol. 2, no. 3, pp. 332–351,

1999 (DOI: 10.1145/322510.322530).

[18] G. Ferro, TCP SYN Cookies – DDoS defence, 2008 [Online]. Avail-
able: https://etherealmind.com/tcpsyn-cookies-ddos-defence/

[19] E. Rescorla and N. Modadugu, Datagram Transport Layer Security
Version 1.2, 2012 [Online]. Available: https://tools.ietf.org/
html/rfc6347

Piotr Remlein received his

M.Sc. and Ph.D. degrees

from Poznań University of

Technology (PUT), Poznań,

Poland in 1991 and 2002, re-

spectively. In 2018, he received

a D.Sc. degree from PUT.

He has been employed at PUT

since 1992, currently as an As-

sociate Professor at the Insti-

tute of Radiocommunications,

Faculty of Computing and Telecommunications. His

scientific interests cover wireless networks, communica-

tion theory, error control coding, cryptography, digital

modulation, continuous phase modulation, mobile commu-

nications, and digital circuit design. Dr. Remlein is the au-

thor of more than 120 papers, presented at national and

international conferences and published in communications

journals. He also acts as a reviewer for international and

national conference and journal papers. He is a Senior

Member of IEEE Communications Society and IEEE In-

formation Theory Society.

https://orcid.org/0000-0002-7593-839X

E-mail: piotr.remlein@put.poznan.pl

Institute of Radiocommunications

Poznań University of Technology

Pl. M. Skłodowskiej-Curie 5

60-965 Poznań, Poland

Urszula Stachowiak received

her B.Eng. degree in Informa-

tion and Communication Tech-

nologies from the Faculty of

Computing and Telecommuni-

cations, Poznań University of

Technology, in February 2020.

Since March 2020 she has been

a master’s student majoring in

Computing and specializing in

the Internet of Things. From

July 2019 to November 2020, she was employed as

a Telecommunications Analyst at Comarch, and has been

working as a Software Engineer at Intel Corporation since

December 2020. Her interests include topics related to the

security of IoT and formal proving of communication pro-

tocol security.

https://orcid.org/0000-0002-6892-6876

E-mail: urszula.stachowiak@student.put.poznan.pl

Faculty of Computing and Telecommunications

Poznań University of Technology

Pl. M. Skłodowskiej-Curie 5

60-965 Poznań, Poland

119

