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Abstract—A method of failure detection in telecommunica-

tion networks is presented. This is a meta-method that cor-

relates alarms raised by failure-detection modules based on

various philosophies. The correlation takes into account two

main characteristics of each module and the whole meta-

method: the percentage of false alarms and the percentage of

omitted failures. The trade-off between them is tackled with

aspiration-based multicriteria analysis. The alarms are cor-

related using linear classification by support vector machines.

An example of the profitability of correlating alarms in such

way is shown. This is an example of probabilistic context free

grammars (PCFGs), used to model the proper runtime paths

of network services (and thus usable for detecting an improper

behavior of the services). It is shown that the linearly mixing

PCFGs can add context handling to the PCFG model, thus

augmenting the capabilities of the model.

Keywords— failure detection, linear separation, probabilistic

context free grammars, support vector machine.

1. Introduction

The domain of automatic failure detection in telecommu-

nication and computer networks, becoming an extensively

exploited domain, distinguishes with an exceptional vari-

ety of approaches used [1]. A broad spectrum of statisti-

cal/stochastic methods are used in failure detection, so are

signal processing, discrete time sequence analysis, finite

state machine methods, automatic reasoning, data mining,

various classifiers, e.g., based on neural nets. The mul-

titude of the existing approaches best proves that none of

them is perfect. By choosing one of them, a designer of

a network monitoring tool has to strongly narrow the area

of a successful application of the tool.

This paper presents a concept of a meta-tool capable of

integrating very different approaches known from the liter-

ature.

The proposition assumes an open architecture of the pro-

posed tool – new literature approaches could be imple-

mented as new modules of the tool. The indications of

various modules are correlated, yielding a much more reli-

able assessment of the network state. Interesting is the way

of correlating indications obtained from modules of com-

pletely different philosophies. The correlation uses linear

classification and multicriteria analysis (we describe each

module with two criteria that seem to be common through-

out various approaches: the percentage of overlooked fail-

ures and the percent of false alarms). Several auxiliary

hard optimization and simulation problems: large-scale,

nondifferentiable, nonconvex are obtained. We propose to

simplify some of them before solving, using statistical

methods.

A fundamental question arises whether it is reasonable and

useful to make linear combinations of outputs from various

detection procedures. These procedures themselves may be

described in languages strongly differing from “linear com-

bining” – like some discrete approaches. To support our

approach, we use a very interesting example. We mix indi-

cation from two modules detecting failures based on prob-

abilistic context free grammar (PCFG) analysis of runtime

paths [2]. By mixing them we essentially enlarge the ex-

pressiveness which a single module had: we add a context

to the used grammar!

We have to make the area of application of our proposition

more precise. It includes an automatic failure detection,

where the management tool signalizies that a failure of the

network is present and possibly gives some rough infor-

mation of a type of the failure. The presented methodol-

ogy can be applied to detecting both service failures and

strict network failures. Though the paper more precisely

analyzes some service failure approaches, we will refer

jointly to both the types of failures using the short term

of “network failures”. Also, our tool would be suitable for

a broader domain of anomaly detection, where an anomaly

is understood in a broader sense that a failure (hardware,

network-software or network-service) can express also un-

typical user behavior, connected with malicious activities,

possible intrusions, frauds. Switching to making proac-

tive failure of anomaly detections would be possible, by

making some simple technical extensions, like shifting rel-

evant time sequences within the tool, during its learning

phase. However, there are bold challenges of failure lo-

calization (reasoning about the failure reasons) and auto-

matic or semi-automatic failure repairing in which our tool

would not acquit itself well. These are tasks by nature not
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well-suited for supervised learning methods, to whom our

method ranks. These tasks are solved by expert systems

and other artificial intelligence approaches.

In Section 2 we shall try to show the variety of existing

failure detection approaches. The structure of our tool and

the complex problem of tuning it will be discussed in Sec-

tion 3. A discussion of the soundness of the described

approach, together with the conclusions from our work is

given in Section 4.

2. The Variety of Detection Approaches

We shall give a flavor of the variety of existing literature

approaches to automatic network failure detection.

Various methods use various data about the network, com-

ing from various sources. Let us, however, stress the in-

creasing role of the simple network management pro-

tocol – SNMP (see [1] and the references therein) in ac-

quiring such data. The network state is described by sev-

eral tens of thousands variables (so called management in-

formation base variables – MIB variables), which can be

probed at regular time bases. SNMP delivers variables con-

nected with the traffic in particular network arcs, TCP/IP

(transmission control protocol/Internet protocol) informa-

tion (traffic, number of open connections, number of pack-

ets accompanying opening and closing connections, or ac-

companying some errors). Other useful sources of data are

system logs, e.g., regarding line commands given by users

(the logs are used in intrusion detection).

Let us enumerate some important classes of methods used

in automatic failure detection.

1. Many approaches base on signal processing methods

and stochastic methods. Usually, data about the net-

work traffic in various moments are time sequences,

often treated as realizations of stochastic processes.

Such approaches can be often depicted as systems

with elements like a filter, a statistic estimator, a dis-

criminator, an alarm generator. The “systems” more

or less accurately follow the structure from Fig. 1.

An alarm is understood as a warning about incor-

rectness of the work of the network. An alarm is,

Fig. 1. A typical structure of the tools based on alarms generated

from continuous traffic time sequences.

however, easy to obtain and a rose alarm cannot itself

prejudge that a failure is present. Alarm generation

can be merely caused by exceeding some (lower or

upper) limit value of the traffic intensity in some net-

work arc. Similarly, the excess of some error frames

rate may be examined and, in more advanced meth-

ods, the excess of some thresholds of certain signal

statistics, calculated by an estimator.

A single alarm, when obtained in a simple way, is

not very reliable in detecting failures (e.g., it may be

false). Usually failures cause several alarms (e.g., si-

multaneously, a decrease of the traffic intensity and

an increase of the error rate). The alarm correla-

tor is an element obtaining the information on the

presence of particular alarms and, based on it, de-

ciding whether a failure is present (or localizing the

failure – in systems that are capable of doing it). In

particular, an occurrence of a single alarm at a time,

can be ignored by the correlator.

A pure value of some signal at some time may be not

very relevant in raising or correlating alarms. For

example, we would probably want to ignore some

short-term incorrectnesses of the signal. Thus the

described systems are often equipped with numerous

filters, transforming signals both before and after the

alarm generation.

An example of the class of methods being discussed

is presented in [3]. The traffic intensity in a certain

network arc plays the role of signal si(t) at Fig. 1.

This signal is filtered (integrated within some time

window) to reject temporary incorrectnesses. The

obtained integral is some stochastic process; its dis-

tribution is modeled and estimated on a simple basis

of ranking its values into several predefined intervals.

When the signal goes out of a certain confidence in-

terval (the intervals are different for various times of

a day), an alarm is generated (if the situation is not

only temporary – one more low-pass filter is applied).

An interesting approach is presented in [4]. Each in-

put signal si corresponds to a different MIB variable,

usually representing traffic in a different layer: TCP,

IP, data link. The idea is that anomalies propagate

through the network layers, thus should be observ-

able from different variables. Filter F is an auto-

regressive (AR) filter of rank 1. The estimator, in

turn, calculates the defection of some simple statistics

of the filter output (which are based on the variance)

from the reference statistics (obtained from observa-

tions made in the immediate past – in some time

window spreading up the present). A big defection

means an “abrupt change” in the statistic properties

of the input signal and thus – a probable occurrence

of a failure. The volume of the defection corre-

sponding to input si is expressed by a continuous

alarm ai from interval [0,1]. (Value 1 means the

strongest defection). So we have continuous alarms,
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instead of zero-one. Correlating alarms is done by

calculating

aBaT
,

where a =









a1

a2

. . .

ak









, B is a symmetric k× k matrix.

When this value exceeds some threshold, a failure is

ascertained. The presence of matrix A, with O(k2)
coefficients, already allows to model quite complex

correlations between the alarms.

2. An example of failure detection by discrete methods

is given in [5]. The authors have a method of dis-

covering dependencies between two or more discrete

time sequences, called multi-stream dependence de-

tection (MSDD). This method can be applied to the

problem of network failure proactive detection. The

evolution of the network state (some input signal or

some set of trivially obtained alarms) is described

as a sequence of discrete values, corresponding to

consecutive time moments, for example,

1 5 7 3 6

We can have two training sequences: one represent-

ing the presence or absence of a failure, another –

some network signal. Then foreseeing a failure cor-

responds to finding correlation between elements of

the sequences.

Finding correlation in MSDD bases on templates,

e.g., * in a template means “any value”. Continu-

ing our example, in the first sequence let us denote

a presence of a failure by F, a normal network state –

by N. Let us have positive integers in the second se-

quence, coding the values of some quantity measured

in the network. MSDD can, for example, find a rule

of the form:

N N N N N N N N N F

* 2 1 * * * * * * *

The rule says that, the occurrence of the event con-

sisting in an immediate (in one time instance) tran-

sition of the observed quantity from 2 to 1 indicates

a presence of failure in 7 time units.

Certainly, also more realistic, more complicated rules

can be obtained. The algorithm searches for rules

that have an outstanding support in the training data.

The algorithm uses a mere Bayesian apparatus.

3. While the researchers prefering methods of signal

analysis concentrate more on the alarm generation,

the artificial-intelligence experts more willingly deal

with the alarm correlation and also try to point out

the reasons of the failure.

In many works, like [6], dependency graphs are used

to describe the propagation of a failure in the net-

work. Some particular elements of the network are

distinguished (a particular device, protocol, service,

server, etc.). They are drawn as the graph nodes. If

a malfunction of element A causes a malfunction of

element B with probability p, we draw an arrow on

the graph, from A to B, and p is denoted by the arrow.

The propagation of a malfunction may be multi-stage,

ending with an observed failure. Again, using the ap-

paratus of conditional probabilities we can identify

the most probable initial reason of the failure. In the

cited paper, the way to do this leads through solving

a combinatorial-optimization problem.

Instead of using graphs, we can use logical expres-

sions of some canonical form, of a lower nesting

level [7]. Both the approaches need a laborious phase

of obtaining the necessary knowledge from an expert.

Both of them need a relatively hard updating of the

monitoring software as the network changes in time

(e.g., as it grows).

4. Detecting failures in remote databases (and other re-

mote service environments) based on run-time paths

is described in [2].

A runtime path is composed of events happening

in various places of the system. Events must have

a common request identifier to be included into the

same path. For example, an event can be a remote

invocation of a procedure, data flow between remote

components of the system, realization of a database

query, spawning a thread by a Java application, etc.

A request identifier can be a session identifier in the

hypertext transfer protocol (HTTP).

The simplest way to validate the correctness of the

path is the analysis of the delays between events. The

delays can have some reference distributions, build

during an observation of a normal work of the dis-

tributed system. The conformance of delays currently

being measured to these distribution can yield an as-

sessment of the correctness of the system state.

A much more powerful tool, so called probabilistic

context free grammar can assess the correctness of

the order of events on a path. PCFG (see [2] and the

references therein) is an extension of mere context-

free grammars, consisting in defining probabilities of

the productions.

A PCFG is a 5-tuple consisting of:

– set of terminal symbols: T = {T k : k = 1, . . .V};

– set of nonterminal symbols: N = {Ni : i =
1, . . .n};

– starting symbol S ∈ N;

– set R = {R j} ( j = 1, . . . p) of productions of

the form N → s, where N ∈ N and s is a finite

sequence consisting of elements of T∪N;

– set of probabilities of productions P = {P j}
( j = 1, . . . p).
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The probabilities of all productions with a given sym-

bol on the left hand side must sum up to 1.

We can try to derive a given word (a sequence of

terminal symbols) from the grammar, starting with

the starting symbol and iteratively applying suitable

productions until we end up with the word. For sim-

plicity we assume that the derivation of any derivable

word is unique.

Example 1: Let grammar G1 be defined by N =
{S,X ,Y}, T = {a,b,c,d}, R = {

S → XY (P = 1)

X → a (P = 0.2)

X → b (P = 0.8)

Y → c (P = 0.5)

Z → d (P = 0.5)

}

The derivation of word bc is following:

S → XY → Xc → bc.

We used the 1st, the 3rd and the 2nd productions, in

order.

The product of the probabilities of the used produc-

tions, 0.4 in the example, is the probability of the

word. If symbols corresponded to events in our sys-

tem (and words – to runtime paths) the probabilities

of the word could be used to assess the correctness

of a path (and of the distributed system state).

5. Certainly, other approaches are present. They may be

based on “standard” methods (neural nets, other clas-

sification algorithms, clustering methods, the Markov

process, etc.). Untypical approaches may prove use-

fulness. In [3], failures are suspected when the net-

work devices are steering the traffic in a “strange”

way, i.e., leading some arcs to an unnecessary satu-

ration. In Fig. 2 the saturation threshold for each arc

is 10 units, variables by arc denote the current traf-

fic intensities. Then the configuration of intensities

x12 = 1, x23 = 1, x13 = 10 is erroneous, arc (1,3) is

unnecessarily saturated, while a bypass exists through

node 2. The reasoning seems simple on this simplistic

example presented but becomes more sophisticated

when we consider longer by-passes and distinguishes

“commodities” in arcs, i.e., parts of the traffic with

a particular sender and receiver.

Another untypical approach uses the machinery of

reference point multicriteria analysis [8].

Fig. 2. An incorrectness of the traffic control.

3. The Idea of the Tool

3.1. Structure

Our hypothetical tool will contain failure detection modules

of various philosophies. The coexistence of modules is

possible due to their uniform treatment in the structure of

the tool (Fig. 3).

Fig. 3. Structure of the tool.

Each module consists of a preprocessor, into which the

knowledge of a particular detection approach is coded, and

a linear classifier. The input vector of the preprocessor

(representing the current network state) is transformed to

the output vector (preferably, a vector of reals), which de-

scribes the network state according to the knowledge of the

approach. The output from the preprocessor, in the simplest

case, would be the alarm value obtained due to the partic-

ular approach but will be rather some multidimensional

description of the network state, and the role of the linear

classifier would be to transform it into a continuous scalar

representing the “normality level” of the network state.

Let us describe the elements of Fig. 3. We shall use a dis-

crete time t – this variable will take natural values. Some of

the quantities will be parametrized with this discrete time,

thus they may be represented as functions of t. The main

elements are:

1. Input signal vector i(t) ∈ Rni . Its coordinates may

come, e.g., from MIB variables collected at time t;

in general, they may represent diverse quantities.

2. Selector SEL – simple module selecting coordinates

of i, from which vectors si are formed, used by par-

ticular preprocessors.

3. Preprocessors Pi for i = 1, . . .r, their respective out-

puts ci ∈ R
ηi , respective classifiers LC0, . . ., LCr and

alarms ai(t) ∈R rose by the classifiers for i = 1, . . . r.

In general, each preprocessor remembers its inputs

for at most H time instances, so

ci(t) = ci(si(t);si(t −1); . . .si(t −H + 1)).

There holds ai = φ i(c(t)), with (operator “;” denotes

the vector/number concatenation), φ : R
η i

being an

affine function:

φ i(x) = ω i⊤x + γ i
, (1)

where ω i ∈R
Hη i

and γ i ∈ R are the classifier param-

eters, tuned in the learning phase, described later.
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We treat the alarm value of −1 as de facto absence

of an alarm, the value of 1 as rising an alarm.

4. Alarm correlator/LC0. It receives at time t vector

a(t) = (a1(t), a2(t), . . ., ar(t)). It returns a num-

ber greater than 0 (failure) or not greater than 0

(no failure). We do not equip the correlator with

an additional low-pass filter eliminating “short-time

failure indications” in our later reasoning, though it

is desired in implementations.

3.2. The Case of Many Failures or Future Failures

The presented tool could be only simplistically extended to

detect various types of failures, by multiplying the structure

from Fig. 3 for separate failures. As already stated, we

cannot expect great failure localization possibilities from

our tool, which is of supervised learning tools class.

It is easier to augment our tool for the case of proactive fail-

ure detection. It suffices for modifying the learning phase,

by shifting (in time) the teacher information of the state of

the network (failure or no failure).

3.3. Teaching the Classifiers

Finding parameters ω i γ i of ith classifier is done in the

supervised learning phase. We have historical examples

e j ( j = 1, . . . ,n) of network states, where e j is an example

from a historical time t j, e j = ci(t j). For every example

we know whether it is positive, i.e., describes a normal

network state, or negative, i.e., describes a failure state.

Parameters ω i γ i, set to the solution of a certain optimiza-

tion problem, are called support vector machine (SVM):

minimize
ω i∈IRηi

,γ i∈IR,y∈IRn
+

1

2
‖ω‖2+Ce⊤y , (2)

s. t.

−D · (e j⊤ω−γ)−y + 1 ≤ 0 for j=1, . . .n,e j negative,

(e jω⊤−γ)−y + 1 ≤ 0 for j=1, . . .n,e j positive.

Here e = (1,1, . . . ,1) ∈ IRn, C,D > 0. For the derivation

of SVM problems see [9] or [10]. Learning parameter C

controls the trade-off between the number of training ex-

amples misclassified by the taught classifier and the sep-

aration margin.1 Learning parameter D is augmentation

of the problem from [9] to control the relative impact

of negative versus positive examples on γ i and ω i being

found (it will mainly affect the later described trade-off be-

tween the tendency of the classifier to raise false alarms

and to overlook failures). For a more thorough description

of the above problem and a solver capable of solving it,

see [11], [12].

1The existence of a (big) separation margin causes that the values of φ i

for the training examples are (much) isolated from 0. With a big separation

margin we can hope for good generalization properties of our classifier.

3.4. Assessing the Modules Performance

Tuning the whole tool will be described in Subsection 3.5.

For this, however, we must be able to assess the quality of

tunnings (C, D) for a single module. This will be achieved

by checking the attained compromise between two criteria:

the number of false alarms and overlooked failures by the

module. This is important because the whole tool will be

assessed by similar criteria.

We divide some historical data about the network state into

two sets: training data and test data. We teach a classifier

with parameters C, D. We test the so taught module on the

test data. We define function q : IR2 → IR2 as

q(C,D) =

[

num. of misclassified positive test examples
num. of positive test examples

num. of misclassified negative test examples
num. of negative test examples

]

;

its coordinates are our criteria (the rate of false alarms, the

rate of overlooked failures).

We make a parametric experiment – we teach our classi-

fier for various combinations of C, D, i.e., for (C,D) ∈ X ,

where X is a finite subset of R2
+. We obtain the following

attainable results set:

Q = {(y1,y2) ∈ IR
2

: ∃(c,d)∈X q(c,d) = (y1,y2)}.

We have to reject clearly unnecessary elements of Q,

i.e., such elements that the classifier for some other setting

of C, D gives one criterion not worse that in this element

and the other criterion – better than in this element. By

rejecting them we obtain the efficient results set (for some

particular Pareto order):

Q⋆ = {(y1,y2) ∈ Q : ¬∃(z1,z2)∈Q

(z1 < y1 ∧ z2 ≤ y2)∨ (z1 ≤ y1)∧ (z2 < y2)}.
(3)

Since during the later tuning of the whole tool will see the

modules only in terms of elements of Q (attained results

for the module) we shall need to be able to return from

an element of Q to (some) setting (C,D) that yielded it.

For this reason, the tool must now memorize the relation

between the settings and the attained results.

In the further analysis it will be easier to number elements

of Q⋆ with one variable. Let us number the elements of Q⋆

with index ϑ , ϑ = 1,2, . . . |Q⋆|, according to the growing

value of the first coordinate.

Such numbering is not ambiguous: there cannot exist two

elements of Q⋆ with identical first coordinates and different

second coordinates: definition (3) does not allow this.

Now each point in Q⋆ may be the value of a function κ of

this index:

Q⋆ = {(y1,y2) = κ(ϑ) : ϑ = 1,2, . . . l},

where l = |Q⋆| and κ : {1,2, . . . l}→ R2.

Remark 1: The coordinates of function κ are monotone:

κ1 is an increasing function, κ2 is a decreasing function.

The increasing character of κ1 follows from numbering of

the elements of Q by the first coordinate. The decreasing
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character of κ2 follows from the numbering and from the

constriction (3) of set Q⋆.

Finally, each module is characterized with its function κ.

3.5. Teaching the Alarm Correlator

The alarm correlator yields NSTATE(t)=ω⊤(a1(t), a2(t), . . .

ar(t))+γ , where ω ∈ IRr and γ ∈ R are tunable parame-

ters, (NSTATE(t) ≤ 0 means a failure, NSTATE(y) > 0 – no

failure).

We have been describing some quantities for a single mod-

ule/classifier. Since we now have to consider all the mod-

ules jointly, we equip these quantities with an additional

index i denoting the module number (i will run from 1

to r). So we shall make the following transformation in out

notation:

l → li, ϑ → ϑi, κ j → κi, j, C →Ci, D → Di.

Moreover, C, D and ϑ will be vectors now: C =
(C1,C2, . . .Cr), D = (D1,D2, . . .Dr), ϑ = (ϑ1,ϑ2, . . .ϑr).
We introduce function q(t,ω ,γ) assessing the whole sys-
tem:

q(C,D,ω,γ)=

[

num. of positive test examples misclassified by correlator
num. of positive test examples

num. of negative test examples misclassified by correlator
num. of negative test examples

]

.

The author would like to thank Prof. Wierzbicki and

Dr. Granat for pointing out importance of assessing the sys-

tem by such two criteria (defined by the coordinates of q).

The choice of the compromise can be left to the network

administrator. In the sequel we shall allow this choice with

the apparatus of the reference point methodology [13].

We shall try to minimize both the criteria. To merit the

“levels of achievement” in the minimizations we shall in-

troduce a scalarizing function s ¯̄q,q̄ : IR2 7→ IR, [13] with

parameters ¯̄q ∈ IR2 (the vector of so called reservation lev-

els) q̄ ∈ IR2 (the vector of so called aspiration levels). The

reservation level for a criterion (a coordinate of q) is de-

fined as such that the user does not want the criterion to

deteriorate below the level. The aspiration level is defined

as such that the user does not demand the criterion beyond

the level.

The user can change ¯̄q, q̄ and the system solves the follow-

ing optimization problem:

maximize
C,D,ω,γ

s ¯̄q,q̄(q(C,D,ω ,γ)), (4)

finding the settings C, D, ω , γ .

3.5.1. The Case of a Few Modules

When there are only a few modules, problem (4) can be

solved directly by a parametric experiment. Taking various

combinations of the values of C, D, ω , γ , one can examine

the resulting values of q1 i q2 by a direct simulation of the

work of the modules and based on this one can calculate the

values of the scalarizing function s ¯̄q,q̄, eventually choosing

the combination of C, D, ω , γ that gave the biggest s ¯̄q,q̄.

3.5.2. The Case of Numerous Modules

The number of combinations of the values of C, D, ω ,

γ grows exponentially with the number of modules under

a given sampling density. If there are more than sev-

eral modules, the computations become unrealistic. Then,

however, we can try to compute q with statistical methods,

using the central limit theorem.

For this we must assume that mistakes of particular modules

are independent events. This assumption, a bit disputable,

can be substantiated with the difference of the philosophies

of the modules.

We shall consider two cases.

Some test example corresponds to a failure. We shall

calculate the probability of misclassifying the example by

the correlator (i.e., by the whole system).

We treat ai as independent, discrete probabilistic variables,

where ai = −1 with probability (1− p′′i ), and ai = 1 with

probability p′′i . We have denoted p′′i = κi,2(ϑi). Recall that

ϑi is a parameter indexing the set of efficient results for the

ith module. Later ϑi will be made variables for each i –

they will become decision variables in an optimization task

that will serve for tuning the correlator.

We have

Eai = 2p′′i −1 and Varai = 4(p′′i − p′′
2

i ).

So for the probabilistic variable ω⊤a (i.e., for ∑i(ω · ai))
we have

E(ω⊤a)=∑
i

ωi(2p′′i −1) and Var(ω⊤a)= 4∑
i

ω2
i (p′′i −p′′

2

i ).

We assume that the probabilistic variable ω⊤a, being a sum

of many independent variables has the distribution of2

N

(

∑
i

ωi(2p′′i −1),
√

∑
i

4ωi(p′′i − p′′2i )

)

,

where N(ε,σ) denoted the normal distribution with ex-

pected value ε and variance σ2.

The probability of overlooking the failure by the system is

P(ω⊤aγ > 0) = P(ω⊤a > −γ)

= 1−D

(

∑
i

(ωi(2p′′i −1)),
√

∑
i

4(ωi(p′′i − p′′2i ))

)

(−γ)

= 1−D(0,1)

(

−γ −∑i(ωi(2p′′i −1))

4∑i(ω
2
i (p′′i − p′′2i ))

)

, (5)

where D(ε,σ) denotes the cumulative distribution function

(CDF) of the normal distribution with expected value ε and

variance σ2.

Some test example corresponds to a correct network

state. We put p′i = κi,1(ϑi). Using a similar reasoning as

2Since the variables have different variances, one should assure that

none of the variances dominates the others, so that the conditions of

the Linderberg-Feller theorem are satisfied. At least, the modules should

be tuned similarly, in the sense that they yield misclassification rates of

a similar rank.
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above, we can calculate the probability of misclassifying

this example by the system:

P(ω⊤aγ ≤ 0) = P(ω⊤a ≤−γ)

= D

(

−∑
i

(ωi(2p′i −1)),
√

∑
i

4(ωi(p′i − p′2i ))

)

(−γ)

= D(0,1)

(

−γ + ∑i(ωi(2p′i −1))

4∑i(ω
2
i (p′i − p′2i ))

)

. (6)

Finally, in order to find the optimal tuning of ϑ , γ , ω we

solve the following optimization problem:

maximize
ϑ ,ω,γ

s ¯̄q,q̄(q1(t,ω ,γ),q2(t,ω ,γ)),

where q1(ϑ ,ω ,γ) is given by (6) and q2(t,ω ,γ) – by (5).

This problem is nondifferentiable due to the nondifferentia-

bility of the scalarizing function s ¯̄q,q̄ and possible nondiffer-

entiability of the necessary representation of κi. It seems,

however, optimistic that it has as quasi-analytical form,

i.e., to compute the value of the goal function for a given

argument one does not need to run preprocessors neither

use the historical examples. Finding an effective technique

of solving the problem is the subject of further research.

It may be helpful that functions κi(ϑi) j and D(0,1)(·) are

monotone and weights wi can be assumed positive (if the

modules are reasonable their votes should be taken with

positive weights).

4. Discussion of the Proposition

Soundness and Conclusions

Implementing and validating the proposition given in this

paper is a large undertaking, involving an implementation

of several of tens of preprocessors and also organizing the

supervised learning, solving quite hard optimization prob-

lems, etc. Thus such undertaking is a subject of the further

research and here we shall only give some partial arguments

validating our approach.

The first, fundamental question is whether it is reasonable

to combine particular methods from the literature (which

can be very complex and subtle) with the quite rough tool

of weighted summing. A very interesting example regard-

ing the runtime path method with PCFGs, supports such

combining. We shall show that by weighted summing of

the “probabilities of the words” we can extend the expres-

siveness of the method using PCFGs by context handling!

That PCFG are context-free can be expressed as follows:

the probability of a parsing subtree depends neither on ear-

lier symbols nor on later symbols (this is a disadvantage of

PCGGs, since many events in reality depend on the con-

text [2]). Let us come back to Example 1 from Section 2.

The probability of the one-node subtree Y → c equals to

0.5 independent of which the 1st symbol in the word is.

So the occurrence of symbol c is independent of what has

happened before (i.e., whether there was a or b in the first

position) and amounts to 0.5. In other words, events “the

1st symbol in the word is a” and “the second symbol of

the word is b” are independent, which can be written as

follows:

PG1
(ac) = PG1

(a⋆) ·PG1
(⋆c),

where ⋆ denotes any symbol allowed by the grammar at the

given position.

Let us define grammar G2, very similar to G1 from Exam-

ple 1 in Section 2 (even identical with G1 in structure):

N = {S,X ,Y}, T = {a,b,c,d}, R = {
S → XY (P = 1)

X → a (P = 0)

X → b (P = 1)

Y → c (P = 0)

Z → d (P = 1)

}

Certainly, for G2 there also holds the independence of the

relevant events:

PG2
(ac) = PG2

(a⋆) ·PG2
(⋆c).

However, under mixed probability, e.g., P(.) ≡ 0.5PG1
+

0.5PG2
, events “a⋆” and “⋆c” are no more independent.

Namely, we have

P(a⋆) = 0.5PG1
(a⋆)+0.5PG2

(a⋆) = 0.5 ·0.2+0.5 ·0 = 0.1,

P(⋆c) = 0.5PG1
(⋆c)+0.5PG2

(⋆c) = 0.5 ·0.5+0.5 ·0 = 0.25,

P(ac) = 0.5PG1
(ac)+ 0.5PG2

(ac) = 0.5 ·0.1 + 0.5 ·0 = 0.5

and finally:

P(ac) 6= P(a⋆) ·P(⋆c).

Mixing the probabilities introduced the desired contextual

information handling to our tool.

Some preliminary experiments with teaching modules have

been also performed (see [12] for details). The main out-

come is an assessment of the form of set Q, giving flavor

of what trade-offs between overlooking failures and raising

false alarms can be obtained.

An experimental module had to detect failures consisting in

breaking one of the arc of the skeleton computer network

of the National Institute of Telecommunications. The mod-

ule had very limited information about the current network

state: as a single example, it had only a sequence of traffic

intensities in some other arc at 20 consecutive time mo-

ments. To make the job of the module more difficult, the

sequence was normalized so as its variance was drawn to 1

and its expected value was drawn to 0 for each example. So

the module could only analyze the most subtle properties

of the 20-element time sequences. It did it using a simple

auto-regressive filter of rank 4 as the preprocessor.

The obtained set Q is shown in Fig. 4. For comparison,

a line representing the behavior of the random classifier

was built in the figure. The random classifier classifies

each testing example as positive with probability p or as

negative – with probability 1− p (independently of the real
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Fig. 4. Attainable results for the AR module.

current network state). By varying p we obtain the whole

line in the graph.

Even under a difficult task posing, the AR module exhibited

an efficiency clearly better than the random classifier. Cor-

relating several tens of modules of a similar quality would

probably be effective.

In conclusion, let us state that it is conceptually possible to

join the efforts of various literature detection methods, of

which no one is perfect. The main idea of the tool, com-

bining even sophisticated detection methods known from

the literature with the mere linear classification seems to

be useful in some cases. The most important matters of

the further research seem to be: solving the resulting opti-

mization problems, incorporating some at least very rough

classification of failures, making a thorough experimental

validation.
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