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Abstract—We have conducted research on the performance

of six supervised machine learning (ML) algorithms used for

network traffic classification in a virtual environment driven

by network function virtualization (NFV). The performance-

related analysis focused on the precision of the classification

process, but also in time-intensity (speed) of the supervised

ML algorithms. We devised specific traffic taxonomy using

commonly used categories, with particular emphasis placed on

VoIP and encrypted VoIP protocols serve as a basis of the 5G

architecture. NFV is considered to be one of the foundations

of 5G development, as the traditional networking components

are fully virtualized, in many cases relaying on mixed cloud

solutions, both of the premise- and public cloud-based vari-

ety. Virtual machines are being replaced by containers and

application functions while most of the network traffic is flow-

ing in the east-west direction within the cloud. The analysis

performed has shown that in such an environment, the Deci-

sion Tree algorithm is best suited, among the six algorithms

considered, for performing classification-related tasks, and of-

fers the required speed that will introduce minimal delays in

network flows, which is crucial in 5G networks, where packet

delay requirements are of great significance. It has proven to

be reliable and offered excellent overall performance across

multiple network packet classes within a virtualized NFV net-

work architecture. While performing the classification proce-

dure, we were working only with the statistical network flow

features, leaving out packet payload, source, destination- and

port-related information, thus making the analysis valid not

only from the technical, but also from the regulatory point of

view.

Keywords—classification, machine learning, network functions

virtualization, network traffic.

1. Introduction

Classification of network traffic is always important, as net-

work architectures are changing continuously, especially

now, when virtual machines (VM), software defined net-

working (SDN), private, public, and mixed clouds are com-

monplace solutions used in the IT world. The current

trend favors microservices, containers, application func-

tions and, network functions in network functions virtu-

alization (NFV) environments [1], meaning that network

flows are becoming ever more complex. Currently, the ma-

jority of network traffic is moving in the cloud, usually

within the same datacenter, in the east-west direction. This

traffic never leaves the virtual plane and is often managed by

SDN components in the NFV environment, thus obstruct-

ing the capture or any other operations over the same traffic.

This is important both for cloud operators and for entities

using the services provided via public clouds. Operations

which are common practice and are considered trivial, such

as quality of service (QoS), network security, optimization,

application management and monitoring functionalities, are

becoming a challenge.

In this paper, we are performing an experimental test to

reveal network traffic classification efficiency of several

supervised machine learning (ML) algorithms. We have

created a unique test environment that resembles real life

processes and simulates the east-west traffic on the virtual

plane, exchanged between virtual hosts, with NFV estab-

lished. Efficiency of ML algorithms is explored from the

point of view of classification precision, but also from the

point of view of computational speed. This is very impor-

tant when we take into consideration the penetration of 5G,

as it is tightly integrated with the cloudification of network-

ing operations. For example, the 5G specification calls for

a user plane latency of as little as 1 ms for ultra-reliable

low-latency communications (URLLC) [2]. This is why

the speed of the ML algorithm is crucial and why the pro-

cess must be performed in a manner that will minimize the

expected latency added by the classification.

The study we have conducted provides a novel scenario that

is comparable to emerging architectures with NFV and 5G

implemented therein. It involves 6 different supervised ML

algorithms: Bayes Net, NaiveBayes, J48, K-Nearest Neigh-

bors (KNN), Decision Tree and AdaBoost, as they are the

ones that are widely used in traditional computer networks,

are proven to be reliable while simultaneously providing

valid classification results, and are easy to implement in

practice. We have used Weka [3] as a tool for classifica-

tion.

The taxonomy used in this paper relies on 6 classes which

are chosen based on our experience in traditional networks
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and remain in alignment with the network traffic expected

within 5G radio, as well as 5G core networks: VoIP, en-

crypted VoIP, DNS, Management, SSH, HTTP and HTTPS

traffic. It is our intention to highlight VoIP and encrypted

VoIP classifications which are crucial for ensuring QoS ca-

pabilities of 5G networks, thus enabling smart connectivity

and providing the ability to steer, secure and break out net-

work traffic.

The NFV architecture is becoming a true 5G enabler, pro-

viding the ability to place initial workloads within the net-

work and allowing them grow towards the edge, thus of-

fering the basis needed for the expansion of IoT expected

with the growth in 5G penetration.

Numerous previous papers have been devoted to the is-

sue of ML algorithms used for performing packet inspec-

tion [4]–[7]. The novel experimental testbed and the

method classifying network data based on the statistical

parameters of packets and on packet flows only, without

relying on source and destination addresses (both MAC

and IP addresses), without any examination of the payload

and without analysis of the communication ports, are the

features that distinguish the approach we have adopted.

The volume of encrypted network traffic is growing fast.

Significant numbers of services and applications are using

encryption as a primary method of securing information.

But this has made traffic classification a challenge. The

solution that we propose is applicable in practice without

compromising data privacy and integrity. It provides an

insight into the performance of supervised ML algorithms

and determines which one is best suited for NFV-based

environments.

There are also many examples of ML algorithms used

for deep packet inspection (DPI) in traditional net-

works [3], [8], [9]. Unlike the aforementioned works, we

focus on virtualization and the NFV environment. In such

a scenario, network packets are mostly moving in the east-

west direction and are often encrypted, meaning that no

classic DPI may be conducted. In the proposed approach,

it is not important whether the payload is encrypted or not.

Legal requirements related to performing DPI in a cloud en-

vironment (especially a public cloud) are satisfied as well,

since the data carried within the payload is not compro-

mised. We are using the statistical features of the network

packets and the network flows only to create datasets that

are later used for training and testing the ML algorithms.

During the testing phase, we are evaluating the efficiency

of the algorithm from the point of view of its precision,

but also from the point of view of its speed. Network traf-

fic is sniffed directly inside an open vSwitch. We are not

introducing any additional probes or SDN components to

capture the traffic. We take into consideration all network

traffic between the specific virtual elements making up the

environment, but also traffic that is used in managing that

environment (including that originating from controllers).

Incoming and outgoing Internet traffic is dealt with as well.

Such a scenario is realistic with majority of cloud solutions.

In addition to its precision, the speed of an ML algorithm

is even more important in many instances. If the time con-

sumed to classify the data is adding significant latency to

network traffic, and if it is consuming the resources (CPU

time, memory usage) of the cloud, precision of the classi-

fication process is not as relevant.

In the remainder of the paper, we will go through the related

work on the subject, briefly explained in Section 2. The

experimental setup and the dataset creation procedure are

explained in Section 3, while the results are analyzed in

Section 4. Section 5 is devoted to the conclusion and our

plans for future work.

2. Related Work

Many researches focus on DPI-related aspects and scenar-

ios involving SDN components [10]–[12]. Others research

security-related aspects of performing DPI [13], [14] by

using SDN probes for sniffing network traffic and for pro-

cessing data. This work may be distinguished by its NFV-

based setup and targets to ensure complete isolation of the

packet payload. Some authors consider the classification

of network traffic in traditional networks [15], [16] with-

out tackling the specifics of virtualization which is a very

trendy solution and forms an important aspect of our work.

Parsaei et al. [17] are using SDN to categorize traffic by

application, using different variants of the neural network

estimator. They are using data mining techniques based on

different ML algorithms and propose a controller that could

dynamically allocate bandwidth to network flows thus op-

timizing resource allocation. They achieve a classification

accuracy rate of over 97%. Unlike in the work described

herein, they use source and destination IPs, as well as the

transport layer port for classification purposes. In [18],

QoS in an SDN based network is researched with an em-

phasis placed on overcoming the limitations of traditional

networking architectures. Different flow routing mecha-

nisms are categorized there. In this research, we explore

classification as a basic concept from which QoS may ben-

efit significantly.

Paper [4] is a study in which the NFV environment is cre-

ated to classify different types of TCP traffic using three

supervised ML algorithms: NaiveBayes, Bayes Net and

J48. Network packets are analyzed individually, meaning

that three different datasets are obtained: traditional, vir-

tual and combined, in order to compare the performance of

different classification approaches. Only statistical parame-

ters of the packets are used. In our case, we use TCP- and

UDP-based traffic and analyze the statistical parameters of

packet flows within an NFV environment that closely re-

sembles cloud platforms.

Le et al. [19] applied big data, ML algorithms, SDN,

and NFV to build a practical and powerful framework for

clustering, forecasting, and managing traffic behaviors for

a huge number of base stations with different statistical

traffic characteristics typical of different types of cellular

networks (GSM, 3G, 4G). The framework was intended for

developing future 5G self-organizing network (SON) ap-

plications. Several traffic forecasting-based applications are

24



Network Traffic Classification in an NFV Environment using Supervised ML Algorithms

introduced as well. Five ML algorithms are used to classify

traffic generated by mobile applications, with QoS imple-

mented to enable bandwidth guarantees. The conclusion is

that Decision Tree offers the best overall performance of

all the algorithms tested. Our experiment is limited to the

transport network layer, with the aim to classify traffic that

is mostly exchanged along the east-west route, using ML

algorithms, but also to evaluate the time needed to conclude

the classification process, as it is crucial for the future 5G

environments.

Alshammari et al. [5] focused on VoIP traffic within tradi-

tional networks. Data is extracted from the existing network

environment with a complex topology. The authors eval-

uate the classification of both encrypted and unencrypted

VoIP using three ML algorithms: C5.0, ADA Boost and GP

Classifier, and relying on the subset sampling technique. In

the experiments, C5.0 showed the best performance and the

highest precision rate. Here, a cloud-based environment

with NFV is used to rate the individual ML algorithms

dealing with various types of network traffic.

In [20], a machine learning-based classification of multi-

service Internet traffic is used to evaluate the use of re-

sources (CPU time and system memory). We are comple-

menting this research, as we are evaluating the time needed

by the ML algorithms to perform the classification.

Article [21] proposes a network traffic classification method

based on a deep learning network structure. The experi-

mental dataset is created from ten types of data, each of

which abstracted from a complete TCP bidirectional stream

containing 249 network flow attributes. Google’s Tensor-

Flow deep learning framework is used in the experimen-

tal environment. NaiveBayes and Decision Tree ML algo-

rithms are used to compare the efficiency of classification

performed by the deep learning network. Compared to this

work, we are targeting different supervised ML algorithms,

having in mind that not only classification precision, but

also the time needed to perform the classification is impor-

tant, as any delay added to the network packet’s speed may

be a source of a functional problem in the environment.

The effect of attaching NFV elements to network traffic,

especially in terms of an increase or decrease in the volume

of traffic processed, is researched in [22]. The authors

develop an algorithm that determines the flow path and

then proposed a least-first-greatest-last routing.

Bonfiglio et al. [23] are researching traffic specifics of

Skype, as the application is based on encrypted VoIP for

voice calls. Traffic is explored in real time, by applying two

different approaches and using the statistical parameters of

the traffic generated traffic by Skype. The approaches are

then assessed using the flow correlation technique.

To summarize, our testing setup is similar to that introduced

in [4], with additional elements added to the environment,

such as virtual machines connected to the Internet and vir-

tual network elements with bridged IP addresses. Both TCP

and UDP traffic is generated, with and without encryption.

The classification groups and labels are chosen in a man-

ner allowing to classify various types of traffic. Viber and

Skype are used to generate VoIP traffic, whereas scripts

are used to open SSH management sessions for different

hosts. Furthermore, a novel testbed is proposed in the con-

text of 5G and to accommodate the usage of NFV elements

within the virtualized environment, as expected in the real-

life setup. Network packets are analyzed directly within

the virtual switch, without the use of a probe or an SDN

element. Statistical characteristics are extracted from TCP

and UDP packet flows and are used to perform further steps

of the analysis.

3. Experimental Setup and Dataset

Creation

To simulate the east-west traffic within a virtualized NFV-

based network, the proposed experimental environment is

based on Oracle VirtualBox [24] which is installed on a sin-

gle physical host with an Ubuntu 18.04 Server. All compo-

nents are connected with an Open vSwitch (OVS) [25], [26]

that ensures network connectivity. The switch is connected

to the Internet through the host in a bridge mode. All

network packets flow through the OVS switch – this in-

cludes east-west traffic packets and north-south traffic pack-

ets, both sent to and originating from thw Internet. Tra-

ffic is captured directly on the OVS using Wireshark and

tshark [27].

Mininet [28] is used as a network simulator. Two differ-

ent installations on two separate virtual machines are used,

each with a different network topology having 100 hosts,

20 switches and links between them and to the OVS. The

hosts within the simulated networks have private IP ad-

dresses and are capable of communicating with each other.

GRE tunneling is used to link the two simulated Mininet

networks. Some of the hosts within Mininet have NAT-ed

IP addresses and are able to communicate with the Internet.

The Ryu Controller [29] is used to control the simulated

Mininet networks. It is installed and configured on a sep-

arate virtual machine.

There are four other virtual machines connected to the

OVS which are also used for traffic generation. Skype and

Viber are installed thereon to simulate VoIP traffic. When

initiated, VoIP needs access to the Internet, but later on

peer-to-peer communications may be observed within the

OVS, in a fully east-west direction. The script that initiates

ssh sessions is enabled on the VMs. We have developed

a Python script that automatically starts SSH sessions with

the Mininet hosts as well. The SSH sessions were started

in time intervals that are following Poisson distribution.

A distributed Internet traffic generator (D-ITG) [30] gener-

ates various types of TCP and UDP traffic among the hosts

within the Mininet. Different scripts are used to generate

traffic at packet level, replicating specific stochastic pro-

cesses for both inter departure time (IDT) and packet size

(PS) random variables.

Figure 1 shows an overview of the experimental setup,

showing its components symbolically.
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Fig. 1. Experimental environment.

We have performed 50 different experiments to generate

various types of traffic (using D-ITG, Skype, Viber, custom

scripts) and to analyze it. The experiments were conducted

in time intervals varying from 4 to 20 minutes, with VoIP

calls lasting from 10 s to 10 minutes, following Poisson dis-

tribution. One dataset per experiment was generated. Dif-

ferent D-ITG scripts for different traffic simulations were

used in each of the experiments. The scripts used different

Mininet hosts and different paths in each attempt. The aver-

age number of packets captured was 1.262.375 and the aver-

age number of flows was 4090. We have devised a specific

classification of traffic, relying on commonly used classes,

based on experience from the traditional networks. As it

will be shown in the results, precision of the classification

process was calculated as an overall figure, but also inde-

pendently for each of the classes, in order to calculate the

macro-average precision level in which the contribution of

each class is treated equally (as the number of packets and

flows varies for every class).

We used the following labels for the individual classes:

DNS – for all traffic used for name resolution, NETMGMT

– all traffic used for host and network management, SSH –

for the SSH sessions in the environment, WEB – for HTTP

and HTTPS traffic, VOIP – for VoIP traffic, SVOIP – for en-

crypted VoIP. Based on the Wireshark pcap files generated,

UDP and TCP packet flows, as well as the classes used for

ML training and then for determining and confirming the

level of precision, are identified using Argus [31]. Simi-

larly to [5], we define a flow as a bidirectional connection

between two hosts. TCP flows are terminated either by

flow time-out or by connection tear-down, whereas UDP

flows are ended by flow time-out only. When observing

flows within the OVS, one could notice that most of the

traffic is of the east-west variety, is taking place inside the

virtual layout and between the hosts, but flows from the

management generated by the hypervisor and the Ryu con-

troller could be detected as well. Because our focus was

on the NFV-based environment, some of the flow features,

such as the source and destination IP, MAC address, as well

as the communication port that can vary inside the virtual

environment, were not taken into consideration.

To train and to test the supervised ML algorithms, we have

used Weka [3], [32]. 2/3 of each dataset were used for

training, while 1/3 was used for testing each of the algo-

rithms. As not all the attributes contribute to the classifica-

tion equally, the AttributeSelectedClassifier with Ranker as

an attribute ranking algorithm was used. InfoGainAttribu-

teEval was used as an evaluator that determines the gain of

information that the attributes carry. With this approach,

we ranked the attributes that are used for the algorithms,

with the information gain of every attribute being evaluated

thereafter. This approach prevents potential data leakage.

Based on experience from traditional networks and thanks

to a careful observation of the datasets obtained, we have

selected the attributes given in Table 1 as features that char-

acterize the flows. The payload is not used due to the pri-

vacy of cloud environments and due to the use of different

encryption methods that will make the payload irrelevant

for classification purposes. The labels in the transport layer

header (e.g. the port numbers) are not used as well, as they

may be changed easily. A short explanation of each of the

selected attributes is provided inside the table. The fol-

lowing section presents the results of the test involving the

supervised ML algorithms and contains their analysis.

Table 1

Flow attributes

Abbreviation Feature

proto Transaction protocol

rate Packets per second

srate Source packets per second

drate Destination packets per second

sintpkt Source interpacket arrival time

dintpkt Destination interpacket arrival time

sjit Source jitter

djit Destination jitter

mdoffset
Mean of the data offset
Values of the packets in the flow

smeansz
Mean of the flow
Packet size transmitted by the source

dmeansz
Mean of the flow packet
Size transmitted by the destination

smaxsz Max packet size for source

dmaxsz Max packet size for destination

sminsz Min packet size for source

dminsz Min packet size for destination

4. Results and Analysis

We have conducted 50 experiments, creating 50 datasets.

All the ML algorithms were tested on each dataset. The

performance of each algorithm was defined as a combina-

tion of its precision and the time needed to perform the

classification. Since time consumption is correlated to the
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performance of the machine on which the analysis is con-

ducted, all classification tasks were performed on the same

machine, with all processes active thereon that may influ-

ence performance observed carefully. A mean value of 50

results was derived for all target metrics.

True positive (TP), false positive (FP), true negative (TN)

and false negative (TN) rates are defined as:

• TP is the number of instances that are correctly iden-

tified as belonging to a specific class,

• FP is the number of instances that are not correctly

identified as belonging to a specific class,

• TN is the number of instances that are correctly iden-

tified as not belonging to a specific class,

• FN is number of instances that are not correctly iden-

tified as not belonging to a specific class.

The overall precision of the algorithms is calculated as the

proportion between TP instances and all instances in the

dataset [32]:

Precision =
T P

T P+FP
. (1)

Table 2 shows the average precision of the algorithms in

all 50 experiments with the statistical standard deviation

across the experiments, as a weighted average value.

Table 2

Algorithm precision

No. ML algorithm Precision

1 AdaBoost 0.7440±0.0292

2 BayesNet 0.9672±0.0189

3 J48 0.9906±0.0027

4 KNN 0.9172±0.0438

5 NaiveBayes 0.8634±0.0170

6 Decision Tree 0.9914±0.0033

It can be seen that the Decision Tree algorithm has the

best overall precision. It is followed by J48 and BayesNet.

On the other hand, the AdaBoost algorithm has the worst

overall performance with the lowest precision of 74.4%.

In order to perform a deeper analysis of the precision level,

micro average precision was calculated – an indicator that

aggregates the contribution of all classes and calculates the

average metric, as given by Eq. 2. The results are presented

in Table 3.

Precision MIC =

TP1 +TP2 + ...+TPN

T P1 +FP1 +TP2 +FP2 + ...+TPN +FPN
.

(2)

Not all classes have same or similar number of packets and

flows, and the data distribution is skewed. As the class

distribution is unequal, the datasets are imbalanced. To

avoid the problem of data balancing and to come to valid

conclusions, we are calculating macro average precision,

recall, the F1-score.

Table 3

Micro average precision of algorithms

No. ML algorithm Micro average precision

1 AdaBoost 0.8450±0.0176

2 BayesNet 0.9954±0.0027

3 J48 0.9984±0.0006

4 KNN 0.9856±0.0073

5 NaiveBayes 0.9752±0.0027

6 Decision Tree 0.9984±0.0010

Macro average precision is the average of measure of each

class. This means that every class will weigh the same in

the macro average precision. Equation 3 is used to calculate

macro average precision (Precision MAC), where Pr1, Pr2,

etc. denote the precision of the algorithm in relation to the

individual classes.

Precision MAC =
Pr1 +Pr2 + ...+PrN

Count(Pr)
. (3)

The results are shown in Table 4, where the statistical

standard deviation is calculated for the precision between

classes.

Table 4

Macro average precision of algorithms

No. ML algorithm Macro average precision

1 AdaBoost 0.20335±0.3064

2 BayesNet 0.88990±0.1489

3 J48 0.98240±0.0148

4 KNN 0.82735±0.2202

5 NaiveBayes 0.78915±0.2048

6 Decision Tree 0.98480±0.0107

It becomes clear that the algorithms are not performing in

the same manner with regard to all the classes. The De-

cision Tree algorithm has the highest macro average preci-

sion rate and the lowest standard deviation between classes,

meaning that it classifies all classes similarly. J48 is very

close to Decision Tree, with the precision rate of over 98%.

On the other end of the scale, the AdaBoost algorithm

shows a very low macro average precision rate with a high

standard deviation, meaning that it performs poorly with

regard to different classes. The K-Nearest Neighbor algo-

rithm is underperforming as well, with its macro average

precision rate equaling 82% only. After comparing these

results with the standard weighted precision shown in Ta-

ble 2, one may see that the algorithms have the same order,

but the macro precision rate of the lower-end algorithms is

worse, leading to the conclusion that AdaBoost and KNN

offer different precision levels for different classes.

In order to evaluate the impact of the false negative classi-

fied instances, Recall is used as a model metric. It is the

proportion between true positive instances and total actual

instances:

Recall =
T P

TP+FN
. (4)
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Recall was used to calculate the F1-score of the ML algo-

rithms tested in our experiments. It is a metric that balances

the precision level and the recall, so that false negative in-

stances are taken into consideration. F1-score is calculated

as a harmonic mean of the precision and the recall:

F1-score = 2 ·
Precision ·Recall

Precision+Recall
. (5)

Table 5 shows the F1-score values calculated for our exper-

iments. The Decision Tree ML algorithm has the best F1-

score, followed by J48, BayesNet, KNN, NaiveBayes and

AdaBoost. The last algorithm has the F1-score of 23.2%

only, with very high standard deviation.

Table 5

F1-score

No. ML algorithm F1-score

1 AdaBoost 0.231575±0.3356

2 BayesNet 0.913425±0.1055

3 J48 0.975425±0.0212

4 KNN 0.797425±0.2295

5 NaiveBayes 0.782125±0.1510

6 Decision Tree 0.980475±0.0152

The tables are visually represented in Figs. 2 to 5.

Fig. 2. Algorithm precision.

Precision of the algorithm is only one of the characteristics

that determines its actual usability. The time needed to

perform the classification is an important aspect as well. If

the time needed to complete the classification is too long,

the process will add latency to network communications,

thus making the benefit of the classification too costly. This

is important especially in protocols in which latency may

degrade the quality of service, such as VoIP. Furthermore,

this is also crucial in 5G scenarios, where latency is one of

the major concerns. Consumption of the system’s resources

(CPU, memory, etc.) is another problem, as it increases if

the algorithm operates as a slower pace. The two metrics

(precision and time consumption) combined determine the

overall performance of the algorithms.

Fig. 3. Micro average precision.

Fig. 4. Macro average precision.

Fig. 5. F1-score.

The time that we have measured is relative to our testbed

environment. All experiments are performed in the same

environment, with special care taken to isolate all unneces-

sary processes. The average time consumption value was

calculated from 50 experiments.
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Table 6 shows the average time needed by the algorithms

to perform the classification procedure within the 6 chosen

classes.

Table 6

Average time needed for classification

No. ML algorithm Average time [s]

1 AdaBoost 0.012

2 BayesNet 0.016

3 J48 0.022

4 KNN 0.272

5 NaiveBayes 0.104

6 Decision Tree 0.016

The results concerning the average time required to per-

form the classification show that the AdaBoost algorithm

is the fastest. Decision Tree and BayesNet algorithms are

ranked second and third ex-equo, being 25% slower than

AdaBoost. The result of J48 is satisfactory as well. Naive-

Bayes is almost 9 times slower than AdaBoost and more

than 6 times slower than Decision Tree. The KNN algo-

rithm is the slowest. Decision Tree and AdaBoost require

only 5.9% of the time needed by KNN to perform the clas-

sification.

Figure 6 graphically represents the average time required

by the algorithms to perform the classification.

Fig. 6. Time required to perform the classification [s].

To summarize, when we take a look at both the precision

and the time needed for classification, the Decision Tree su-

pervised ML algorithm offers the best overall performance.

Although AdaBoost is the fastest algorithm, its classifica-

tion precision is poor and unsteady across different classes,

which makes this algorithm unreliable for the scenario in

question. J48 also offers a high level of precision that is

evenly distributed among the classes, but it is slower than

Decision Tree and BayesNet. Nevertheless, its speed simi-

lar to that of Decision Tree and BayesNet algorithms, which

makes it a valid choice as well. BayesNet offers a high de-

gree of precision, but macro average precision and F1-score

values show that the distribution of its precision among the

different classes is not as good as in the case of Decision

Tree and J48.

NaiveBayes is in the middle of the scale, both in terms of

precision and time. KNN, in turn, offers macro average

precision of approximately 83% and F1-score of 80%, but

it is by far the slowest algorithm, meaning that it is only

useful in situations in which the time needed to perform

the classification is of little importance.

5. Conclusion and Future Work

The main idea behind this paper was to present a method

for creating datasets based only on the statistical characte-

ristics of network traffic flows, and to test the perfor-

mance of machine learning algorithms based on the created

datasets. All those tasks were performed with the use of

an experimental testbed with NFV architecture.

The efficiency of algorithms is examined taking into con-

sideration their precision and the time required to perform

the classification. Such an approach is important from the

point of view of virtualization point of view, where mixed

cloud scenarios are commonplace, but also from the point

of view of the growing popularity of 5G, where network

latency is crucial.

Our experimental testbed was used to perform multiple ex-

periments and to collect network traffic data from which IP

flows were extracted. The statistical features of the flows

were used as attributes for the classification procedure. Be-

cause such attributes as source and destination IP, MAC

addresses and communication ports may vary within a vir-

tualized environment, they are not taken into consideration.

Due to encryption and data privacy concerns, the payload

of the data packets is also excluded from the datasets and

it is not used for classification purposes.

The environment used did not rely on any network probes or

SDN elements to collect the data, allowing not to affect the

east-west traffic is any manner whatsoever. The traffic was

fully intercepted within the virtual layer, where it resides

naturally. Such an approach has an impact on resource

consumption as well, minimizing additional latency that

may be added to network packets by redirecting or by port

replication used in the traditional DPI.

The results have shown that the Decision Tree algorithm

offers the best overall performance, both from the point of

view of classification precision and time consumption. It

has proved as a reliable classifier that is performing evenly

across different classes. J48 and BayesNet are also per-

forming well, with J48 having slightly better precision and

BayesNet being faster. K-Nearest Neighbour and Naive-

Bayes have an average classification precision of approxi-

mately 80%, but they are slow. This applies, in particular,

to KNN which is almost 20 times slower than Decision

Tree and BayesNet. AdaBoost shows the worst performance

with its precision varying considerably among the different

classes. The same applies also to its macro average preci-

sion and F1-score.
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The analysis presented in this paper may be relied upon

in practice within multiple systems that are built on top of

cloud environments. NFV elements are now an unavoidable

part of such infrastructures. The 5G infrastructure relies on

these types of systems, and connectivity with such systems

is most likely to rely on 5G access technologies. In those

examples, QoS, network and application security, data man-

agement, system and process monitoring and control all de-

pend on a valid network traffic classification scheme that

needs to be precise and fast, without consuming excessive

amounts of system resources.

For future work, we are planning to evaluate the impact

of the number of classes on the classification results and

the time intensity of the supervised ML algorithms, by in-

troducing large numbers of classes and by reducing the

classes. Another idea is to expand the experimental testbed

to include multiple hosts and distributed switches, and to

evaluate a network that is moving across multiple hosts.
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