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Abstract—In this paper, a new reinforcement learning intru-

sion detection system is developed for IoT networks incorpo-

rated with WSNs. A research is carried out and the proposed

model RL-IDS plot is shown, where the detection rate is im-

proved. The outcome shows a decrease in false alarm rates and

is compared with the current methodologies. Computational

analysis is performed, and then the results are compared with

the current methodologies, i.e. distributed denial of service

(DDoS) attack. The performance of the network is estimated

based on security and other metrics.

Keywords—DDoS, intrusion detection, IoT, machine learn-

ing, Markov decision process (MDP), Q-learning, NSL-KDD,

reinforcement-learning.

1. Introduction

The technology of the Internet of Things (IoT) is relatively

new, it connects the Internet to the low hardware resources

devices and then susceptible to the various malicious attach,

i.e. denial of service (DOS) [1], [2]. The network-based

IoT is considered to be one the fastest evolving areas, having

50 billion gadgets connected among them [3], and then

vulnerable to security abuse. For example, Mirai is one

of the unusual types of a botnet which triggers a large-

scale attack like distributed denial-of-service (DDoS) and

thus strikes by mistreating some of the IoT devices [4], and

even infects the CCTV IP cameras [5].

The safety of IoT is constantly improved [6]. Many frame-

works and methods are developed to mitigate most network

attacks. The logs with recorded abuse historical data are

observed, based on methods using machine learning which

can reach a large network – up to millions in a day.

The intrusion detection system (IDS) is an essential com-

ponent in the security of the network to protect the target

network which comprises of irregular actions and threats

during interruption of network traffic. Thus, there is a sep-

aration of normal activity and anomalous activity in the

network. A comprehensive IDS group can be obtained in

two classes. Misuse-based IDS is the interrupt that notices

the known strategies. The limit of the primary technique

to anticipate new and obscure assaults is restricted. The

signature-based IDS is dependent on the irregularity iden-

tification and works by making a profile of ordinary conduct

of the network, then later recognizing it as any anomalous

conduct [3].

In the proposed work, an artificial intelligence (AI) based

algorithm has been proposed for developing an IDS for

detection of malicious attacks and also monitors the data

streams generated from IoT and WSNs [6].

It is an enhanced method of Markov decision process with

Q-Network algorithm which gives an optimal best solution

in terms of performance of IoT networks. Thus, it is an

important and challenging issue to be considered, and de-

cision modeling is applied to obtain the optimal solution.

The main contributions of this article are summarized be-

low:

• the RL-based IDS is proposed by exploiting the ex-

tended Markov decision process (MDP) algorithm,

• the RL calculation is consolidated on IDS (RL-IDS)

with the end goal that the survey for cases like a basic

foundation is obtained by unique digital-based haz-

ards for IoT and WSN continuously,

• a Q-network is applied with the end goal that the as-

sessment of Q-work is recognized by conveying IDS

into RL. A few tests are performed for the assess-

ment of the execution of the proposed model in the

environment considered.

The remaining sections of this paper are presented as fol-

lows. Section 2 describes the related work. Section 3 intro-

duces the method for security and reinforcement learning.

In Section 4, the system model is formulated and RL-IDS

methodology is described. In Section 5, performance is in-

vestigated and results are presented. In Section 5, the eval-

uation carried out for the proposed RL-based IDS scheme is

explained and then compared in Section 6 with supervised

machine learning schemes. Lastly, the work concludes with

the experiments and analysis in Section 7.
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2. Related Work

In recent works, many authors have applied standard tech-

niques of machine learning (ML), such as principal com-

ponent analysis (PCA) and linear discriminant analysis

(LDA), as these classification-based algorithms can detect

normal records with high precision and identify the abnor-

mal records such that the performance of an IDS can be

managed [7]–[11]. In [12], the authors have proposed deep

feature embedding to reduce the size or magnitude of data

from the network based on IoT in a real-time application by

considering the “edge of deep learning”. Likewise, in [13]

the preprepared worldview is applied such that the identifi-

cation and quickness are helped with traditional ML-based

calculations.

In [14], the authors have observed that the IoT technology

makes possible to connect different smart objects, through

the Internet. The authors have formulated a novel QoS

management schemes based on power control algorithm.

The unexplored R-learning algorithm is used as a doc-

itive paradigm by the authors where the system agents

teach other agents to adjust the power levels, thus reducing

the complexity in computation and increasing speed in the

learning process.

In [15] the optimization has been incorporated into an MDP

which can minimize the evaluation metric as long-term av-

erage delay. The continuity of state and action space due to

the high dimensionality is considered by the author where

deep reinforcement learning based dynamic resource man-

agement (DDRM) algorithm is proposed. This enables the

joint optimization with computing resource and transmis-

sion power. The authors have compared the simulated re-

sults with conventional URM, RRM and A3C algorithms

mainly which reduces the delay in task effectively.

Also, taking as an illustration of the idea-based IDS, Q-

learning of reinforcement learning (RL) has been investi-

gated thoroughly by examining and protecting the sensor

network that utilizes the dynamic methodology and ideal

activities based on the arrangement of states in the respec-

tive IoT environment [16]. There are numerous papers on

scientific classification, position, and the ML current ad-

vancements in data security, i.e. [17], [18]. Structured [19]

ML techniques have been applied to location interruption

for network information. The exemplary ML models ap-

plied to IDS were: support vector machine (SVM), multi-

layer perceptron (MLP), k-nearest neighbors (KNN), deci-

sion trees (DT), naive Bayes (NB), and random forest.

3. Security in IoT

To meet the ideal security necessities, a complete perspec-

tive on network security is required. The accompanying

key security properties ought to be viewed when building

up a convincing IoT security methodology.

• confidentiality – it is a crucial security standard for

IoT structures. IoT devices can store and move sensi-

tive information that shouldn’t be wrongly found by

individuals [21],

• authentication – the verification of both communi-

cation parties must be completed before performing

other procedures,

• integrity – the IoT applications need the legitimate

constituents to be uniquely altered where the infor-

mation is moved through the remote correspondence,

• availability – the authorized users should be consis-

tently able to access the IoT network,

• authorization – this includes granting privileges to

clients for an IoT structure [22],

3.1. Reinforcement Learning-based IDS

Beginning by characterizing the idea of RL, and other aug-

mentation of ML dependent on Markov decision process

(MDP), first a reward function R is defined providing state s
to IDS. It is characterized with five IDS concepts as below.

System state space. The arrangement of states gained by

the IDS is S = s0 – ordinary, s1 – identification, s2 – no

detection, where s0 demonstrates the typical traffic record

in the WSN record, s1 implies the location of IDS assaults

on traffic, and s2 demonstrates that IDS can’t recognize

assaults.

Action space. A set of possible actions that the IDS can

perform, can be expressed by:

A = {a0,a1,a2,a3, . . . ,am} , (1)

where ak indicates the type of IDS reaction in the k-th

attack class and k = 0,1,2, . . . ,m, p, for example, according

to Table 1. The shares are sorted according to their risk

level: a0 < a1 < a2 < a3 < .. . < am.

Table 1

Known attacks and their risk level

Risk Attack instances

Low Gues-passwd, Warezclient, FTP-write

Medium Satan, Portsweep, Nmap

High
DNS-poisoning, Cross-site-scripting (XSS),

ARP-spoofing

Critical ICMP flood, Land, Smurf, Ping of death, Apache 2

Reward function. The rewarded function is negative when

the IDS makes the best move to secure the framework re-

gardless of whether the scheme against the activity is too

costly, and positive when the IDS chooses the right activity.
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The estimation of the reward is:

rt(st , at) =



Rp for st =0 and at =a0
1−µ j(at)Rp for st =s0 and at ∈{a1, . . . ,am}

Rp for st =s1 and at =ak
1−λ j(at)Rp for st =s1 and at ∈{a0, . . . ,ak−1}

Rn for st =s1 and at ∈{ak+1, . . . ,am}
Rp for st =s2 and at =am

1−θ j(at)Rp for st =s2 and at 6=a0





, (2)

where 0 < u j(a j) < 1, 0 < λ j(at) < 1 and 0 < θ j(at) < 1.

The rt refer to the reward st is the state of the sensor node,

at is the action of the sensor at t time.

The reward in each time t is:

rt(St = s, at = a) = Σs′∈SP
( s

s′
,a

)
rt(s′,a) (3)

State transition probability. The transition probability

matrix at time t for a ∈ A is:

Pa =




β a
1,1 β a

1,2 β a
1,3

β a
2,1 β a

2,2 β a
2,3

β a
3,1 β a

3,2 β a
3,3


 . (4)

Given by β a:

i, j = p
(

st +
1
st

)
= p

(
si
s j

,a
)

for i, j = 1,2,3.

Σ3
j=1β a

i, j = 1, i = 1, 2, 3 and a ∈ A . (5)

Discount factor. 0 < γ < 1. The IDS arbitrarily choose at ,

and the environment samples the reward rt(st ,at) according

to the state of arrival s. The agent then receives an incentive

in the following state st+1. Besides, π is a specific policy

from st to st+1 specifying at retrieved in each state st . Then,

the strategy is updated to generate sample paths (s0,a0,r0),
(s1,a1,r1), (s2,a2,r2) . . .. Let us define π = (π1,π2, . . .) as

the best policy vector. The goal of the data stream is to get

πt , which represents the best pattern based on system status.

Therefore, the expected maximum sum of IDS rewards at

t, is given by:

π∗ =
argmax
a∈A [rt(st ,at)+Σs′∈SPt(s′|s,a)VI−1−t(s′)] . (6)

The optimal value function Vi+1 defines the IDS which can

be chosen as the best state. It can be found out from each

phase:

Vi+1(s) =argmax
a∈A [rI−1−t(st ,at)+

Σs′∈SPI−1−t(s′|s,a)Vi(s′)] . (7)

Next, the timestamp size is determined, using the concept

of Q-learning. In every state, the best action a is chosen and

the algorithm Q-learning applied, so that the updates can be

performed. The optimal policy π∗ is calculated according

to the best action. If there are no optimal actions found,

then the learning samples 0 < α < 1 are applied.

Q(st −at) = Q(st ,at)+

α [rt + γmax
at

∈ AQ(st+1,at)−Q(st ,at)] . (8)

The pair (s, a) is updated to determine the step having the

best reward. In each iteration, the prediction of IDS has

state value function Vi+1 and then a Q-table is constructed

by using Q-learning, where the lines signify the columns

and states s representing the actions a. In each state st ,

the reward rt is observed corresponding to an action at
realized by the agent. The action at the next state (st+1) is

also observed in [21], and the approximate value of Q is

updated to satisfy the Bellman equation:

Q(st+1 −at+1) = (1−α)Q(st ,at)+

α [rt + γmax
a′

∈ AQ(s′,a′)] . (9)

4. Proposed Model

The random forests (RF) algorithm is used to classify

a large amount of data. Several algorithms like decision

trees and merging trees are used during classification to

train the sample data available. The final output during

classification chooses the most selected class [7].

In this section, the details of the deployment of the Q-

learning network-based model are provided aiming to mon-

itor and predict the cyber-attacks in critical infrastructures

of sensed big data streams. The discussion is encompassed

in the following aspects:

• the attack risks and their different degree,

• the pre-processing details engaged to clean data and

filter,

• the strategy of the interaction of IDS model by the

agent to secure the attacks,

• the Q-function estimation and its results by consid-

ering the best decision.

The architecture of the proposed system is shown in Fig. 1,

which presents the sensor data of WSN and the RL-IDS

mechanism requested to make a decision.

At pre-processing stage, the network traffic is registered

for every type of attack and then invalid and redundant

records are removed. Next, the transformation of the record

is done based on the type of attack [9]. At the first step,

data aggregation obtained by the sensor [20] is performed

so that the data volume is reduced.

Next, the Q-network (QN) is applied by using the Q-

function for estimation of best action to the attack. It im-

proves the prediction and the estimation of action values

effectively among the state’s set by applying the non-linear

function: Q(st ,at ;θ ) ≈ Q̂(st+1,at+1).
The θ represents neuron weights to be changed by the end

of each iterative step i. The implementation of Q-network

is further improved by:

• utilizing a step forward for the present state s to get

predictive Q values,

• applying the replay (like historical IDS for

the interactive process) into data let Ht =
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Fig. 1. Proposed method of improval the IoT and WSN based RL-IDS.

{h(1),h(2), . . . ,h(t)} within an over-time t as ft =
(st ,at ,rt ,st+1),

• updating the Q-network based on the data from train-

ing (r,s,a,s) over the target Q-value with optimiza-

tion of the loss-function during an iterative step noted

as:

Li(θi) = E{[xi−Q(s,a,θi)]
2} , (10)

xi = rt + γ arg maxa′Q(s′,a′,θi−1) , (11)

• applying back-propagation with loss function’s gra-

dient, the weights are updated corresponding to the

θ parameters as:

∇θiLi(θi) = E{[x1−Q(s,a,θi)]∇θi Q(s,a,θi)} .

(12)

4.1. Model Description

In the proposed scheme, the problem for QoS control is

tackled based on the approach of R-learning algorithm.

The main aim of every QoS scheduler is maximization the

amount of data transmitted with low power consumption.

For this fundamental trade-off, the function U is defined to

analyze the ratio of throughput to power. Thus, the function

for QoS scheduler at i-th position Ui is:

Ui(Bi
j,B−i) =

T Si(B)

Bi
j

,s.t., Bi
j ∈ Bi,B =

IIiεNBi|Bi ∈ [Bi
1,B

i
m] , (13)

where B−i is the transmit power vector without Bi, and

TSi(B) is the throughput scheduler.

In wireless communication, the signal to interference noise

ratio (SINR) in the given effective range γi is measured

while computing the throughput at i-th scheduler TSi and

can be expressed using:

TSi(B) = W · log2

(
1+

γi(A)

Ω

)
, (14)

where W is referred to as bandwidth of the channel assigned

in through IoT network, Ω (Ω ≥ 1) is the gap between ca-

pacity and the uncoded M-ary quadrature amplitude mod-

ulation (M-QAM).

Algorithm 1: The IoT-WSN-based RL-IDS used for

training and testing

Data: sensor data dataset Y
Input: Initialize action, state, environment,

parameter θ , targeted Q-network

Initialize reply-memory H space

Output: return vector Q(st , at ,θ )

while

∣∣∣Q̂i+1 − Q̂i

∣∣∣ < σ do

for X = 1,2,3, . . . ,N do
s0 = starting state

for t = 0,2,3, . . . ,T −1 do
Select an action (random) at with

a random-probability p based on ∈
strategy as:

at = argmaxa Q(s, ak, θ )
– Apply at and the reward observed by the

IDS-rt and the next state observe chosen

reward rt and store the tuple

(st , at , rt , st+1) in H
– Arbitrary batch selection with this

selected feature (st , at , rt , st+1) from H
if sl+1 terminal state then

µ l = rl
end

else

µ l = rl + δ argmaxa′ Q(s′, a′,θ )
end

Gradient calculation of the loss function

based on Eq. (11)

end

end

end
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Table 2

Dataset used for evaluation

Category Port Attack Tools Size [bytes]

Information collect
Scanning of service Nmap, hping3, 1.4 MB

OS fingerprinting xprobe2 Nmap 358 KB

Denial of service

UDP, TCP HTTP Distributed DoS

hping3 19.5 MB

golden-eye 18.8 MB

hping3 19.7 KB

TCP, HTTP UDP DoS

hping3 11.2 MB

hping3 21.7 MB

golden-eye 29.7 KB

Information theft
Key-logging Metasploit 1369

data theft Metasploit 118

The environment was made by consolidating traffic and

Table 2 shows the used datasets and software tools.

5. Evaluation Criteria

The validation of proposed algorithm is researched by two

measures:

• Accuracy – this metric is measured as the degree of

closeness between the actual and the predicted value,

• Precision – this is a metric that describes the accu-

racy level obtained from the mentioned information

and the outcomes anticipated by the executed model.

Consequently, accuracy is the proportion of true pos-

itive forecasts contrasted with general aftereffects of

positive expectation.

Table 3 shows the boundaries or limits used for CNN and

MLP algorithms.

Table 3

Parameters of algorithms used for testing

Algorithm
Batch Function

Optimizer Epochssize (activation)

Convolution neural
32,64,128

Softmax,
Adam 10, 30, 50network (CNN) ReLu

Multilayer
32,64,128

Softmax,
Adam 10, 30, 50

perceptron (MLP) ReLu

Markov decision
32,64,128

Softmax,
Adam 10, 30, 50

process (MDP) ReLu

A major drawback of any IoT sensor network is that these

devices work in remote networks and have to be sustained

on their battery life. Hence the average energy consumed

by the device plays a vital role which depends on its perfor-

mance as shown in Fig. 2, the node shows that the MDP

algorithm provides a less amount of energy consumption

when compared with CNN and MLP algorithm.

MDP provides significant results as false detection is re-

duced even when the number of nodes is increased as shown

in Fig. 3. As the number of nodes increases the false detec-

tion is getting reduced as compared with MLP and CNN.

Fig. 2. Average energy consumption by number of nodes.

Fig. 3. False alarm rate.

The system of IoT mainly in a wireless system depends on

the success rate of message delivery even when the number

of nodes are increased and have a successful delivery rate

which is provided in Fig. 4. In this plot all algorithm with

the proposed algorithm, the throughput is given and can be

observed that the MDP performance is good for throughput

when nodes are more.

A comparison figure of the detection rate of IoT systems is

shown in Fig. 5 which depicts that the detection rate at the

receiver node in MDP is better when compared with CNN

and MLP.

Figure 6 presents normalized overhead for several nodes

in the IoT network when compared with all other algo-

rithms with the reinforced algorithm MDP, it provides bet-

ter performance for normalized overhead when compared

with MLP and CNN. Parameters from Table 4 were used

in this plot.
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Fig. 4. Throughput rate of change.

Fig. 5. Detection rate.

Fig. 6. Normalized overhead.

Table 4

Evaluation metrics (detection rate of attacks)

Algorithm

Metrics

DDoS DoS
Reconnaissance

Normal Theft

attack attack (AUC) (AUC)

MDP 0.99 0.99 0.97 0.99 0.95

CNN 0.98 0.97 0.98 0.98 0.99

MLP 0.55 0.49 0.96 0.97 0.97

Table 5 represents the classification and comparison results

based on the feature selection and the AUC precision met-

rics.

In Table 6, the mean accuracy is expanded as the number

of study ages for the MLP classifier. For CNN, there was

a decrease as the quantity (in terms of numbers) of epochs

increased from 10 to 50.

Table 7 shows the same accuracy evaluation for size of 64.

For this situation, the accuracy (batch size 64) diminished

Table 5

Comparison analysis

Algorithm AUC Precision Sensitivity

MDP 0.99 99.80% 98.55%

CNN 0.92 96.75% 97.00%

MLP 0.89 95.05% 93.02%

Table 6

The accuracy evaluation for batch size 32

Algorithm Epoch Mean Accuracy Elapsed time

MDP 10 93.22% 60 min 12 s

CNN 10 91.75% 58 min 39 s

MLP 10 54.07% 39 min 09 s

MDP 30 91.03% 165 min 25 s

CNN 30 89.72% 158 min 30 s

MLP 30 63.95% 124 min 33 s

MDP 50 90.00% 230 min 21 s

CNN 50 89.30% 229 min 22 s

MLP 50 63.00% 186 min 47 s

with the expansion epochs for the classifier (MLP). Data

decreasing a bit while the number of epochs is increased

from 10 to 50 in CNN.

Table 7

Accuracy for batch size 64

Algorithm Epoch Mean accuracy Elapsed time

MDP 10 92.00% 18 min 40 s

CNN 10 91.15% 20 min 57 s

MLP 10 76.92% 26 min 56 s

MDP 30 92.30% 62 min 17 s

CNN 30 91.02% 64 min 18 s

MLP 30 54.04% 64 min 19 s

MDP 50 92.30% 114 min 60 s

CNN 50 90.64% 112 min 55 s

MLP 50 53.89% 102 min 20 s

Table 8 shows the outcome for block size of 128. The nor-

mal exactness seems to increment along with the expanding

number of the experiment of epochs for MLP-based clas-

sifier. For the CNN, a slight diminishing was observed as

the number of epochs rises from 10 to 30. In all cases the

larger batch size the shorter application lifetime.

6. Conclusion

In the proposed work, the reinforcement learning in a net-

work is examined. The valuation of the RL-IDS model is

incorporated and compared with different ML and DL algo-

rithms such as CNN and LP. The RL calculation gave the

best outcome and precision and AUC leads in multiclass
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Table 8

Mean accuracy for batch size 128

Algorithm Epoch Mean accuracy Elapsed time

MDP 10 92.50% 12 min 12 s

CNN 10 90.87% 11 min 33 s

MLP 10 54.10% 10 min 16 s

MDP 30 93.00% 40 min 50 s

CNN 30 90.76% 45 min 44 s

MLP 30 54.43% 27 min 58 s

MDP 50 92.03% 55 min 27 s

CNN 50 91.27% 54 min 27 s

MLP 50 79.01% 46 min 18 s

characterization. With epoch increase a slight reduction in

precision is observed, while in the 128-batch preliminaries,

there was an increase in accuracy. A double change in MLP

could make the estimation cycle 1.4 to 2.6 s faster, while

CNN could make the figuring cycle 1.8 to 2.4 s shorter.

Later on, the models with various calculations are likely

created and different calculations for AI or profound learn-

ing are joined. Moreover, this calculation ought to be actu-

alized in NIDS so it very well may be utilized progressively

to alleviate attacks.
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