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Abstract—This paper presents an algorithm that supports the

dynamic spectrum access process in cognitive radio networks

by generating a sorted list of best radio channels or by identi-

fying those frequency ranges that are not in use temporarily.

The concept is based on the reinforcement learning technique

named Q-learning. To evaluate the utility of individual ra-

dio channels, spectrum monitoring is performed. In the pre-

sented solution, the epsilon-greedy action selection method is

used to indicate which channel should be monitored next. The

article includes a description of the proposed algorithm, sce-

narios, metrics, and simulation results showing the correct

operation of the approach relied upon to evaluate the util-

ity of radio channels and the epsilon-greedy action selection

method. Based on the performed tests, it is possible to deter-

mine algorithm parameters that should be used in this pro-

posed deployment. The paper also presents a comparison of

the results with two other action selection methods.

Keywords—cognitive radio, dynamic spectrum access, spectrum

monitoring, machine learning, Q-learning.

1. Introduction

With the dynamic development of wireless communica-

tions systems, spectrum scarcity has become an increas-

ingly important problem. The vast majority of radio fre-

quency bands are assigned to licensed (primary) users on

an exclusive basis. At the same time, by analyzing the use

of frequency resources over time [1]–[3], one can iden-

tify the so-called spectrum holes. This term refers to fre-

quency bands that are not in use temporarily and may be

utilized for transmission by secondary (unlicensed) users.

This approach is referred to as dynamic spectrum access

(DSA). To apply this concept, cognitive radio (CR) tech-

nology is proposed. The functionalities of CR include the

ability to receive various information from the surround-

ing environment, analyze it, make decisions, and perform

specific actions. The ability to learn (improve functional-

ity) from previous reactions and from the results obtained

is another essential feature of CR.

Implementation of DSA requires constant monitoring of the

available radio resources and means that the usefulness of

individual frequency ranges (i.e. radio channels) needs to

be determined. For secondary users, channels with low

occupancy ratios (activity of other users) are the most im-

portant ones.

2. Evolution of Radio Channel Utility

The algorithm proposed in this paper for evaluating the

utility of radio channels supports DSA and is based on

the machine learning method named Q-learning. This tech-

nique belongs to the class of reinforcement learning meth-

ods in which learning takes place through experimentation.

In addition to reinforcement learning, two primary groups

of machine learning methods may be distinguished, namely

supervised and unsupervised learning [4], [5]. Reinforce-

ment learning is considered to be useful in terms of CR,

especially in monitoring and accessing the spectrum in

a dynamically changing environment [4]. In the considered

solution, reinforcement learning of the single state [6], [7]

or stateless type [8], [9] is analyzed. The proposed algo-

rithm does not require any knowledge of the radio environ-

ment. It recognizes and learns spectrum usability-related in-

formation by relying on the trial and error method [6], [10].

On the other hand, if the state of several frequency chan-

nels is known, it may also be used during the initialization

step or during the algorithm’s operation.

Figure 1 depicts the general scheme of the proposed algo-

rithm that consists of four primary stages repeated as the

system is operated. Before the algorithm starts, the Q ma-

trix should be initialized. This matrix consists of channels

a and their estimated qualities Q(a).
The first step of the algorithm is the selection of action

(a). During this stage, a new channel for sensing (i.e. ra-

dio spectrum monitoring) is indicated. Random and cyclic

algorithms are the most straightforward and the most pop-

ular solution, as they search the entire action space with

equal probabilities. In the first case, the action (channel)

is selected randomly. The second solution assumes that

channels are specified in sequence over a repeated cycle.

Another proposal is the epsilon-greedy strategy, which is

a greedy policy variant (see Fig. 2). By using this approach,

one may exploit (use) the best actions and reduce the effort
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Fig. 1. Radio channel utility evaluation algorithm.

required to explore (search) for others. According to this

principle, the following action is chosen:

• randomly with low probability ε ,

• or according to the current policy of maximizing re-

wards with a probability of 1− ε .

Fig. 2. Epsilon-greedy action selection method.

The ε value determines the probability of taking the greedy

action, selecting the best channel for sensing. Otherwise, it

also defines the probability 1− ε of performing a random

action. This makes it possible to find other channels with

good qualities. As shown in Fig. 2, by changing the ε value,

a trade-off between exploration and exploitation is reached.

An example algorithm for the epsilon-greedy action selec-

tion method is shown in Fig. 3. Firstly, a random number

p (p = 0, . . . ,1) is generated. Then, its value is compared

with the defined ε . Depending on the result, a random

action is performed or the best channel is selected.

Fig. 3. Epsilon-greedy action selection algorithm.

In the next step, the radio channel utility evaluation algo-

rithm is executed on the selected frequency channel. Two

basic sensing approaches may be used in the proposed so-

lution: local spectrum monitoring or cooperative sensing

of spatially distributed radio network nodes. The problem

of optimizing the placement of sensing elements is consid-

ered, inter alia, in [11] and [12]. The use of cooperative

spectrum monitoring allows to reduce the severity of the

problem of the so-called hidden nodes [13]. In such cases,

it is necessary to apply a certain data fusion method, e.g.

the Dempster-Shaffer theory [14].

The spectrum monitoring result r is passed to the following

step of the algorithm in which the calculation of a new

Q′(a) value for the analyzed channel is performed. Both

the newly obtained r result and the previous value Q(a) are

considered. The significance of new and historical data is

defined by the learning rate α . The calculation of the new

value Q′(a) is performed using the following relationship:

Q′(a) = (1−α)Q(a)+αr , (1)

where:

• a – selected action,

• Q(a) – Q value for the selected action,

• Q′(a) – new (updated) Q value for the selected action,

• α ∈< 0,1 > – learning rate,

• r – reward.

In the next step, the determined value Q′(a) is used to

update the Q matrix, and then the algorithm cycle repeats.
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3. Simulations and Results

This section of the paper presents the scenarios, metrics,

and simulation results of the proposed algorithm using the

epsilon-greedy action selection approach.

To evaluate the proposed algorithm, two base scenarios

were prepared. Each scenario consists of radio channels

with their occupancy defined over time. To generate spec-

trum occupancy figures, a statistical approach based on the

On-Off model (see Fig. 4) was used [15]. The traffic gen-

erated may be interpreted as originating from one or more

users. This model assumes two possible states: occupied

(On) and not-occupied (Off).

Fig. 4. On-Off spectral occupancy model [15].

In the selected Poisson-exponential model, the arrival pro-

cedure is modeled by a Poisson process. The time between

successive spectral occupancies Tf (Off periods) is defined

by an exponentially distributed random process:

f
(

Tf
)

=
1
T̄f

e
−

Tf
T̄f , (2)

with a mean interarrival time of:

E
[

Tf
]

= Tf . (3)

The duration of the occupancy time To (On periods) is also

modeled as an exponentially distributed random process

given by:

f (To) =
1
To

e
−

To
To , (4)

with a mean occupancy time of:

E [To] = To . (5)

According to the ITU-R report [16], spectrum resource oc-

cupancy SRO is the ratio of the number of channels in use

(occupied) to the total number of channels in the entire fre-

quency band. SRO for multiple channels within a specific

time, called the integration time, is calculated as follows:

SRO =
N0

N
, (6)

where: N0 – number of samples on any channel with a level

above the threshold and N – total number of samples taken

on all channels during the integration time.

In this case, the integration time is equated with the sce-

nario time. Spectrum resource occupancy SRO may be in-

terpreted as the average occupancy of the channels.

Table 1

Scenario 1 parameters

Parameter

name

Parameter value

Even-numbered

channels

(2, 4, 6,

8, 10, 12)

Odd-numbered

channels

(1, 3, 5,

7, 9, 11)

All

channels

Simulation

time T
10,000

Number of

channels M
6 6 12

Average On

time T0
10 10 -

Average Off

time Tf
10 30 -

Spectrum

resource

occupancy

SRO

0.5 0.25 0.375

Table 2

Scenario 2 parameters

Parameter

name

Parameter value

Even-numbered

channels

(2, 4, 6,

8, 10, 12)

Odd-numbered

channels

(1, 3, 5,

7, 9, 11)

All

channels

Simulation

time T
10,000

Number of

channels M
6 6 12

Average On

time T0
40 40 -

Average Off

time Tf
40 120 -

Spectrum

resource

occupancy

SRO

0.5 0.25 0.375

For evaluation purposes, two scenarios are considered.

Both consist of twelve radio channels for which 10,000

states are defined (Table 1 and Table 2). The channels are

divided into two groups with different parameters. Spec-

trum resource occupancy SRO for even-numbered chan-

nels is about 0.5, whereas for odd-numbered channels

SRO ≈ 0.25. This means that the overall spectrum occu-

pancy for both scenarios (all channels) equals 0.375. The

difference between scenario 1 and scenario 2 is in average

On and Off times. Channel state changes in scenario 2 are
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four times slower compared to scenario 1, e.g. To and Tf
for even-numbered channels in scenario 1 are equal to 10,

while for the scenario 2 these parameters are equal to 40.

Fig. 5. Radio channel occupancy for base scenario 1.

The generated radio channel occupancy rates are shown in

Figs. 5 and 6 for scenario 1 and scenario 2, respectively.

The results are consistent with the Poisson-exponential

model. White color represents not-occupied states (free),

whereas gray is used to identify occupied channels.

Fig. 6. Radio channel occupancy for base scenario 2.

The two presented scenarios serve as a basis for the simula-

tions (base scenarios). They are used for the first iteration

of the simulations performed according to the algorithm

illustrated in Fig. 7.

Each scenario is simulated for different ε values, and then

the relevant metrics are calculated. After analyzing the

obtained metrics, ε value rendering the best results is se-

lected. Consequently, there is a Q matrix and the best radio

channel for each time step. In the next stage, information

about temporally best channels is used to modify the input

scenario, and then the simulations are performed relying

on this updated data. That allows the scenarios used in

subsequent iterations to be defined based on an increasing

spectrum resource occupancy rate.

Fig. 7. Simulation algorithm – successive iterations.

3.1. Metrics Used

To evaluate the proposed solution, specific metrics are pro-

posed. The first one is channel utility Utl, defined as:

Utl =
N f

T
, (7)

where: N f – number of samples on the selected channel

with a level below threshold (channel not-occupied) and

T – total number of samples taken on the selected channel

during the scenario time.

The Utl value can vary from 0 to 1. The second metric is

spectrum resource occupancy gain SROgain defined as:

SROgain = SRO2 −SRO1 , (8)

where: SRO1 – reference spectrum resource occupancy

value (occupancy of the scenario prepared for simulation)

and SRO2 – spectrum resource occupancy after simulation

(including the occupancy resulting from the use of the best

channel determined by the algorithm).

The goal is to obtain the highest SROgain and therefore the

greatest Utl value, as radio resources are then used more

efficiently. SRO1 may be defined in the same way as in

Eq. (6):

SRO1 =
N0

N
. (9)

The use of the spectrum, when the system is using the best

channels indicated by the proposed algorithm, increases

proportionally to the Utl value. In such a case, the not-

occupied states of the selected channel N f change their

status to occupied and increase the utilization of frequency

resources. Accordingly, SRO2 may be defined as:

SRO2 =
No +N f

N
. (10)
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The total number of samples N taken on all channels during

the integration time is expressed by:

N = MT , (11)

where M is the number of channels.

The SROgain may be defined as:

SROgain =
No +N f

N
−

N0

N
=

N f

MT
=

Utl
M

. (12)

Considering the range of variability of the parameter Utl,
the maximum SROgain is:

SROgainMax =
1
M

. (13)

3.2. Results

Fig. 8. Utility values for different epsilon ε values in successive

iterations of base scenario 1. (see the digital version for color

images)

Fig. 9. Utility values for different epsilon ε values in successive

iterations of base scenario 2.

Figures 8–11 show Utl, SRO, and SROgain in successive

iterations for both scenarios. Utility values presented in

Figs. 8 and 9 are calculated for the first channel in the Q
matrix – the best radio channel in each simulation step.

Better results are obtained for scenario 2. Here, higher util-

ity values are obtained compared to those for scenario 1 for

the same spectrum resource occupancy (iteration number).

It is so because of the different channel state changes dy-

namics. In scenario 1, shorter On and Off times cause fre-

quent channel state changes. The larger the iteration num-

ber, the greater value of ε provides the best utility values. It

means that for a higher spectrum resource occupancy rate,

the epsilon-greedy action selection method should increase

exploration.

Fig. 10. Spectrum resource occupancy SRO in successive itera-

tions for both scenarios.

Figures 10 and 11 show spectrum resource occupancy and

SROgain for both scenarios. For the first three iterations,

Fig. 11. Spectrum resource occupancy gain SROgain in successive

iterations of both scenarios.
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SROgain values are close to their maximum SROgainMax (red

dashed line in Fig. 11). As mentioned before, better re-

sults (higher SROgain) can be obtained for scenario 2 due

to lower channel state changes dynamics. As the iteration

number increases, the spectrum occupancy grows, and thus

the chances of finding free radio resources (not-occupied

channel) decreases. Therefore, the channel utility Utl val-

ues shown in Figs. 8 and 9 and the spectrum resource occu-

pancy gain SROgain presented in Fig. 11 take a lower values

with the increase in the iteration number.

Fig. 12. Radio channel occupancy for the third iteration of base

scenario 1.

Figures 12 and 13 show the growth in radio channel oc-

cupancy after two iterations, compared to the base sce-

narios. White and gray colors represent free and occupied

states in the base scenario. Green indicates new occupied

states resulting from including the temporarily best chan-

nels selected by the proposed algorithm. As one may no-

tice, odd-numbered channels are chosen more often because

their spectrum resource occupancy is lower. Please refer

Fig. 13. Radio channel occupancy for the third iteration of base

scenario 2.

to Tables 1 and 2 for detailed parameters. This behavior

confirms the correct operation of the algorithm identifying

temporarily free channels.

Fig. 14. Radio channels selected by the epsilon-greedy method

(ε = 0.2) in the first iteration of base scenario 1.

Figures 14 and 15 depict the effect of the epsilon-greedy

action selection method. They show how often particu-

lar channels are selected for sensing (monitoring). There

are two example results from the scenario 1 simulations.

The first one concerns the base scenario (first iteration),

when SRO is approx. 0.375. In this case the ε value is

set to 0.2, which means that greedy actions are taken with

the probability of 0.8 (please refer to Fig. 2). This re-

sults in more frequent selection of less busy channels (odd-

numbered channels). Figure 15 presents the behavior of the

epsilon-greedy action selection method in the fourth itera-

tion. In this situation, the ε value that allows to obtain the

best Utl is 0.5 (see Fig. 8). As the spectrum occupancy

grows it is needed to increase the exploration to find other

free channels. Probabilities of the selection of individual

channels are equalized.

Fig. 15. Radio channels selected by the epsilon-greedy method

(ε = 0.5) in the fourth iteration of base scenario 1.
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Radio channels utilities in the first and fourth iteration of

base scenario 1 are presented in Figs. 16 and 17, respec-

tively. These results compare three action selection meth-

ods: epsilon-greedy, random and cyclic. Analysis of the

first channel index in the Q matrix (the best one) shows

a significant advantage that the epsilon-greedy algorithm

has over the other two methods.

Fig. 16. Radio channel utility rate in the first iteration of base

scenario 1.

Fig. 17. Radio channel utility rate in the fourth iteration of base

scenario 1.

4. Conclusions

This paper presents an algorithm for evaluating the useful-

ness of radio channels based on a machine learning tech-

nique named Q-learning. The proposed algorithm identifies

radio channels for sensing using the epsilon-greedy action

selection method. This process aims to reach a trade-off

between exploration and exploitation of the available radio

channels. Based on the results from the process of mon-

itoring frequency resources, individual radio channels are

evaluated. As a result, a sorted list of radio channels capa-

ble of supporting DSA is generated. An essential feature of

the proposed concept is that it does not need to be initial-

ized, meaning it may work in an unknown electromagnetic

environment, gradually building its situational awareness.

The presented scenarios, metrics, and simulation results

show the algorithm’s correct operation and the proper

choice of the action selection method. The tests performed

have identified the crucial ε values that allow to reach

the maximum spectrum utilization rate under specific con-

ditions. The epsilon-greedy action selection method is

also compared with two other approaches: random and

cyclic. It has been shown that the channel utilization

rates obtained using the epsilon-greedy approach are much

better.
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