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Abstract—Among all the techniques combining multi-carrier

modulation and spread spectrum, the multi-carrier code di-

vision multiple access (MC-CDMA) system is by far the most

widely studied. In this paper, we present the performance

of the MC-CDMA system associated with key single-user de-

tection techniques. We are interested in problems related to

identification and equalization of mobile radio channels, using

the kernel method in Hilbert space with a reproducing kernel,

and a linear adaptive algorithm, for MC-CDMA systems. In

this context, we tested the efficiency of these algorithms, con-

sidering practical frequency selective fading channels, called

broadband radio access network (BRAN), standardized for

MC-CDMA systems. As far as the equalization problem en-

countered after channel identification is concerned, we use

the orthogonality restoration combination (ORC) and the

minimum mean square error (MMSE) equalizer techniques

to correct the distortion of the channel. Simulation results

demonstrate that the kernel algorithm is efficient for practical

channels.

Keywords—BRAN channels, equalization, kernel method, MC-

CDMA, reproducing kernel Hilbert space.

1. Introduction

The problem of identifying a finite impulse response (FIR)

system is the subject of interest for a large number of re-

searchers [1]–[7]. Indeed, identifying a system means find-

ing a set of parameters that form a mathematical model

linking the different variables of the system [8]. Identifi-

cation of linear systems has been carried out for decades

using stochastic gradient algorithms. However, today, be-

cause of their complexity, the systems are becoming more

non-linear. Given the increasing use of non-linear mod-

els in real systems, numerous resolution methods for the

identification of non-linear systems, such as Volterra fil-

ters, neural networks and kernel methods, have been de-

veloped [9]–[14]. Kernel-based methods have been highly

successful success in a wide range of fields over the

past decade [15]. They are founded on the robust math-

ematical framework of reproducing kernel Hilbert spaces

(RKHS), creating an interesting framework for the devel-

opment of adaptive non-linear filters [8], [16]. Concerns

related to the application of these algorithms have led us to

consider the problem of equalization of MC-CDMA sys-

tems using BRAN channels. In order to solve these is-

sues, several authors have suggested additional approaches

in [17]–[24]. Innovative multi-carrier CDMA [25] trans-

mission techniques are emerging as high-potential solu-

tions for the fourth-generation of cellular networks, due

to the many advantages of MC-CDMA, such as reduced

inter-symbol interference (ISI), excellent spectral efficiency,

as well as the ability to prevent frequency-selective fad-

ing, multi-carrier modulation and demodulation using in-

verse fast Fourier transform (IFFT) at the transmitter and

fast Fourier transform (FFT) at the receiver, as these

are less complicated to implement. MC-CDMA has ac-

quired a great deal of importance in multi-user wire-

less communication systems [26]. In this paper, the main

goal is to analyze the performance of MC-CDMA sys-

tems used for downlink over BRAN channels. We con-

sidered two practical frequency-selective fading channels

called broadband radio access network (BRAN C and

BRAN E), standardized by the European Telecommu-

nications Standards Institute (ETSI) [27], [28]. Perfor-

mance of the downlink MC-CDMA systems’ bit error rate

(BER) using the BRAN measures is shown and compared

with the results achieved with the kernel LMS and LMS

algorithms.

The present paper is arranged as follows. In Section 2, we

introduced the Hammerstein system identification architec-

ture. In Section 3, derivation of the least mean square algo-

rithm is presented. Section 4 reviews some basic concepts

of the kernel methods, and the kernel least mean squares

identification algorithm is presented. Section 5 depicts the

model of the MC-CDMA system. Monte Carlo simulations

of those algorithms are presented in Section 6 and, finally,

Section 7 concludes the paper.
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2. System Architecture

Let us consider a Hammerstein model represented in Fig. 1.

It consists of a non-linear static function followed by an

invariant time linear block.

Fig. 1. Basic structure of a Hammerstein system with additive

noise bk [9].

The system’s output for a defined input signal xk, where

k = 0,1, . . ., is obtained as follows:

dk =
L−1

∑
i=0

hi f (xk−i)+bk, (1)

where xk is the symbol emitted by the source at moment

k, the channel impulse response {hi}i=0,1, ...,L−1 , L is the

order of FIR system, and f (.) is the non-linearity.

Throughout this paper, we rely on the following hypotheses

concerning the system:

• input xk, is independent and identically distributed

(i.i.d.) with the zero mean.

• additive noise bk is Gaussian and independent of xk
and dk.

• non-linearity f (.) is continuous and invertible for any

finite x.

• there is no delay in the system, i.e. h0 6= 0.

3. LMS Algorithm

The least mean squares (LMS) [29] algorithm is one of

the most popular algorithms for calculating coefficients of

a finite impulse response filter. It is used to update the

adaptive filter weights at each iteration:

ωn+1 = ωn + µLMSenxn, (2)

where xn = [xn,xn−1, . . . ,xn−L+1]
> is the reference

signal vector of length L at moment n, ωn =
ω0,n,ω1,n, . . . ,ωL−1,n]

> ∈ R
L is the weight vector, en =

dn−yn is the error between the desired signal and the out-

put filter and µLMS is known as the algorithm’s step-size

parameter. Its value has an impact on the performance of

the LMS algorithm. In order to ensure the convergence of

the weighting vector, it is necessary for the convergence

step to be included in the interval below [30]:

0 < µLMS <
2

λmax
, (3)

with λmax being the maximum eigenvalue of the autocorre-

lation matrix, their values are non-negative.

The main disadvantage of this algorithm is the degradation

of its performance when resolving non-linear problems.

4. Kernel-Based Adaptive Filters

Kernel methods undergo intense development these days,

as they drive progress, both in terms of computational cost

and performance achieved. They are based on a central

principle known as the “kernel trick”, exploited for the first

time with the support vector machine (SVM) [31], adding

a non-linear character to many originally linear methods. In

practice, the kernel trick consists in rewriting an algorithm

in which all relations between data inputs may be written

as inner products, and replacing these products by scalar

functions of two variables, where the original data input

has been mapped to a non-linear Hilbert space (infinite-

dimensional) using the Mercers theorem [13]:

κ(xi,x j) = 〈ψ(xi),ψ(x j)〉H, ∀(xi,x j) ∈ E
2
, (4)

where ψ maps E into a higher dimensions space H with

an inner product 〈., .〉H. Generally, dim(E) � dim(H).

In [13], [32]–[34], the authors have presented a detailed sur-

vey of the kernel method’s characteristics. Figure 2 shows

a functional diagram illustrating an adaptive filter based on

the kernel, where {xn}N
1 is the vector of N most recent in-

put signal samples, {yn}N
1 is the estimated desired response,

and {en}N
1 is the estimation error.

Fig. 2. Kernel-based adaptive system identification [35].

Any positively defined kernel can be seen as a scalar prod-

uct in a functional space called the reproducing kernel

Hilbert space (RKHS). This is therefore the property that

a kernel must have to be validated. In order to properly

determine the existence condition of a functional space H,

let us first start with some definitions [8], [36].

Definition 1 (positive definite kernel). A kernel is called

positive definite if, for each input data point {xi}N
i=1 ∈ E, it

satisfies the following condition:

α>Kα =
N

∑
i, j=1

αiα jκ(xi,x j) ≥ 0, (5)

for all N ∈ N, (x1, . . . ,xN) ∈ E
N and (α1, . . . ,αN) ∈ R

N .

We can assign an orthonormal base to a Hilbert space H in

order to represent the elements of H from their coordinates.

2



Performance Evaluation of MC-CDMA Systems with Single User Detection Technique using Kernel and Linear Adaptive Method

The associated kernel must be a continuous, symmetric,

normalized and positive definite function κ : E×E → R. E

is the input domain, a compact subset of R
N .

Definition 2 (reproducing kernels and Hilbert spaces). Let

(H,〈., .〉H) represent a Hilbert space compromising func-

tions of E in R. The function κ(xi,x j) of E×E in R is

the reproducing kernel of H, provided that H admits one,

if there exists a function κ(x, .) : xi −→ κ(x,x j) belongs to

H, for any x ∈ E.

4.1. Kernel Least Mean Square

Here, we present the LMS kernel algorithm [37]–[39]. The

basic idea is to run the linear LMS algorithm specified by

Eq. (2) in the kernel feature space which is associated with

the positive defined kernel κ . The sequence of samples is

transformed by means of a feature map:

ψ : E −→ H

x −→ κ(x, .) . (6)

To construct the RKHS model, we use the Gaussian kernel:

κ(xi,x j) = e
−
‖xi − x j‖2

2σ 2
, ∀xi,x j ∈ E , (7)

where σ > 0 is the width of the kernel.

Fig. 3. Define a characteristic map.

Figure 3 shows data space E and space H induced by the

kernel reproducing κ . This mapping represents each input

point x by its similarity κ(x, .) to all other points in the E

domain. In order to build a feature space associated with ψ ,

the image of ψ must be transformed into a vector space with

an inner product [32]. Now let us assume that the sequence

of samples is transformed using feature map ψ . The LMS

logic may be applied on the following transformed data:

{(ψ(x1),y1),(ψ(x2),y2), . . . (ψ(xn),yn), . . .}. (8)

As a consequence of the linear structure of the cost function

Jθ (n) = E[(dn−yn)
2] can be minimized compared to θ . We

could solve this in the similar manner as in the LMS algo-

rithm, using the instant-stochastic estimation, which gives:

θ̂n+1 = θ̂n + µeiψ(xi). (9)

The main difference with LMS is that in Eq. (10) it is in

a space of possibly infinite dimensional characteristics and

its direct updating it would be virtually impossible. Instead,

we will use each θ̂n of them to link to their initialization θ̂0:

θ̂n = θ̂0 + µ
N

∑
i=1

eiψ(xi). (10)

By initializing the solution with a value 0, the solution can

be expressed, after n iterations, as:

θ̂n = µ
N

∑
i=1

eiψ(xi). (11)

By using the kernel trick, the following prediction function

is obtained:

〈θn,ψ(xn)〉H = µ
N

∑
i=1

ei〈ψ(xi),ψ(xn)〉

= µ
N

∑
i=1

eiκ(xi,xn), (12)

where κ(xi,xn) is a Mercer kernel, representing the inner

product 〈ψ(xi),ψ(xn)〉 [39], and N is the number of training

samples.

5. MC-CDMA System

The MC-CDMA technique is based on concatena-

tion of the spread spectrum and multi-carrier modula-

tion [42]–[40]. Instead of applying the spread-spectrum

technique in the time domain, we apply it in the frequency

domain, by modulating the different chips of the spreading

code with OFDM subcarriers. More precisely, the complex

symbol y j specific to each user j is first multiplied by its

user-specific Walsh-Hadamard spreading code:

C j = (cu, j)
ᵀ

0<u≤Lc
of length Lc ,

where (.)ᵀ designates the matrix transposition, then applied

to the input of the multi-carrier modulator. Each sub-carrier

transmits an information element multiplied by a chip of the

specific code to this sub-carrier.

Figure 4 presents the general organization of a synchronous

downlink based on the MC-CDMA technique in a scenario

where length Lc of the spreading code is equal to number

Nc of sub-carriers. In order to ensure orthogonality be-

tween subcarriers after the spreading function, the space

between two adjacent subcarriers is proportional to the in-

verse of the Tc duration of an MC-CDMA symbol on each

subcarrier. For the j-th transmitter, the emitted signal was

represented as:

s j(t) = ℜ

{

1√
Nc

Nc−1

∑
k=0

y jc j,ke
i2π fkt

}

, with fk = f0 +
k
Tc

.

(13)

fk designates the relative frequency, Nc corresponds to the

number of subcarriers used, factor 1√
Nc

is the power nor-

malization term and c j,k ∈ {−1,1} denotes the spreading

code.
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Fig. 4. MC-CDMA transmitter and receiver studied.

The propagation channel is time invariant and can be ex-

pressed in the delay domain by its impulse response:

h(τ) =
L−1

∑
l=0

βle
jθl δ (τ − τl) , (14)

where βl and θl are the magnitude and the phase of the

channel, respectively.

The downlink MC-CDMA signal at the input of the receiver

is noted r(t) and is written as [43]:

r(t) = h(t)∗ s(t)+b(t) , (15)

r(t) =
1√
Nc

L−1

∑
l=0

Nu−1

∑
j=0

Nc−1

∑
p=0

R{βle
jθ y jc j,pe2jπ fk(t−τl)}+b(t) ,

(16)

where Nu is the number of users, R is a function of the

real part, and b(t) is additive white Gaussian noise.

The MC-CDMA symbol received may be expressed in

a vector form by:

r = [r0,r1, ...,rNc−1] = HCy+b , (17)

where r designates a vector made up of the values received

on each subcarrier, and matrix H represents the channel

coefficients diagonal matrix:

H =








h0 0 · · · 0
0 h1 · · · 0
...

...
. . .

...

0 0 · · · hNc−1








. (18)

5.1. Single-user Equalization for the MC-CDMA System

The basic principle of equalization techniques is to re-

duce the effects of fading and interference, thus making

it easier to make a decision about the received data sym-

bols [17], [19]. Using the previous matrix notation, G, the

diagonal matrix is composed of the g j equalization coeffi-

cients and can be expressed by:

G =








g0 0 · · · 0
0 g1 · · · 0
...

...
. . .

...

0 0 · · · gNc−1








. (19)

When equalized and de-spread according to sequence c j of

the user under consideration, estimation ŷ j of the emitted

symbol may be expressed as:

ŷ j = c j.G.r . (20)

Substituting Eq. (17) into Eq. (20) gives:

ŷ j = c j.G.H.C.y+ c j.G.b . (21)

Matrix C represents Nc spreading codes c j specific to each

user j:

C =







c0,0 · · · c0,Nu−1

cLc−1,0 · · · cNc−1,Lc−1







, (22)

thus:

ŷ j =
Nc−1

∑
p=0

C2
p, jgphpy j +

Nu−1

∑
q=0
q6= j

Nc−1

∑
p=0

Cp, jCp,qgphpyq

+
Nc−1

∑
p=0

Cp, jgpbp . (23)

Well-known single-user detection techniques include, inter

alia, ORC and MMSE equalization.

5.1.1. Orthogonality Restoration Combination (ORC)

In order to completely cancel the phase and amplitude dis-

tortions provided by the channel, the ORC technique, also

known as zero forcing (ZF), may be employed [23], [44]:

gorc =
1

|hp|
, with 0 ≤ p ≤ Nc −1 . (24)

Equation (23) allowing to obtain the estimation ŷ j of the

symbol y j of the user j is then written as:

ŷ j =
Nc−1

∑
p=0

C2
p, jy j +

Nu−1

∑
q=0
q6= j

Nc−1

∑
p=0

Cp, jCp,qyq

+
Nc−1

∑
p=0

Cp, j
1
hp

bp . (25)
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Assuming that the spreading codes used at the transmitter

level are orthogonal, we have:

Nc−1

∑
p=0

Cp, jCp,q = 0, ∀ j 6= q. (26)

The Eq. (25) reduces to:

ŷ j =
Nc−1

∑
p=0

C2
p, jy j +

Nc−1

∑
p=0

Cp, j
1
hp

bp.

However, the main drawback of this technique is that, for

weak amplitudes of hp, the multiplication by an inverse

function of the channel results in a strong amplification of

the noise, which rapidly increases the value of gorc.

5.1.2. Minimum Mean Square Error (MMSE)

Equalization performed according to the MMSE criterion

aims to minimize the mean square value of the error be-

tween vector S of the transmitted signal and its estimate

Ŝ = GR generated at the output of the equalizer:

J = E{|ε |2} = E{|S−GR|2} , (27)

where R = (R0, . . . ,Rk, . . . ,RNc−1) and G = (G0, . . . ,

Gk, . . . ,GNc−1) are the symbol vector returned at the output

of the FFT and the gain vector of the equalizer, respectively

[45], [23]. This mean squared error J is minimal when the

equalizer’s Gk gains are such that both the received signal

and the error signal are orthogonal, meaning that:

E{εR∗>} = 0 . (28)

When the number of users is equal to length Lc of the

code, the optimal equalizer coefficients, according to the

mean square error minimization criterion, are:

gmmse =
h∗p

|hp|2 + 1
γp

, with γp 6= 0 , (29)

where gmmse,p is the p-th complex channel gain, the opera-

tion ∗ is the complex conjugate and γp is the signal-to-noise

ratio for subcarrier p. The estimated received symbol, ŷi
of the symbol yi of user i is represented by:

ŷ j=
Nc−1

∑
p=0

C2
p, j

|hp|2
|hp|2 + 1

γp

y j

︸ ︷︷ ︸

λ

+
Nu−1

∑
q=0

Nc−1

∑
p=0

Cp, jCp,q
|hp|2

|hp|2+ 1
γp

yp

︸ ︷︷ ︸

ς (q6= j)

+
Nc−1

∑
p=0

Cp, j
h∗p

|hp|2 + 1
γp

bp

︸ ︷︷ ︸

η

, (30)

where λ is the usable signal portion, ς is the multiple

access interference and η in the noise term.

If we assume that the code for spreading is orthogonal, that

is:
Nu−1

∑
p=0

Cp, jCp,q = 0, ∀ j 6= p . (31)

So, Eq. (30) becomes:

ŷ j =
Nu−1

∑
p=0

C2
p, j

|hp|2
|hp|2 + 1

γp

y j +
Nu−1

∑
p=0

Cp, j
h∗p

|hp|2 + 1
γp

bp . (32)

6. Simulation and Results

The simulation will allow us to study the performance of

the adaptive kernel filtering algorithm. The mean square

error (MSE) will be used to measure the accuracy of the

estimated values as:

MSE(h, ĥ) =
1
p

p

∑
i=1

[

h(i)− ĥ(i)
h(i)

]2

, (33)

where h(i) is the measured impulse response, ĥ(i) is the

estimated impulse response, and p represents the length of

the impulse response.

MC-CDMA system’s equalization performance in the

single-user downlink scenario is evaluated using MMSE

and ORC equalizers. This assessment is carried out using

measured and estimated parameters of practical broadband

radio access network (BRAN C and BRAN E) models to

determine the bit error rate (BER), applying KLMS and

LMS algorithms.

6.1. BRAN C and BRAN E Parameters

In Tables 1 and 2, we represent the measured values corre-

sponding to BRAN C and BRAN E radio channels’ impulse

response. The impulse response of each model is:

h(n) =
p

∑
i=1

Miδ (n− τi) , (34)

where δ (n) is the Dirac’s function, τi is path’s i time delay,

Mi is path’s i magnitude, where their impulse responses are

between 0 and 1, Mi ∈ N(0,1), i = 1, . . . , p and p = 18 is

the number of paths.

Table 1

Delay and magnitudes of 18 targets of a BRAN C channel

Delay Magnitude Delay Magnitude

τi [ns] Mi [dB] τi [ns] Mi [dB]

0 -3.3 230 -3.0

10 -3.6 280 -4.4

20 -3.9 330 -5.9

30 -4.2 400 -5.3

50 0 490 -7.9

80 -0.9 600 -9.7

110 -1.7 730 -13.2

140 -2.6 880 -16.3

180 -1.5 1050 -21.2

Table 3 shows the various parameters of the MC-CDMA

system implemented for the two BRAN channels: C and E.
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Table 2

Delay and magnitudes of 18 targets of a BRAN E channel

Delay Magnitude Delay Magnitude

τi [ns] Mi [dB] τi [ns] Mi [dB]

0 -4.9 320 0

10 -5.1 430 -1.9

20 -5.2 560 -2.8

40 -0.8 710 -5.4

70 -1.3 880 -7.3

100 -1.9 1070 -10.6

140 -0.3 1280 -13.4

190 -1.2 1510 -17.4

240 -2.1 1760 -20.9

Table 3

Simulation parameters

Characteristic parameters Configuration

Spreading code lengths Lc 64

Sampling frequency fs 20 MHz

Number of sub-carriers Nc 64

Symbol times Ts 3 µs
Number of users Nu 64

Spreading codes Walsh-Hadamard

OFDM modulation FFT 64 samples

Channel model BRAN (C and E)

Performance metrics BER and MSE

6.2. Performance Results

6.2.1. ETSI BRAN C Channel

The parameters of the impulse response ETSI BRAN C

radio channel estimated using the two algorithms are pre-

sented in Fig. 5, for a scenario with SNR = 15 dB, the num-

ber of input signal samples fixed at N = 1024 and 50 Monte

Carlo iterations used. One may notice that the response es-

timated using the kernel algorithm matches the real values,

Fig. 5. Estimate of the BRAN C channel amplitude depending

on the delay time.

but when estimating the channel impulse response using the

LMS algorithm, there is an apparent difference between the

estimated and the measured values.

The mean square error values for the two algorithms are

presented in Fig. 6, for an SNR varying between 0 dB and

40 dB and the number of samples equaling N = 1024. We

find that the kernel algorithm offers the best performance in

terms of MSE criteria even in a highly noisy environment,

compared to the LMS algorithm.

Fig. 6. Comparison of algorithms in terms of MSE for different

SNR values and for the data length of N = 1024, BRAN C channel.

Figure 7 demonstrates estimates concerning of the ampli-

tude and phase of the BRAN C channel, using the least

mean square and the kernel least mean square algorithms,

for a number of samples equaling N = 1024 and for an

SNR = 15 dB. These results allow us to conclude that the

kernel algorithm is more efficient compared with the LMS

algorithm, because it allows us to have the same paces of

the estimated (amplitude and phase) and those measured.

Figures 8 and 9 show, respectively, the BER simulation re-

sults, in the single-user and in the downlink scenario, for

different SNRs obtained using ORC and MMSE equalizers,

based on the measured parameters of the BRAN C channel

and parameters estimated by the KLMS and LMS algo-

rithms. From these simulation results (Fig. 8), one may

conclude that the KLMS algorithm predicts the same per-

formance values as those measured for the BRAN C chan-

nel, as opposed to the LMS algorithm which yields values

quite different from their measured counterparts (BRAN

C). Indeed, the Kernel LMS algorithm’s BER values are

inferior to those achieved by the LMS algorithm. From

Figs. 8 and 9, we can conclude that:

• when using ORC equalization measured values. Both

the two algorithms give the 1 bit error if we receive

102 bits for SNR = 24 dB, with an advantage over

the kernel algorithm (Fig. 8),

6
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Fig. 7. Estimation of the amplitude and phase of the BRAN C

channel, for the data length of N = 1024 and SNR = 15 dB.

Fig. 8. BER vs. SNR of the estimated and measured BRAN C

channel, using the ORC equalizer.

• in the case of the MMSE equalizer, if SNR = 24 dB

we just get a 1 error bit, when we receive 104 bits,

with an advantage over the kernel algorithm (Fig. 9).

We conclude that the MMSE technique is more efficient

than the ORC technique in the case of the ETSI BRAN C

radio channel.

Fig. 9. BER vs. SNR of the estimated and measured BRAN C

channel, using the MMSE equalizer.

6.2.2. ETSI BRAN E Channel

Figure 10 shows the estimated parameters of the BRAN E

channel impulse response, as a function of the path delays,

for a data length of N = 1024, SNR = 15 dB, and 50 Monte

Carlo runs. One may notice that the best performance is

obtained by the kernel LMS algorithm.

Fig. 10. BRAN E channel amplitude estimates depending on the

time delay.

The mean square error values for the two algorithms are

represented in Fig. 11, for different SNR and for the num-

bers of samples equaling N = 1024. One may notice

that the performance of LMS is almost unaffected by any

considerable disturbance, whereas the performance of the

kernel has been significantly reduced due to its sensitiv-

ity to low SNR. The kernel algorithm achieves the best

performance, with higher convergence speed and mini-

mized MSE.

7
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Fig. 11. Comparison of algorithms in terms of MSE for different

SNR values and N = 1024, BRAN E channel.

As summarized in Figs. 11 and 6, it can be seen that the

LMS algorithm is more effective in the case of the BRAN

C channel, due to the greater level of fluctuations in the

BRAN E channel. On the basis of the obtained results,

one may notice that when the SNR value is lower than

5 dB, the value of MSE obtained with the KLMS algorithm

(MSE > 100, if SNR = 0 dB) is slightly higher than the one

obtained with LMS (MSE = 100, if SNR = 0 dB), but when

SNR > 5 dB, we note the stability of the MSE value of the

LMS so that no SNR value was affected, which testifies

Fig. 12. Estimation of the amplitude and phase of the BRAN E

channel, for a data length of N = 1024 and SNR = 15 dB.

to its incapacity to estimate the parameters. These results

allow us to conclude that the kernel algorithm gives a good

approximation of the model parameters to be identified.

The estimation of the amplitude and phase of the BRAN E

channel, using the two algorithms, is presented in Fig. 12,

for a number of samples N = 1024 and SNR = 15 dB. The

amplitude and phase estimated using the kernel algorithm

have the same form as the measured data. Compared to

the linear adaptive algorithm (LMS), we notice a difference

between the shape of estimated amplitude and phase, and

the shape of the actually measured parameters.

Fig. 13. BER vs. SNR of the estimated and measured BRAN E

channel, using ORC equalizer.

The plot shown in Fig. 13 indicates BER for various SNRs,

achieved using the kernel algorithm, and compares with the

Fig. 14. BER vs. SNR of the estimated and measured BRAN E

channel, using the MMSE equalizer.
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values obtained with the LMS algorithm. Equalization is

performed using the ORC equalizer.

Similarly, Fig. 14 presents the results of BER simulations

for different SNRs obtained using the MMSE equalizer,

based on the measured parameters of the BRAN E channel

and the ones estimated with KLMS and LMS algorithms.

We note that the efficiency of the KLMS algorithm is im-

portant compared to the LMS algorithm. According to

Figs. 13 and 14, if SNR = 36 dB, the BER value is lower

than 10−3 in the case of the ORC equalizer, but when using

the MMSE technique, we obtain a BER value that is lower

than 10−3 when the SNR equals 24 dB.

One may conclude that the MMSE equalizer offers the

best performance in terms of BER for all channels stud-

ied (BRAN C and BRAN E).

7. Conclusion

In this paper, the performance of an MC-CDMA system in

the downlink over BRAN channels was evaluated and an-

alyzed, using the kernel LMS and LMS algorithms. These

algorithms are used for estimating the parameters of the

measured channels in different scenarios (BRAN C and

BRAN E). The results presented in the identification part

demonstrate that the kernel algorithm is effective and effi-

cient for practical channels. As far as equalization of MC-

CDMA systems is concerned, we obtained excellent bit er-

ror rate performance, mainly if the kernel last mean square

algorithm was used. Future research includes the develop-

ment of an extension of these algorithms to MIMO systems,

new methods for identifying communication channels (i.e.

using kernel methods) and development of new equalizers

practically for MC-CDMA systems can be presented in the

future.
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