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Abstract—Speech segmentation is the process of dividing
speech signal into distinct acoustic blocks that could be words,
syllables or phonemes. Phonetic segmentation is about finding
the exact boundaries for the different phonemes that composes
a specific speech signal. This problem is crucial for many ap-
plications, i.e. automatic speech recognition (ASR). In this
paper we propose a new model-based text independent pho-
netic segmentation method based on wavelet packet speech
parametrization features and using the sparse representation
classifier (SRC). Experiments were performed on two datasets,
the first is an English one derived from TIMIT corpus, while
the second is an Arabic one derived from the Arabic speech
corpus. Results showed that the proposed wavelet packet de-
composition features outperform the MFCC features in speech
segmentation task, in terms of both F1-score and R-measure
on both datasets. Results also indicate that the SRC gives
higher hit rate than the famous k-Nearest Neighbors (k-NN)
classifier on TIMIT dataset.

Keywords—Arabic speech corpus, ASR, F1-score, phonetic seg-
mentation, sparse representation classifier, TTS, wavelet packet.

1. Introduction

The phonetic segmentation technique aims for identifying
the starting and ending boundaries of each phoneme seg-
ment in continuous speech. This segmentation is crucial for
creating phoneme databases used in text-to-speech (TTS)
systems [1]-[3], and for transcribing speech corpus used in
training hidden Markov models (HMMs) in ASR systems.
Phonetic segmentation is also used in building a query-
by-example (QbyE) spoken term detection (STD) applica-
tion which is relatively a new application drawing increas-
ing attention in recent years [4]. Knowledge of phoneme
boundaries is also necessary in some cases of health-related
research on human speech processing [4], such as diagnos-
tic marker for Childhood Apraxia of Speech (CAS) [5].
Phonetic segmentation and annotation can be done either
automatically or manually by expert phoneticians [6]. The
main difficulty of this task is its subjectivity, because of
the lack of distinct physiological or acoustic events that
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signal a phoneme boundary in some cases. In continu-
ous speech, phoneme boundaries are sometimes difficult to
locate due to glottalization, extremely reduced vowels or
gradual decrease in energy before a pause [5]. As a result,
there is no “correct” answer to the phoneme segmentation
problem. Instead, a measure of the agreement between
two alignments takes place, such as the agreement between
two humans, or the agreement between human and ma-
chine [5]. Though manual segmentation is the most ade-
quate [7] way for phonetic transcription. It suffers from
being very tedious and time consuming, especially in the
case of large speech corpora and spontaneous speech. In
addition, manual segmentation suffers from labeler subjec-
tivity and may not be able to maintain labeling consis-
tency [8]. These difficulties stimulate the development of
automatic phonetic segmentation techniques for continuous
speech waveforms. These segmentation techniques are di-
vided into two major categories: text-dependent (TD) and
text-independent (TI) [9], [10]. In TD techniques, the pho-
netic annotation of the speech signal is already known and
we need only to find the boundaries of each phoneme seg-
ment. Most text dependent segmentation techniques (also
called explicit) are based on HMM with forced alignment
Viterbi algorithm [9], [11]. On the other hand, TT segmen-
tation methods (also called implicit or unsupervised) do
not need any phonetic annotation for the speech signal to
be segmented. Instead, they are generally based on sets of
rules derived from encoding human knowledge to segment
speech [12], like acoustic rate of change or other spectral
variation metrics [13]-[15]. Such methods are called blind
or model-free because they do not use modeling stage. Re-
cently several studies proposed using different supervised
and unsupervised machine learning techniques like ANN
for phoneme segmentation [16], [17].

Sparse representation classifier [18]-[20] is relatively new
machine learning technique that has demonstrated excellent
performance in face recognition applications [18] and other
applications [19], [20]. This classifier is based on extracting
sparse code as discriminative features. Sainath ez al. used
Sparse coding for phoneme classification [21], [22] from
test samples on a dictionary composed of phoneme exem-
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plars as discriminative features, and fed these sparse codes
to the sparse representation classifier. Sivaram et al. in [23]
proposed employing sparse coding for phoneme recogni-
tion. They used the sparse code as a new speech feature
to train multi-layer perceptron (MLP) network to get the
posterior probabilities that will be used as emission likeli-
hood of the HMM states. Every phoneme is modeled as
a 3 state HMM and Viterbi decoder is used for phoneme
recognition.

In this paper, we propose to use SRC for phoneme border
detection and a speech parametrization algorithm based on
the equivalent rectangular bandwidth (ERB) [24], [25] like
wavelet packet decomposition entitled WP-ERB. The per-
formance of the proposed classifier is compared to the k-NN
classifier, and the performance of the proposed WP-ERB
features are compared to the MFCC features in phoneme
segmentation. In Section 2 we present related works for
phoneme segmentation. The proposed phonetic segmen-
tation system is described in Section 3. In Section 4 we
present the conducted experiments and results. In Section 5
we summarize and conclude the paper.

2. Related Works

Significant work has been done on the problem of text in-
dependent speech segmentation. Some works used a set
of rules derived from encoding human knowledge to seg-
ment speech [12], like acoustic rate of change, or other
spectral variation metrics [13], [14]. Such methods are
called model-free phonetic segmentation methods (also
called metric-based or blind methods) because they do not
incorporate any modeling strategy. Instead they rely on dis-
tance measures of the spectral changes among consecutive
speech frames. These methods use the signal character-
istics extracted in a signal analysis stage and a collection
of thresholds to segment the signal [26]. The main issue
with this approach is the difficulty to determine the optimal
thresholds.

Javed et al. [27] proposed a strategy driven by cosine dis-
tance similarity scores for identifying phoneme boundaries.
The proposed strategy helped in the selection of appropri-
ate feature extraction technique for speech segmentation ap-
plications. Dusan in [28] investigated the use of spectral
transition in segmentation, as he found high correlation be-
tween the maximum of the spectral transition and phoneme
boundaries. The proposed method detects phoneme bound-
aries by looking for peaks in a spectral transition metric.
Results showed an accuracy of 84.6% for frames of 20 ms
TIMIT dataset, while no other performance metric was re-
ported. Ramteke et al. [29] noted that in a well-spoken
word, phonemes can be characterized by the changes ob-
served in speech waveform. To get phoneme boundaries,
Ramteke studied the signal level properties of speech wave-
form i.e. changes in the waveform during transformation
from one phoneme to another. He addressed the problem
of phoneme level segmentation from two aspects: segmen-
tation of phonemes between voiced and unvoiced portions,
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and segmentation of phonemes within voiced and unvoiced
regions. He used pitch and zero-frequency filter to get the
region of change from voiced to unvoiced and vice versa.
The segmentation of phoneme boundaries within voiced
and unvoiced regions are approximated using the proper-
ties of power spectrum of correlation of adjacent frames of
the signal. Finally, he proposed a finite set of rules on the
variations observed in the power spectrum during phoneme
transitions. The segmentation results of both approaches
are combined to get the final phoneme boundaries. Three
databases were used to test the proposed approach. An ac-
curacy of 95.40%, 96.87% and 96.12% is achieved within
the tolerance range of 10 ms respectively.

Recently several studies proposed using different supervised
and unsupervised machine learning techniques to build
a discriminative model that can be used in the phoneme
segmentation task [4], [16], [17]. These methods are called
model-based methods. Modeling stage is performed us-
ing either supervised or unsupervised approaches. Recently
self-supervised learning algorithm was used for phoneme
segmentation task [17].

In literature, research studies proposed various types of
modeling approaches, like generalized gamma distribution
model [30], graphical models [31], microcanonical multi-
scale formalism (MMF) [10], and acoustic segment mod-
eling (ASM) [4]. Supervised and unsupervised machine
learning techniques like ANN [16], [17], and genetic algo-
rithm (GA) [32] were also used to learn the discriminative
acoustic models.

Inspired by the success of using neural networks in speech
recognition, different studies [16], [17] considered apply-
ing them to phoneme segmentation task. Different types of
ANN were investigated. Dinler et al. [16] and Wang [33]
suggested using gated recurrent unit (GRU) recurrent neu-
ral networks, while Kreuk [34] and Franke [35] proposed
using bidirectional long-short term memory (LSTM) net-
work. Lu [36] investigated the use of segmental recur-
rent neural network (RNN) for feature extraction. Lee [37]
proposed using the cross-entropy loss with connectionist
temporal classification loss in deep speech architecture for
phoneme segmentation in view of performing speech syn-
thesis. Wang [33] observed through experiments on the
TIMIT corpus that GRU forget gate activations in trained
recurrent acoustic neural networks correlate very well with
phoneme which makes them preferable architecture for the
task of boundary detection task. The advantage of both
GRU and LSTM over standard RNNSs lies in their ability
to incorporate long temporal context information, and thus
they give higher performance [16]. The GRU ensures the
control of the information flow, similar to the LSTM unit,
but without a need to utilize a memory unit [16]. The
GRU has a simpler structure compared to standard LSTM
models, and its popularity is gradually increasing [16].

Kreuk er al. [17] proposed a self-supervised representa-
tion learning (SSL) model for phoneme boundary detec-
tion. They proposed learning a feature representation from
the raw waveform to identify spectral changes that match
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phoneme boundaries accurately. For this task, they de-
signed a convolutional neural network (CNN) to distinguish
between pairs of adjacent frames and pairs of random dis-
tractor pairs. At test time, a peak detection algorithm is
applied over the model outputs to produce the final bound-
aries [17]. Results show that the proposed SSL technique
surpasses other unsupervised segmentation techniques.

All previous works used MFCC as acoustic features, though
wavelet-based features has been shown to outperform
MFCC in phoneme recognition application [25]. Also, no
study has considered the application of the sparsity model
in speech segmentation though it has achieved good suc-
cess in many applications like noise robust ASR applica-
tion [39], speech enhancement [40], [41], and speaker ver-
ification and identification [42]. In this work we propose
using wavelet packet based acoustic features, as well as we
examine the usefulness of sparse representation classifier
SRC in phonetic segmentation task.

3. Proposed Method

The proposed segmentation system contains four stages:
signal pre-processing, features extraction, dictionary cre-
ation, and phoneme segmentation. At the pre-processing
stage silence from speech segments are removed, and pre-
emphasis filter is applied to compensate for lips effects.
Speech segments are then divided into overlapped frames of
length 16 ms with 4 ms overlapping. After speech framing,
acoustic features are being extracted: mel frequency cep-
stral coefficients (MFCC), and the proposed wavelet packet-
ERP features [24], [25]. The block diagram of the proposed
system is depicted in Fig. 1.

3.1. Wavelet Based Feature Extraction

The proposed wavelet packet feature extraction is based on
the equivalent rectangular bandwidth (ERB) like wavelet
packet decomposition proposed by Sahu in [25]. The whole
frequency band is decomposed into 24 sub-bands according
to the wavelet packet tree shown in Fig. 2 [25]. Once the
WP decomposition is performed, energy in each frequency
band is calculated, and the log of weighted energy is ap-
plied resulting in 24 cepstral coefficients. Discrete cosine
transform (DCT) is then applied to decorrelate the 24 co-
efficients of filter bank energies, and variance feature (VF)
of the 24 coefficients is also calculated. Finally, a total of
25 features are obtained for each frame.

Figure 3 illustrates the block diagram of the proposed
wavelet packet-based feature extraction WP-ERP algorithm.
We examined different types of wavelet filters with differ-
ent degrees, such as Daubechies, coiflets and symlets fil-
ters. Experiments showed that the Coif5 filter gives the
best performance in terms of segmentation accuracy.

3.2. Exemplar Dictionary Creation

At the dictionary creation stage, the feature vectors of the
training phoneme/borders samples are warped together to
form one matrix — the exemplar dictionary. The frame is
labeled as phoneme (not a border, class 1) if either it does
not contain a border (a border is a transition between two
phonemes according to the manual annotation), or if most
of the frame belongs to one phoneme, i.e. the border is
not at the very start or the very end of the frame. On the
other hand, the frame is labeled as border (class 2) if it
contains a border between two phonemes and if the frame
contains good percentage of both phonemes. The interval
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Fig. 1. Proposed phonetic segmentation system using SRC.

14

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

i}



Phonetic Segmentation using a Wavelet-based Speech Cepstral Features and Sparse Representation Classifier

- —5 8kHz
4 sub L

—L

"of 1000 Hz
each

4 sub
bands

"of 500 Hz
each

4 sub
bands
of 250 Hz

each

4 sub
bands
of 125 Hz

each

8 sub
bands

of 62.5 Hz i
each 0 kHz

-

£

=
=
=

Fig. 2. 24 sub-band wavelet packet tree based on ERB scale.

Input phoneme
Preemphasize and
windowing -
Energy calculation Average —
| | Wavelet | | in blgmd 1 energy — —F,
' 2
subband 1 E, =,§1(Cj’l) F,=E,/N
Energy calculation Avera
. ge
| Wavelet | | n bNand 2 energy L B —F
> 2 () 2
subband 2 E, :,El (¢;2) F,=E,/N, =
)
Q
. . . q .
Energy calculation Average
| [ Wavelet L in b?vnd 24 energy || —F
4[| E,=3(c00) = i
subband 4 i:l(Cj,24) Fou=E/Nof —
F1 > Variance feature (VF)
o u=1—§F' F25=VF
. 24,
: 24
_1 —
F24 — VF =33 =)

Fig. 3. Block diagram of the proposed wavelet-based WP-ERP
feature extraction.

42001

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

that defines the very start and the very end of the frame
is taken equal to 3 ms, so that the tolerance interval for
boundary detection is within 16 —2 x 3 = 10 ms. Figures 4
and 5 depict the labeling strategy for both classes (border
and not-border).
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Fig. 4. Frame labeled as class 1 (not-border): the border is at
the very start of the frame (a), the border is at the very end of the
frame (b).
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/ / //// //
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Fig. 5. Frame labeled as class 2 (border).

3.3. The Sparse Representation Classifier

The SRC is based on the sparse code, which can be defined
as follows. Let x € RM be the signal that we want to encode
sparsely. We suppose that there is a matrix (dictionary)
D € RM*N where M < N such that y can be written as
a linear combination of at most k columns of D, and k < N
is called the sparsity degree. The “sparse coding” prob-
lem [42] is to find the vector a € RY that contains only k
non-zero elements such that:

PO) min ||a||¢dy s.t. x=Da 1
(P0) min [all o M)

where ||al|p is the Iy pseudo-norm which represents the
number of non-zero elements in a. The vector a which con-
tains the sparse (few out of many) coefficients of the linear
combination of the elements (called atoms) of the dictio-
nary D, that represents the signal x is called the sparse
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code. As D is over-complete (number of rows is less
than the number of columns), this is an ill-posed inverse
problem.

As the signal x might be corrupted with noise, the previous
problem has been reformulated as:

(Poe) minllallo s.t. |[x—Dall,<e€. 2)
acRN

This is a non-convex optimization problem that has been
proved to be an NP-hard [38]. Replacing the /p norm by
the /; norm “convexify” the problem and gives an equiv-
alent problem called the basis pursuit denoising problem
BPDN [39]:

(BPDN) min ||a||; s.t. |lx—Dal]z <€, 3)
acRN

where ||al|; = ZV|a;|, and € is some noise level energy. We
can take the dual of the previous problem [42]:

(LASSO) min |[x—Dall» st |lai <7, @
acRN

where 7 > 0 is a regularization parameter, through which
we control the sparsity degree (number of non-zero ele-
ments) of the sparse code a. This is called the “absolute
shrinkage and selection operator” (LASSO) problem.

The SRC [18] works as follows. Having a training dataset
that belongs to n class, for each class i the sub-dictionary
D; is formed by concatenating the corresponding training
samples. These sub-dictionaries are wrapped together to
form one dictionary D. The sparse code a of the feature
vector for the test sample x is calculated using one of the
sparse solvers available in the literature. For each class i,
the selection operator J; (@) is applied on a, so that the ele-
ments of sparse code a corresponding to the sub-dictionary
D; are preserved, while all others are set to zero. After-
ward, the linear approximation D x §;(a) is calculated. SRC
returns the class ¢ that gives the closer approximation to
the test sample x using the minimum Euclidean distance
[l —D x &(a)| 3

Here, the SRC is calculated by:

1. Find the sparse code for the feature vector y, by solv-
ing Lasso — Eq. (4).

2. The class of x, is the index of sub-dictionary whose
corresponding sub-sparse code energy is the highest:

¢ =argmin||x—D x §(a)||3 ,
1

where 0;(a) is a selector operator that selects the
elements of sparse code a corresponding to the sub-
dictionary D;, and sets all others to zero.

In the literature [45] there are many algorithms that were
developed for solving the previous sparse coding prob-
lems — Egs. (2)—(3) and Eq. (4) — like: greedy orthog-
onal matching pursuit OMP, L1-minimization algorithms:
GPRS, SPGL1, DALM, homotopy, L1LS. The Matlab im-
plementations for these methods are available at [46], [47].
As many of the previous solvers include matrix inversion
step, and due to the large size of the dictionary we used in
our experiments, we could only use SPGL1 and OMP.
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4. Results and Discussion

Experiments were conducted on two different datasets, the
first one is an American English corpus derived from the
TIMIT [49], and the second one is an Arabic one derived
from the Arabic speech corpus [50].

TIMIT is one of the standards and phonetically bal-
anced read speech English corpus, used in three do-
mains: phoneme segmentation, phoneme classification and
phoneme recognition systems to develop and evaluate the
performance of these systems. This corpus consists of 6300
sentences recorded at 16 kHz rate with 16-bit sample, for
the eight major dialects of American English spoken by
630 different speakers (438 males and 192 females), ten
sentences for each [51]. These sentences are distributed in
two sets, the training set with 4620 utterances from 462
speakers and the test set with 1344 sentences from 168
speakers. All sentences were segmented and labeled man-
ually at the phoneme level.

TIMIT original transcriptions are based on 61 phonemes.
Table 1 shows the TIMIT phoneme set, classified into
voiced phonemes and unvoiced phonemes.

For experiments, a subset of 380 utterances from the com-
plete set was used for training. Another subset of 100
utterances from complete test set was used for testing.
We have excluded the “dialect” sentences (SA sentences)
for both training and testing. Boundaries between two
pauses, including stop closures, were also excluded from
evaluation.

Arabic speech corpus [50] is a modern standard Ara-
bic (MSA) speech corpus for speech synthesis. It con-
tains phonetic and orthographic transcriptions of more than
3.7 hours of MSA speech aligned with recorded speech on
the phoneme level. The annotations include word stress
marks on the individual phonemes [52]. The corpus in-
cludes 1813 utterances recorded by a single speaker, with
a 16-bit, 48 kHz speech waveform file for each utterance,

Table 1
TIMIT phoneme set (61 phonemes)
uvn(\)llocii(i/d Type Phonemes
iy, ih, eh, ey, ae, aa, aw,
Vowels ay, ah, ao, oy, ow, uh, uw, ux,
er, ax, ix, axr, ax-h
Voiced G,hdeS/ L, r, w, y, hh, hv, el
semi-vowels
Stops b,d, g
Fricative s, sh, f, th
Nasal m, n, ng, em, en, eng, nx
Stops p, t k, dx, q
Unvoiced | Affricative jh, ch
Fricative z, zh, v, dh
Pause and stop closures pau, epi, hi, dcl, kel,
gcl, tel, pcl, bel
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and a corresponding Praat [53] textgrid file for annotation.
The annotation is based on a set of 82 Arabic phoneme. In
out experiments, we used 200 utterances for training and
another 100 utterances for testing. The wave files are down
sampled to 16 kHz.

4.1. Performance Metrics

We used 6 common metrics (described below) that are gen-
erally used to assess phonetic segmentation algorithm. In
the case of text independent segmentation (TT) techniques,
the number of discovered segments might differ from the
number of segments produced by manual segmentation. TI
segmentation can be viewed as a boundary detection prob-
lem. The assessment of any detection algorithm is done
by measuring: how much it truly detects, what should be
detected, how much it truly rejects and what should be
rejected:
Hit rate is a metric that measures how good an algo-
rithm truly detects the goal. When a detected boundary
matches corresponding boundary in the reference signal,
this is called a hit rate (also called recall, RCL). It can be
calculated as:

Hit rate = RCL = CDB 100% |, 5)

ATB

where CDB is the number of correctly detected boundaries,
and ATB is the number of all true boundaries. A hit rate
of 100% implies that the algorithm is perfect in detecting
boundaries, but it might detect non-boundaries frames and
misclassify them as boundaries. For this issue, we use the
precision measure.
Precision (PRC) is a metric that measures how precise the
detection is, i.e. how good the algorithm is in detecting
only what should be detected. It can be calculated as:

CDB  CDB
CDB+IB ADB

PRC = 100% , (6)
where ADB is the number of all detected boundaries (true
and false) by the algorithm, and IB is the number of inserted
boundaries (false detection). A precision of 100% means
that the algorithm does not fire a false alarm which means
detecting false boundaries. This is called over-segmentation
error.

Specificity is a metric that measures how good the algo-
rithm is in rejecting what should be rejected, and this is
calculated as follows:

.. AP—CDB
Specficity = AP_ATE 100% |, (7
where AP is the number of all points (frames in our case).
We can see that a higher hit rate might come at the expense
of lower specificity, and lower precision. Thus, hit rate and
precision are not good metrics for assessing the overall
performance of segmentation algorithm, as the increase in
one of them might cause a decrease in the other. The overall
objective effectiveness of the segmentation algorithm can
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be evaluated by three different measures: accuracy, the F1-
score, and the R-measure [43].

Accuracy measures how accurate the algorithm is in both
detection and rejection, and it is calculated by the formula:

CDB+CDNB

P 100% , 8)

Accuracy =
where CDNB is the number of all true points detected as
non-boundaries.

F1-score is the harmonic mean of recall and precision,
which is used for assessing classification and prediction
algorithms. It is calculated according to:

Pl 2 PRC x RCL ©)
- PRC+RCL
F1-score takes its value in the unit interval between O, ..., 1,

where the score closer to 1 is better. A system with high
recalls but low precision returns many results, but most
of its predicted labels are incorrect. A system with high
precision but low recall is just the opposite, returning very
few results, but most of its predicted labels are correct. An
ideal system with high precision and high recall will return
many results, with all results labeled correctly [35].
Optimizing the operation of a speech segmentation al-
gorithm is often a tradeoff between hit-rate and over-
segmentation (or inversely, false-alarm rate and miss-
rate) [48]. Fl-score is one possible way to describe overall
performance of an algorithm with a single value. However,
F1-score is prone to stochastic hit-rate increases due to the
over-segmentation issue [48].

R-value is a new distance measure proposed to describe
performance using a single value that properly penalizes
over-segmentation [48]. The optimal goal of segmentation
is to achieve a hit-rate of 100% and an over-segmentation
of 0%. This is called the target point (TP). The basis of
the new metric is the algorithm’s distance from TP and not
the (hit-rate) gain achieved by over-segmentation.

105

100
95t
90 -
85
80

Target point —, e~ dx

Hit-rate [%]

75|, Zero insertions limit
P

70 Segmentation result

65 - ’ ‘
-30 -20 -10 0 10 20 30

Over-segmentation [%]

Fig. 6. Calculating R-measure [48].

On the segmentation performance plane illustrated in Fig. 6,
a distance ry is derived (Eq. (10)) and a distance r, is
measured (Eq. (11)), to appreciate the value of under-
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segmentation compared to over-segmentation in the algo-
rithm (i.e. less false positives).

n =1/(100— HR) + 052 , (10)

(11)

rn=—

T2
The distances r; and r, are then added together and nor-
malized to have a maximum value of 1 at the target-point
(Eq. (12)). This new distance measure is referred to as the
R-value:

(—O0S+HR —100) .

_ abs(ri) +abs(rp)
200 -

R-value decreases as the distance to the target grows, sim-
ilarly as Fl-score does, but it makes more emphasis on
over-segmentation by arguing that better hit rates might
be achieved by simply adding random boundaries without
any algorithmic improvement. This measure evaluates how
close one is to the ideal segmentation R= 1.

R=1 (12)

4.2. Results

The performance of the proposed WP-ERB features was
compared, against the performance of the well-known
MFCC features. We have calculated the MFCC features
using 24 mel coeflicients!, so that their dimensionality is
close to that of the WP-ERB. All reported results are for
boundary detection within a tolerance of 10 ms, and aver-
aged over 10 random runs. Experiments were performed
using a training set of 40,000 frames (20,000 frames for
each class) and a test set of 6000 frames (3000 for each
class). We tried different values for the sparsity regulariza-
tion parameter T in Eq. (4), and found that 7 = 0.98 gives
that highest performance.

Table 2 shows the performance of the proposed segmen-
tation system using the MFCC features and the proposed

'We tried different numbers for the mel coefficients of MFCC and all
gave inferior performance.

WP-ERB features, for both TIMIT and Arabic speech cor-
pus. For TIMIT dataset, though MFCC achieves higher hit
rate, but this at the expense of considerably lower speci-
ficity and lower precision. The overall performance of the
proposed WP-ERB features gives the highest performance
in terms of accuracy, F1-score, R-value, specificity and pre-
cision. The gain in terms of accuracy is about 2%, the gain
in terms of precision and R-value is about 4%, and the gain
in terms of specificity is about 12%, while the values of
F1-score for both features are very close.

On the Arabic speech corpus, WP-ERB achieves a gain of
5% in terms of hit rate and 1.5% in terms of F1-score, over
MFCC features, while the values of accuracy and R-value
for both features are very close.

To assess the performance of SRC, we conducted the same
segmentation scenarios using SRC, k-NN and SVM clas-
sifiers. We have not reported the results using SVM as it
gave very bad performance, which can be explained by the
fact that the two classes are mingled and cannot be sepa-
rated by hyperplane. For k-NN tuning, we tried different
values and found that k = 80 gives the best segmentation
performance. Results are reported in Table 3.

On TIMIT dataset, we can see that the performance of the
two classifiers are very close, which hints that the non-zero
atoms that has the highest energies in the calculated sparse
code are within the k-nearest points. SRC achieves higher
hit rate at the expense of lower precision and specificity, but
the overall performance in terms of Fl-score is very close,
though k-NN achieves a higher R-value and higher accuracy
with a gain of about 2%. On the Arabic speech corpus k-
NN achieves a better performance over SRC in terms of all
performance parameters, with a mean gain of 1%.
Concerning the Arabic speech corpus, results show lower
performance of about 2% than those on TIMIT in terms
F1 score, and 6% lower in terms of hit rate. The mod-
est results we obtained on the Arabic corpus are due to
the consideration of 82 different phonemes. Some of these
phonemes are so similar that they cannot be separated nei-
ther in time domain nor in the frequency domain, such as

Table 2
Segmentation performance: MFCC vs. WP-ERPC
Dataset Feature | Accuracy | Hit rate | Specificity | Precision | F1-score | R-value
TIMIT WP-ERB | 66.84 81.60 52.08 63.01 71.11 72.77
MFCC 64.60 88.95 40.25 59.82 71.53 68.86
Arabic speech | WP-ERB | 65.17 75.55 54.78 62.56 68.45 74.05
corpus MFCC 65.09 70.50 59.67 63.62 66.88 74.15
Table 3
Segmentation performance: SRC vs. k-NN classifier
Dataset | Classifier | Accuracy | Hit rate | Specificity | Precision | Fl-score | R-value
TIMIT SRC 64.67 83.38 45.97 60.68 70.24 70.63
k-NN 66.84 81.60 52.08 63.01 71.11 72.77
Arabic SRC 64.33 74.10 54.57 61.99 67.51 72.72
k-NN 65.17 75.55 54.78 62.56 68.45 74.05
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a phoneme and the geminated version of it. Also, in some
vowels, as it is not possible to separate between the short
version and the long version of the same phoneme (e.g.
phoneme “a” and the phoneme “aa”) if they are adjacent to
each other.

We have examined different wavelet filter for extracting the
proposed WP-ERB features. Results for TIMIT dataset
are reported in Table 4, which shows that Coif5 gives
the highest performance in terms of R-value and accu-
racy. The SymS filter gives the highest performance in
terms of hit rate, with Fl-score very close to this of
Coif5, while a smaller R-value. Though the Haar wavelet
achieves the highest specificity and precision but it has
a low hit rate and thus low Fl-score. In all, we can see
the Coif5 has the best segmentation performance. Coiflets
are the only wavelet basis that has vanishing moments
of the scaling function ¢ [54], which is related to the
“goodness” of the approximation of high-resolution scaling
coeflicients [54].

To assess the segmentation performance of the proposed
algorithm depending on the type of phoneme boundary,
we have calculated the hit rate for 3 different boundary
types:

e V-V —boundaries that separate two voiced phonemes,

e U-V —boundaries that separate an unvoiced phoneme
and voiced phoneme,

e U-U - boundaries that separate two unvoiced
phonemes.

Results on TIMIT dataset and using SRC classifier are re-
ported in Table 5. We can see that the boundary that sep-
arates two unvoiced phonemes are the hardest to detect
achieving the lowest hit rate, while the boundary that sep-
arates two voiced phonemes are the easiest achieving the
highest hit rate.

To study the effect of the size of the training set on the
segmentation performance, we conducted three experiments

Table 5
Segmentation performance of WP features for different
boundary types

Boundary type | Hit rate
V-V 84.34
U-v 81.69
U-U 67.73

using three training sets of different sizes: 10,000, 20,000,
and 30,000 frames for each class, results are reported in
Table 6. We can see that a training set of size 20,000 frames
gives the best performance and increasing the size to 30,000
does not improve the performance. This can be explained
by the fact that increasing the size of the training set might
result in overfitting.

To study the effect of the sparse coding solver we used
2 different sparse solvers: the simple greedy orthogonal
matching pursuit OMP solver and SPGL-LASSO solver.
Results are reported in Table 7 using the proposed WP-
ERP features and a training set of 20,000 frames. We can
see that though both solvers give very close hit rates, but
SPGL-LASSO has a considerable increase over OMP in all
other performance metrics.

Finally, in Table 8 we compared the performance of the
proposed algorithm against two state of the art (SOTA) su-
pervised phoneme segmentation on TIMIT dataset: Kreuk
et al. [34] and Frank et al. [35]. Though results suggest
that the proposed algorithm is inferior to the SOTA models
over all metrics, but this is due to the classifier performance,
as the two studies uses neural networks as classifier. The
key result of this research is to show that the proposed
wavelet based acoustic features outperform MFCC in the
task of speech segmentation which was verified using the
famous classifier k-NN and the proposed SRC.

Table 4
Segmentation performance of WP features using different wavelet filters on TIMIT dataset
Wavelet filter | Classifier | Accuracy | Hit rate | Specificity | Precision | F1-score | R-value
Sym$ SRC 64.99 85.36 44.62 60.65 70.91 70.27
k-NN 66.45 82.90 50.01 62.38 71.19 72.08
Symé SRC 64.59 83.74 45.43 60.55 70.28 70.46
k-NN 64.75 80.77 48.73 61.17 69.62 71.41
Haar SRC 61.19 62.95 59.42 60.81 61.86 72.27
k-NN 62.70 59.56 65.83 63.55 61.49 71.37
DBI2 SRC 64.64 83.47 45.80 60.63 70.24 70.58
k-NN 66.51 80.89 52.14 62.83 70.72 72.72
DBS SRC 64.38 82.48 46.29 60.56 69.84 70.67
k-NN 66.24 80.19 52.29 62.70 70.38 72.70
Coifs SRC 64.67 83.38 45.97 60.68 70.24 70.63
k-NN 66.70 81.24 52.15 62.94 70.93 72.76
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Table 6
Segmentation performance using training sets for different size on TIMIT dataset
Size of . e .
.. Features | Accuracy | Hit rate | Specificity | Precision | Fl1-score | R-value
training set
10.000 WP-ERB | 50.35 49.77 50.93 50.35 50.06 64.48
' MFCC 56.53 66.50 46.57 46.57 55.47 68.22
20.000 WP-ERB | 66.84 81.60 52.08 63.01 71.11 72.77
' MFCC 64.60 88.95 40.25 59.82 71.53 68.86
30.000 WP-ERB | 64.55 79.40 49.71 61.22 69.13 71.62
' MFCC 60.63 79.76 41.50 57.69 66.95 68.74
Table 7
Segmentation performance of WP features for different boundary types
Solver Accuracy | Hit rate | Specificity | Precision | Fl-score | R-value
OMP 59.46 77.61 41.30 56.93 65.68 68.42
SPGL-LASSO 66.70 81.24 52.15 62.94 70.93 72.76
Table 8
Comparison of phoneme segmentation models using TIMIT dataset
Model Hit rate | Precision | Fl-score | R-value | Tolerance
Kreuk et al. [34] | 90.46 94.03 92.22 92.79 20 ms
Frank et al. [35] 88.10 91.10 89.60 90.80 20 ms
Proposed 66.70 62.94 70.93 72.76 10 ms

5. Conclusion

In this paper we proposed a new phonetic segmentation
method based on speech parametrization technique entitled
WP-ERB and sparse representation classifier. Results show
that the proposed wavelet packet-based features outperform
the classical MFCC features in speech segmentation task in
terms of segmentation accuracy, precision, F1-score, and R-
measure. The proposed WP-ERB features achieve a gain
of about 4% in R-value and 2% in accuracy over MFCC on
TIMIT dataset. On Arabic speech corpus the proposed WP-
ERB features achieves a gain of 1.5% in terms of F1-score
and 5% in terms of hit rate. We have also shown that using
the SRC in phonetic segmentation achieves a higher hit rate
over k-NN classifier on TIMIT dataset at the expense of
lower precision and specificity, while no gain is achieved
in terms of F1-score and R-value.

We think the moderate results with the Arabic corpus is
due to the large number of considered phonemes (about
twice the number of real phonemes). In later work, we
will work on the Arabic dataset and merge the phonemes
that cannot be separated and treat them as one phoneme
(like geminated phonemes, short and long vowels of the
same nature). As better results are obtained with TIMIT
after phonemes merging, we expect the same for the Arabic
corpus. This work is to be continued to see the effect of
different dialects of the same language. TIMIT already con-
tains many dialects, a comparative study will be undertaken
to see the segmentation and classification performance on
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different dialects. On Arabic we try to collect data from
other dialects, we expect some dialects far from Standard
Arabic to be difficult to segment.

Speech style will also be an important point to study. As
humans find sometimes difficulties in understanding some
speech styles like fast speech or speech mixed with strong
emotions. It will be interesting to see how far will differ
the results with different speech styles.

The proposed phoneme segmentation system can further be
improved by finding correlates between phonemes borders
and prosodic features. Using those features together with
acoustic knowledge of the phonemes, can be incorporated
in a rule based to help increasing the system robustness.
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