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Abstract—Knowledge of the location of nerve tracts dur-

ing the surgical preoperative planning stage and during the

surgery itself may help neurosurgeons limit the risk of causing

neurological deficits affecting the patient’s essential abilities.

Development of MRI techniques has helped profoundly with

in vivo visualization of the brain’s anatomy, enabling to ob-

tain images within minutes. Different methodologies are relied

upon to identify anatomical or functional details and to de-

termine the movement of water molecules, thus allowing to

track nerve fibers. However, precise determination of their

location continues to be a labor-intensive task that requires

the participation of highly-trained medical experts. With the

development of computational methods, machine learning and

artificial intelligence, many approaches have been proposed to

automate and streamline that process, consequently facilitat-

ing image-based diagnostics.

This paper reviews these methods focusing on their potential

use in neurosurgery for better planning and intraoperative

navigation.

Keywords—artificial intelligence, diffusion tensor imaging, Di-

jkstra’s algorithm, graph traversing, MRI, neural networks, trac-

tography.

1. Introduction

The human body is controlled by the central nervous sys-

tem, with the brain being a crucial organ of that system.

Brain cortex is made of neural cell bodies tasked with pro-

cessing information and performing cognitive process. The

axons of these cells constitute the white matter that is lo-

cated underneath and connects various areas of the cortex

and transmit nerve impulses between them. All those struc-

tures are organized into complex neural circuits, serving

as a platform for all vital body functions, such as cogni-

tive processes, movement, sight, as well as production and

comprehension of speech [1].

Like the rest of the body, the central nervous system is sus-

ceptible to numerous illnesses, including Alzheimer’s dis-

ease, Parkinson’s disease or brain cancers, such as glioma.

Neurosurgery is the primary treatment in dealing with

gliomas [2]. Although neurosurgery is invasive and risky,

in many cases it is the only way to extend the patient’s life

and to improve the quality of their life. Prior to the surgery,

the patient undergoes a series of tests, including magnetic

resonance imaging (MRI), with a view of mitigating po-

tential risks. Data collected through this method is used

to annotate functional areas of the cortex and to determine

the location of nerve pathways connecting them. Although

the anatomy of the brain is fairly well known, the precise

location of functional areas varies from patient to patient.

Furthermore, it has been shown that functional areas may

change their location over time. Damage caused to any of

the functional areas or nerve pathways may lead to compli-

cations and irreversible neurological deficits, making imag-

ing necessary before each surgery (Fig. 1).

Fig. 1. Outline of the procedure including imaging studies and

planning before neurosurgical intervention.

Surgeons may be guided by such knowledge in preoperative

planning, deciding on the scope of the intervention and the

appropriate entry point. In addition, doctors may use such

data during the operation itself, using it as a source of

precise information about the layout of the operating field.

Tractography is a technique that emerged at the begin-

ning of this century to determine the topology of white

matter fibers (nerve tracts) within the brain. Diffusion-

weighted magnetic resonance imaging (DW-MRI) [3], [4]

uses a specific sequence of pulses and field gradients to

produce images where diffusion of water molecules gen-

erates the contents. Consequently, it allows to observe,
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non-invasively, the process of water diffusion in the living

cells. The process of diffusion is anisotropic due to the

presence of numerous obstacles in the cells, including or-

ganelles and cell membranes [5], [6]. In the axons, it is

the myelin sheath that serves as the primary barrier, caus-

ing water to travel along the fibers. Hence, tracking water

diffusion in the white matter reveals its delicate structure

within the brain [7]. The Human Connectome Project [8],

a publicly funded multi-institutional initiative, has under-

taken the task of constructing a comprehensive map of

structural and functional neural connections in vivo. An

atlas of human brain connectivity is one of the outcomes

of the project [9].

Many algorithms have been proposed to produce trac-

tograms [10], [11]. The difficulty in developing the ideal

solution lies in numerous problems encountered when ana-

lyzing the data, i.e. fiber crossings, false continuities, fiber

truncation, as well as when choosing relevant stopping rules

or accounting for the presence of edema noise.

This paper provides a review of specific methods that

may potentially be used for fiber annotation in neurosur-

gical applications. We survey primarily algorithms that

are suitable for local tractography, as such an approach

restricts our analysis to a particular area. In such appli-

cations, both deterministic and probabilistic methods may

be used. The source of the data is a very important con-

sideration, as it may be a limiting factor affecting clinical

applications. Although diffusion tensor imaging (DTI) [12]

sequences are usually relied upon, we decided to highlight

the advantage of using high-angular resolution DW imag-

ing (HARDI) [13], [14] by focusing on algorithms using

this type of data. In the following sections, we describe

classical and artificial intelligence methods, then proceed-

ing to the presentation of benchmarking studies. Then, we

describe our case study that focuses on tractography in pre-

operative neurosurgical planning.

2. Mathematical Models

Mathematical models are deemed to be the results of meth-

ods used for predicting the orientation of fibers without any

support from machine learning algorithms, including from

neural networks. Such methods make assumptions based

solely on mathematical concepts helping predict local or

global tractograms based on diffusion-related data.

Deterministic algorithms focus on envisioning the orienta-

tion of a nerve fiber through a single voxel consideration,

by expanding the tract from a defined seed point [11]. Seed

points are drawn directly from a region of interest (ROI).

In neurosurgery, an ROI may be defined as the area of the

planned intervention, especially if any part thereof it is lo-

cated on the border between gray and white matter, healthy

and tumorous tissue. It may also be defined as a relevant

functional region identified with the help of functional mag-

netic resonance imaging.

Just like their deterministic counterparts, probabilistic mod-

els may start from a given seed point. However, they do not

follow a single tract. Instead, they keep on building a dis-

tribution of probable streams. Such algorithms are com-

putationally more expensive than those relied upon in the

deterministic approach. However, they are better suited for

tracking in high uncertainty regions (e.g. crossing fibers),

especially when noise is present, which is where deter-

ministic approaches are prone to fail [11]. All methods

described below are compared in Table 1 in which such

factors as diffusion data source, approach to tracking, key

underlying concepts and stopping criteria are taken into

consideration.

2.1. Linear Forced Vector Differential Equation

One of the first attempts was made in the previous cen-

tury by Basser in [15]. His methodology generates a dif-

Table 1

Comparison of different classical models for solving tractography tasks

Method Data source Approach Key concepts Stopping criteria

Basser DTI Deterministic

Solving linear forced vector

differential equation with

Taylor series approximation

Not discussed by the author

TEND DTI Deterministic
Incoming vector deflection

determining local orientation

Fractional anisotropy below

certain threshold; change in the

direction exceeding 45◦

MRtrix HARDI
Deterministic,

probabilistic

Tracking based on fiber

orientation function

FOD peaks below certain

threshold; fiber located outside

ROI

Complex fiber

orientation

distribution

HARDI
Deterministic,

probabilistic

Utilizes ODF form Q-ball

imaging and ODF from

a sharpening deconvolution

transform

Tracked fiber located outside

white matter area

Hough transform

voting

DSI, DTI,

HARDI
Probabilistic

Selecting the most probable

fibers based on Hugh transform

voting procedure

Tracking is not performed

outside specified user-defined

area
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fusion tensor field from DTI used to obtain fiber trajectory

at a given point by solving a linear forced vector differ-

ential equation. Nearby points are approximated using the

Taylor series expansion. The method uses the eigenvector

direction for the highest eigenvalue, assuming that it pre-

cisely describes precisely the direction of water diffusion

at a given point.

2.2. Tensor Deflection

The TEND algorithm developed by Lazar et al. [16] uses

the tensor deflection technique to estimate fiber trajectory.

In contrast with the method by Basser et al. [15], the whole

diffusion tensor is used, not only the eigenvector with the

highest eigenvalue. Tract reconstruction is performed in

a stepwise fashion, where tract direction from the previous

step is treated as an incoming vector. This vector is then

deflected by the tensor operator towards the major eigen-

vector direction.

The resulting vector describes the orientation of the fiber at

a given position. The curvature of the deflection is limited,

resulting in much smoother tract reconstruction. Tracking

with TEND is terminated when fractional anisotropy drops

below a certain threshold value, or when the change in the

direction exceeds 45◦.

2.3. MRtrix

MRtrix [17] is a freely available software that combines

multiple tools for performing tractography-related tasks. It

requires data collected from HARDI imaging. Such data al-

lows to determine fiber orientation by applying constrained

spherical deconvolution (CSD) [18] in each voxel to pro-

duce a fiber orientation density function (FOD). The result-

ing FOD holds all information about orientations within

a single voxel and is ideal for tracking algorithms. MR-

trix relies on two of them a deterministic and a probabilis-

tic one. The deterministic algorithm reconstructs a single

fiber along its local orientation. Authors use the Newton-

Raphson gradient ascent algorithm to identify the nearest

peak in the FOD data iteratively. The peak identifica-

tion procedure is run once per point, resulting in the most

closely aligned direction of the peak, as the current orien-

tation indicates.

In the probabilistic variant, the direction of the next step

is provided by a random sampling of the FOD. Sampling

is restricted to directions within a certain angle from the

current orientation. The selected sample is used to guide

towards the next step, as long as the amplitude exceeds

a certain threshold. Otherwise, a new sample is generated,

and the process is repeated the number of times specified by

the user. In comparison to other methods, smoothness and

good resolution are achieved by using different data sources

and a step size that is smaller than the voxel size. Both

algorithms stop tracking when either of the two criteria

is met – no satisfying FOD peak can be found (with an

amplitude above a certain, user-defined threshold) or when

tract propagation reaches the area outside the specified ROI.

2.4. Complex Fiber Orientation Distribution

The method developed by Descoteaux et al. [19] uses data

from HARDI experiments as well. Their approach uses the

sharpening deconvolution function (SDT) to the orientation

distribution function (ODF) from Q-ball imaging [20]. The

sharpening operation is required due to sparsity of the fiber

ODF and the fact that diffusion represented by Q-ball dif-

fers from the real direction of the nerve fiber. As it is the

case with the MRtrix package, authors propose both deter-

ministic and probabilistic tracking algorithms. The deter-

ministic approach extends classical streamline techniques

by considering multiple ODF maxima at each step, where

the direction is chosen from 1281 possibilities. The win-

ning direction exceeds all its neighbors’ peak values and

features an ODF value above 0.5.

The probabilistic algorithm is an interesting extension of the

random walk method [21], [22], exploiting the information

in multidirectional fiber ODF. Fiber search is performed by

particles moving freely from a given seed point, according

to the local ODF information. Each voxel is scored based

on the number of particles that have reached it. Fiber di-

rection is chosen out of 120 discrete directions, based on

the probability derived from the voxel scores, with the step

size of 0.5 the voxel size. The procedure is terminated

once the particle leaves the white matter. Anisotropy mea-

sure map allows the detection of such an event, which is

a very precise stopping criterion.

2.5. Hough Transform Voting

Aganji et al. [23] propose to use a voting process based on

Hugh transform to determine the global topology of white

matter tracts within the brain or within a selected ROI. Even

though global tractography is not optimal in neurosurgical

applications, we decided this method was worth mention-

ing for two reasons. Firstly, even when we consider that

the main aim is to obtain the global tractogram, the user

can still impose constraints on the area where tracking oc-

curs. Secondly, the method is developed to work with data

from various DWI modalities, such as diffusion spectrum

imaging (DSI) [24], DTI or HARDI. In the search space

mentioned above, i.e. the whole brain in non-restricted trac-

tography, random seed points are drawn. Curves passing

through these points are parametrized by the length of the

arc, representing potential fiber orientations. Each one is

then scored based on the probability of each curve being

part of the same fiber as the seed point. Finally, those

with the highest scores are selected as the most probable

anatomic connections.

The described approach is an exhaustive search, capable of

avoiding local minima. There is no clear stopping criterion

except of the ROI area constraint and the brain surface in

the global variant.

3. Artificial Intelligence

Machine learning (ML) techniques have been successfully

applied in many areas of our daily lives, such as spam
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Table 2

Comparison of different machine learning approaches used to solve tractography-related tasks

Method Algorithm Approach Key concepts Stopping criteria

Random forest

classification

using neighborhood

information

Random forest

classifier
Probabilistic

Voting process deciding

between probable directions

or termination

Tracking stops when nonfiber

probability exceeds cumulated

weighted probabilities for

continuation directions

Learn-to-track (1)
Feed-forward

neural network
Deterministic

Outputs three-dimensional

normalized vector, describing

the streamline direction

Not implemented

Learn-to-track (2)
Recurrent

neural network
Deterministic

Neural network architecture

allows to consider previously

seen points to better predict

the fiber topology

Not implemented

Bundle-wise deep

tracker

Recurrent

neural network
Deterministic

Trained to predict tracking

direction from a bundle-wise-

input data

No information

DeepTract
Recurrent

neural network

Deterministic,

probabilistic

Estimating local fiber orien-

tation as a discrete probability

density function

Track termination probability

as one of the predict classes

Neural network

regression

Multilayer

perceptron
Deterministic

Predicting fiber orientation

in a cube of a given size based

on diffusion data and existing

fiber directions

Learned from the data; tracking

stops when white/gray matter

boundary is hit

FOD with neural

networks

Convolutional

neural network,

high-resolution

network, U-Net

Not applicable

Neural networks trained to

regress constrained spherical

deconvolution coefficients

Not applicable

filtering, image classification and processing, as well as

natural language processing. The same approach is also

taken in bioinformatics and medical data, helping design

new drugs [25], as well as analyze patient scans [26] or

genomes [27]. Not surprisingly, it has also been used to

track nerve fibers. The use of ML techniques to predict the

location of nerve fibers offers numerous benefits. One of

the main advantages is the ability to use raw diffusion data

directly, without having to represent the diffusion propaga-

tor or tissue microstructure [28]. Furthermore, methods of

this type are not limited to relying on particular imaging

modalities and are capable of learning from different types

of DWI experiments.

Additionally, the learning systems may deal with imperfec-

tions, such as noise and distortions, and are suitable for

identifying the location of white matter tissue in the scan

of the entire brain. All that may be learned directly in the

model learning phase. The methods discussed are summa-

rized in Table 2, where the algorithms, approaches, key

concepts and stopping criteria are presented.

3.1. Random Forest Classifier

One of the first approaches relying on ML methodology

was proposed by Neher et al. [28]. This method, similarly

to traditional approaches, operates in a step-wise fashion

when extending the current fiber. However, instead of mod-

eling the signal mathematically, a random forest classifier

determines local tissue properties directly from raw diffu-

sion data. During the tracking phase, when moving from

a given point onwards, an algorithm considers information

from voxels in proximity to a given point. The decision

about the new orientation is made in a voting process, with

the potential directions sampled from a complete sphere or

hemisphere in front of the current position. Classifier out-

put provides the probability for each direction, as well as

non-fiber probability. Tracking stops when non-fiber prob-

ability exceeds the cumulated weighted probabilities of all

possible directions. Otherwise, the streamline direction is

calculated as the normalized sum of the proposed direc-

tions. The voting process makes the fiber extension process

less sensitive to noise and local signal ambiguities, as well

as to premature termination.

3.2. Learn-to-Track

Neural networks also provide means for analyzing raw dif-

fusion data. Poulin et al. proposed two neural network

architectures to accomplish this task [29]. Their feedfor-

ward neural network (FFNN) returns a three-dimensional

vector describing fiber orientation for each point within

the diffusion data. The recurrent neural network (RNN)
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[30] proposed by the authors takes advantage of the previ-

ously seen voxels by remembering features relevant to the

entire streamline orientation. The authors note that learn-

ing a stopping criterion in the neural network approach is

not a trivial task, requiring careful engineering and bal-

ancing the loss function. Nevertheless, the method was

capable of achieving high spatial coverage of a given test

set, while simultaneously controlling the number of false

positives.

A subsequent study by the group postulates using RNN in

a bundle-wise manner, resulting in improved tracking effi-

ciency, a higher number of valid streamlines and better vol-

ume coverage in comparison to all classical algorithms [31].

3.3. DeepTract

Another method using RNNs was developed by Benou et

al. [32] to address fiber orientation estimation as well as to

streamline tractography. Like other methods using ML, it

is capable of operating well on various types of raw diffu-

sion data. Unlike the previously described methods, it does

not produce merely deterministic predictions of the stream-

line. It estimates the orientation of local fibers as a discrete

probability density function, allowing to randomly sample

directions at a given point. The authors address the problem

of choosing a new direction as a classification task, predict-

ing the probability for each orientation and the probability

of tract termination.

3.4. Neural Network Regression

A method developed by Wegmayr et al. proposes a multi-

layer perceptron [33] predicting the outgoing direction from

an input. The prediction is made in a cube of a given size,

being one of the neural network inputs. The second input is

a fixed number of incoming vectors, describing the neural

fiber entering the central vector of the cube. The network’s

output is a vector with three values representing the outgo-

ing direction of the fiber. Tracking is done iteratively and

begins with random sampling of the ROI area. Prediction

of the initial direction is made with the incoming vector set

to zeros. The authors claim that the stopping criteria may

be learned from the data itself. However, they have imple-

mented a simple rule to stop tracking when the boundary

of white and gray matter is reached.

3.5. FOD with Convolutional Neural Networks

Lucena et al. propose to use convolutional neural networks

(CNNs), broadly used in image classification, to com-

pute more accurate FOD from a single-shell dMRI [34].

The authors trained two three-dimensional CNNs, a three-

dimensional high-resolution network (HighResNet) [35]

and a three-dimensional U-Net [36] to regress constrained

spherical deconvolution coefficients. Although the method

does not provide any means of tracking, we decided it was

worth mentioning given the produced FODs could be used

by other algorithms to track fibers.

4. Benchmarking Studies

It is difficult to assess the accuracy of tractography algo-

rithms, especially if predictions are made in vivo, without

the possibility to dissect the patient’s brain.

In 2015, under an initiative of Klaus H. Maier-Hein, labo-

ratories from across the globe were invited to participate in

a tractography competition, where such an assessment was

made possible [37]. The methods they relied upon were

evaluated based on a specifically crafted data set. It was

constructed from multiple whole-brain global tractography

maps [38]. A trained radiologist extracted 25 major tracts,

comprising association, projection, and commissural fibers.

The data prepared for the participants included a struc-

ture mimicking clinical-like acquisition of DWI based on

a simulated diffusion signal and simulated T1-like contrast.

A significant number of methods correctly predicted the

topology of most of the fibers under consideration. How-

ever, the majority produced, along with correct predictions,

many false-positive results, whose number often exceeded

that of the correct ones.

A work published by Schilling et al. assesses the accu-

racy of tractography methods using a data set containing

a physical phantom and two ex vivo brain specimens [39].

Although advances in the tractography methods are signif-

icant, the authors remark that anatomical accuracy is still

limited. This study confirms previous findings showing

a great number of false positives generated by the meth-

ods. Most algorithms tested had a low connectivity predic-

tive value and low spatial overlap with the true pathways.

5. Case Study

Currently, we are designing a neurosurgery support sys-

tem. It will predict functional cortex regions and white

matter fibers in oncological patients. Our goal is to provide

predictions based on imaging data to facilitate pre-surgery

planning. We would like to propose a new tractography

method, being a part of that system, combining a variant

of the Dijkstra algorithm [40] with a feedforward neural

network backbone. The backbone produces information

required to traverse the graph representation of the brain’s

diffusion map, allowing to trace neural fibers.

The general architecture of the underlying neural network is

shown in Fig. 2. In the proposed method, the diffusion data

is analyzed in small batches of size (5, 5, 5). Thus, the re-

quired number of nodes in the hidden layers is significantly

reduced. A neural network returns a scalar value for each

voxel, describing the probability that a given voxel defines

the same neural fiber as the central one. Voxels with val-

ues above the specified threshold will constitute the nodes

of the graph. Weights for edges between the nodes are

computed based on the probability values.

Tracking fibers starts by picking the region of interest

(ROI), usually covering the area of the planned surgical in-

tervention. Each voxel within ROI is a tracking seed – the
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Fig. 2. Architecture of the neural network for predicting probabilities of voxels containing parts of the same fiber.

first node of the graph. In the next step, a three-dimensional

matrix of size (5, 5, 5) with the seed located in the center

thereof is drawn. A neural network is employed to produce

an output 3D matrix with probabilities for all 125 voxels.

The central voxel, as the seeding point, has the probabil-

ity of 1 (Fig. 2). The graph is extended from the initial

node to reach the edge of the drawn cube. The voxel at

the border, chosen as the graph node, becomes the central

voxel of the next cube. This procedure is presented, on

two-dimensional slices, in Fig. 3.

Fig. 3. The method proposed for solving tractography tasks. Part

(a) shows path tracking with overlapping cubes obtained from the

neural network. Part (b) shows a graph of potential neural paths.

Black edges are the possible connections between the nodes. Bold

orange edges represent the most probable paths according to the

method. (For the color version, please see the digital edition)

In this approach, labeled bands of white matter will quickly

cover regions that are remote from the actual ROI. To avoid

that, we propose to use two stopping rules. The first is

to stop tracking when no satisfying candidates exist near

the current node. This principle stems directly from the

algorithm used. The additional rule would stop the tracking

when a defined Euclidean distance from the seed point is

reached.

We are currently collecting data from oncological patients,

thanks to long-term cooperation with the Department of

Neurosurgery at the Maria Skłodowska-Curie National Re-

search Institute of Oncology. Once this step has been com-

pleted, a trained radiology specialist will annotate each dif-

fusion set, producing the expected tractogram. Next, raw

diffusion data and tractograms would be used to train the

backbone neural network. After the training is completed,

the proposed method would be evaluated on the available

benchmark dataset. This will allow to compare its accu-

racy and the rate of false positive predictions with other

state-of-the-art methods.

6. Conclusions

Diffusion-weighted imaging data, including DTI, is not ca-

pable of providing satisfactory answers concerning the loca-

tion of white matter bands within the brain. To provide such

answers, algorithms analyzing the data, developed based on

the knowledge of brain anatomy and functions, are used.

Throughout the years, many algorithms have been proposed

to tackle this problem, including both mathematical and ar-

tificial intelligence-based approaches. In this paper, we pre-

sented a review of the available methods, with an emphasis

placed on their potential use in neurosurgery.

The mathematical models are quite simple in their struc-

ture. The final solution of the problem is usually a product

of a combination of various methods used together. Each

step involves different issues, starting from the noise within

the data itself, to complex states on the atomic level that

cannot be addressed by such methods alone. These models

are developed to process specific diffusion-weighted modal-

ities. The methods based on HARDI imaging data tend to

produce smoother, higher resolution tractograms. More in-

formation is provided for a single voxel, allowing to adopt

a step size that is smaller than the voxel itself. The use of

probabilistic models may shed more light on the complex

topology of human brain connectomics. However, such

methods are prone to produce many false positives, as was

shown in the benchmarking studies. The use these methods

requires expertise in order to adjust their parameters and to

correctly interpret the results at each stage of the analysis.

Methods based on ML attempt to bypass at least some of

the obstacles encountered by the classical approaches. They

may be fed directly with data from imaging experiments to

evaluate the solution through model parametrization in the

learning process. However, these methods are not com-

pletely free of any drawbacks. The process of designing

and training a successful model takes a lot of time to com-

plete, thus increasing its total cost. Moreover, a good model
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requires great amounts of well-annotated data. Preparing

such a data set is troublesome and labor-intensive. It re-

quires that numerous imaging experiments be conducted

with the use of MRI, and that each of them be annotated

by a radiology specialist. The effort put into training the

model pays off when the method is used. Well-trained

models are capable of producing results quickly and with-

out much expertise of the person using them. Therefore,

neurosurgeons could use them in an almost out-of-the-box

form in preoperative planning.

We propose an approach that is based on a combination of

the Dijkstra algorithm with a simple feed-forward neural

network be used to predict the most probable fiber topolo-

gies within the brain. Such a method would work by per-

forming an iterative analysis of the diffusion data divided

into small batches, to speed up the execution process. Con-

tinued training and additional experiments are required with

real-world patient data in order to optimize the accuracy of

the approach and to compare it with other methods using

benchmarking datasets.

Despite the tremendous progress made since the introduc-

tion of diffusion-weighted imaging, such methods need to

be used cautiously and always have to be supported by

specific knowledge concerning anatomy and operation of

the brain. Novel architectures of neural networks are pro-

posed on a continuous basis to tackle complex tasks in

parallel areas, such as natural language processing and im-

age classification. This means that further development of

methodologies used to analyze medical data and facilitate

diagnostic imaging should be expected as well.
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