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Abstract—The methodology presented in this paper covers the

topic of automatic detection of humans based on two types of

images that do not rely on the visible light spectrum, namely

on thermal and depth images. Various scenarios are consid-

ered with the use of deep neural networks being extensions

of Faster R-CNN models. Apart from detecting people, in-

dependently, with the use of depth and thermal images, we

proposed two data fusion methods. The first approach is the

early fusion method with a 2-channel compound input. As it

turned out, its performance surpassed that of all other meth-

ods tested. However, this approach requires that the model

be trained on a dataset containing both types of spatially and

temporally synchronized imaging sources. If such a training

environment cannot be setup or if the specified dataset is not

sufficiently large, we recommend the late fusion scenario, i.e.

the other approach explored in this paper. Late fusion mod-

els can be trained with single-source data. We introduce the

dual-NMS method for fusing the depth and thermal imaging

approaches, as its results are better than those achieved by the

common NMS.

Keywords—depth imaging, person detection, sensors fusion,

thermal imaging.

1. Introduction

The primary goal of this work is to explore the feasibility of

detecting human silhouettes in non-visible light spectrum

images, without accessing RGB images for reference. Our

experiments focus on thermal and depth images showing

people in indoor and outdoor environments, i.e. images

that are similar to surveillance footage.

The use of alternative imaging sources in computer vision-

related tasks is important for numerous reasons. One of

those reasons is that they extend the spectrum of features

that can be recognized. In this case, recognition is based

on the temperature of objects (thermal imaging) and on

their geometrical features (depth imaging). Temperature

measurements may be critical in the context of the recent

pandemic and the demand for wide-scale systems capable

of monitoring health parameters. Privacy is another es-

sential aspect that needs to be taken into consideration. At

certain location, the use of standard RGB cameras may be

prohibited to protect the privacy of data subjects. In such

circumstances, surveillance systems relying on alternative

vision cameras may prove to be the best solution available.

When working with alternative vision systems, the fact that

fewer resources are available than in the case of RGB-image

based architectures (data needed to train the algorithms or

evaluation benchmarks) is the key challenge.

Consumer-grade non-RGB detectors are usually character-

ized by lower resolution levels, and the images have poorer

quality than their RGB counterparts. That may affect the

precision of detection. The size of thermal images used

in this paper is 160× 120 pixels and the average size of

the detection boxes framing human silhouettes is approxi-

mately 36×56 pixels. Still, detection performance of ther-

mal images surpasses that of higher resolution depth im-

ages (see Tab. 1) with the resolution of the latter equaling

1280× 720 pixels. This is probably caused by a higher

level of noise in depth images which hampers their depth

accuracy. Therefore, a fusion of different image sources

may lead to the improvement in results. Specific methods

relied upon for merging thermal and depth imaging will be

discussed in the second part of the paper.

The investigation of the ability to determine the correct fu-

sion methodology required that a dataset be identified con-

taining images of both types, with the pairs of images being

spatially and temporarily aligned. These requirements are

met by the IPHD dataset which was complied for the Iden-

tity Preserving Human Detection Challenge [1] organized

in 2020. The IPHD dataset was built using frames extracted

from two synchronized image streams: a thermal one and

the other containing depth-related information. The dataset

is used to evaluate the detection methods proposed in this

work and to train the models. We do not use any auxiliary

data for estimating models’ weights. However, we employ

transfer learning techniques from models that were pre-

trained using the Common Objects in Context dataset [2].

2. Dataset with Thermal and Depth

Images

The IPHD [1] dataset was compiled by researchers from the

Chalearn Looking at People group. The entire set consists

of over 100,000 pairs of images cut from two video streams,

without maintaining information about their order. The

footage was captured indoors and outdoors, at such places
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Table 1

Detection evaluation metrics for single depth and thermal models based on the Faster R-CNN architecture computed

based on the IPHD-test dataset. For reference, results of a method proposed by the authors of the IPHD database are

shown as well. As no MAP was used in their publication, the relevant fields are marked NA (not available)

Method

Detection precision (± std. dev.)

Thermal images Depth images

AP50 AP75 MAP AP50 AP75 MAP

Single model (ours) 83.23% (±0.28) 56.38% (±0.32) 51.77% (±0.29) 71.26% (±0.59) 44.01% (±0.45) 42.46% (±0.49)

Baseline method from [1] 52.45% 15.95% NA 34.32% 9.91% NA

as streets, universities, libraries, and private houses. The

video frames were spatially and temporally aligned. There-

fore, they may be used independently or may be merged

using one of the fusion methods. The extracted images

were arbitrarily split into the development set (IPHD-dev),

consisting of 84,818 images of both types, the validation

set (IPHD-val), consisting of 12,974 images of both types,

and the test set (IPHD-test), containing 15,115 images.

All the images are associated with ground-truth bounding

boxes that show the position of people in the scenes. Peo-

ple visible in the images perform various actions: sitting

on the sofa, lying on the floor, cooking, eating, talking on

the phone. The scenes were manually labeled by the au-

thors using RGB images. The RGB stream was also aligned

with the other two, but it is not a part of the publicly avail-

able set. Manual labeling would be much more difficult or

even impossible for depth or thermal images, since human

body features are not easily distinguishable “with the naked

eye”. One may notice (see Fig. 1) that the temporal align-

ment is imperfect, and some of the ground-truth detection

boxes should be slightly shifted, especially the ones with

individuals moving fast. This is caused by issues with the

synchronization of sensors at a hardware level. Images in

the test set (IPHD-test) were manually adjusted to compen-

sate for the misalignment. The effect of label weakness

will also be discussed in this work. Because of the inferior

human perception of alternative imaging sources, they are

often considered privacy-preserving. However, the extent

to which they do not contain any individual features needs

to be investigated further.

2.1. Thermal Imaging

In thermal imaging, individual pixels represent far-infrared

radiation measured by an IR detector. Radiation may be

either emitted or reflected from the scene. The type of rep-

resentation and its range vary across different sensors, but

most thermal detectors have significantly lower resolution

than DSC and video cameras used in other imaging sys-

tems. Images that are included in the IPHD dataset were

collected with the FLIR Lepton 3 sensor. It is capable of

detecting infrared waves with the length of 8 to 14 µm [3].

The original resolution of the sensor is 160× 120 pix-

els. The thermal images in IPHD were padded to ensure

that their ratio is consistent with that of depth images. As

a result, they are 1-channel 16-bit pictures with a resolu-

Fig. 1. Spatially and temporally aligned frames from the IPHD dataset: thermal images (upper row, in Kelvin) and depth images

(bottom row, in meters). The images are shown in the altered color scales for better visualization (originally, one-channel 16-bit images).

The bounding boxes indicate ground-truth locations of people (green boxes for thermal images, red boxes for depth images). Ground-

truth labeling of non-RGB images can be challenging, because some of the features are difficult to perceive by the human eye. Here,

in the IPHD dataset, labeling was performed using the corresponding RGB stream, which was not publicly available. Nevertheless,

a temporal misalignment may be noticed in some of the bounding boxes (second column). The misalignment is caused by problems with

synchronization between RGB and other sources. In the test part of the dataset (IPHD-test), the positions of boxes were adjusted manually.

Therefore, this subset contains stronger labels than those in the training part (IPHD-dev). (see the digital edition for color images)
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Fig. 2. Histograms of pixels from the IPHD dataset, computed

separately for the areas occupied by human silhouettes (ROI) and

for the background pixels. The temperature of pixels in thermal

images (a) may vary from 0 to 450 K, with most values being

within the 290–310 K range. Some of the pixels are set to 0

because of the spatial registration with depth images. Null pixels

also denote depth data missing. The values of pixels in the depth

images (b) range from 0 to 65 m, where 0 is typically caused by

erroneous readings. Most people are positioned not further than

4 m from the camera.

tion of 213× 120 pixels. Each pixel represents a specific

level of temperature in the Kelvin scale. The padded por-

tions of the images are filled with zeros, and zeros appear

also at locations where the depth images render erroneous

readings.

Temperature distribution of the images is presented in

Fig. 2a. Histograms were computed independently for the

areas occupied by human silhouettes and for the back-

ground. It may be observed that most of the pixels rep-

resenting humans have temperatures in the range of 295 K

to 310 K, with a mean value of approx. 303 K.

2.2. Depth Imaging

Depth cameras have become more popular and available

due to the abundance of devices serving as game con-

trollers. Depth sensors may be easily used to map the pose

of a human silhouette and other parts of the body, e.g.

hands. Although depth imaging may be based on various

hardware architectures, a typical consumer depth camera,

like Microsoft Kinect v1 or Intel RealSense, consists of an

active infrared projector and at least one infrared detector.

The projector casts an invisible light pattern onto the scene.

The distance of the object from the detector is estimated

using the triangulation method that measures light pattern

displacements [4].

The IPHD dataset contains depth images acquired with the

use of the Intel RealSense D435 sensor. The size of the im-

ages equals 1280× 720 pixels [5]. The images are 16-bit

channels, just like their thermal counterparts. Pixel val-

ues represent the distance to the depth sensor, expressed

in millimeters and have the maximum value of 65 meters.

Null pixel values express erroneous readings. Bad pixels

may appear at the borders of objects or human silhouettes

and may also be caused by reflective materials or strong

illumination.

Histograms of pixel values calculated for unprocessed depth

images are shown in Fig. 2b. As far as the temperature is

concerned, they were made separately for the background

pixels and the pixels assigned to the human body. It may

be observed that there are no labeled human subjects in the

range greater than 4 meters: at these distances, the bound-

ing boxes would be too small, and their contents would not

be easily distinguishable.

2.3. Image Preprocessing

Before deploying the detection algorithms, the datasets

were examined to choose the best preprocessing method.

For the preliminary observations, a small subset of 50 im-

ages was drawn from IPHD-dev. It is hereinafter referred

to as IPHD-pre. Using IPHD-pre, we manually labeled the

masks that indicated precise people locations. The masks

were used to select two distinct parts of the image: the

foreground in which a person appears (ROI) and the back-

ground. The histograms of pixel values for those two subar-

eas are shown in Figs. 2a and 2b, respectively. As the IPHD

database authors suggested, the pixel values in thermal im-

ages should be standardized before further processing. In

our work, the pixels in thermal images were clipped at the

minimum value of xmin = 285 K and the maximum value

of xmax = 315 K. Then, the images were normalized using

the mean and standard deviation calculated on the full set

of ROI pixels, excluding the null-value pixels. More pre-

cisely, each thermal image was preprocessed by extracting

mean value x̃th = 296.4 K and dividing it by σth = 330 K

such as:

X [X > xmax] = xmax ,

X [X < xmin] = xmin ,

X =
X − x̃th

σth
.
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The depth images were also standardized before processing

them with the use of the detection algorithms. Namely,

they were clipped to match the range of [0, . . . ,12 m] and

normalized with x̃d = 2.830 m and σd = 3.198 m.

3. Human Detection Methods Applied

to Depth and Thermal Images

There are several reasons why to include either depth or

thermal imaging sources in the detection system. One is

to augment the information about the objects for their fur-

ther classification. The second is to leverage the precision

of detection by adding potentially complementary imag-

ing features. Finally, the third reason is to diminish the

influence of bad lighting or image noise. The methods

proposed in the literature are based on various combina-

tions of image types: RGB and thermal [6], [7], RGB

and depth [8], [9], [10] or, less commonly, thermal and

depth [11].

This kind of a system is found to be functional in many

real-world applications, from vision for autonomous driv-

ing [12], to industrial inspection [13], monitoring of car

and vessel traffic [14], [15], drone surveillance [16], to

pedestrian detection. In our work, we focus on the task

of automatic person detection. Human detection solutions

are widely discussed in the literature, but mostly in the

context of RGB imaging. Most of the RGB-based meth-

ods apply also to alternative imaging sources. Older ap-

proaches are based on local descriptors, such as HOG or

SIFT features [17], [18], which have to be hand-crafted.

The recently proposed methods use predominantly convo-

lutional neural networks inside their detection pipeline [19].

The most popular human detection architectures detection

are Faster-RCNN [20], Mask-RCNN [21], SSD [22] or

YOLO [23].

The authors of the IPHD database introduced the detec-

tion model based on YOLO in their paper [1]. A YOLO

network is a single-stage detector that is available in var-

ious implementations, with its third version described in

paper [23] still being one of the most commonly used vari-

ations. The IPHD baseline method for thermal-depth de-

tection proposed a middle fusion network in which images

are merged at the second-to-last convolutional layer level.

The results generated by the algorithm serve as a point

of reference for comparison with other methods, as they

were computed under identical conditions and on the same

dataset as in the case of our experiments.

The method proposed in our work is an extension of the

Faster R-CNN method introduced in paper [20]. We have

chosen this detection network to be the core of our system

because it is easy to modify and perform better in terms

of accuracy than YOLO (based on the results presented

in [23]), as we do not intend to take into consideration

other metrics, such as performance. Faster R-CNN involves

a 2-stage detection procedure consisting of the region pro-

posal network (RPN) and the second stage module respon-

sible for final object detection and classification. RPN pro-

duces a set of proposals that are then fine-grained. In

the previous solution, named Fast-RCNN, these two stages

were implemented by two different networks, but in Faster-

RCNN, all functions are realized by one module. In our

implementation, the Faster R-CNN network is built using

the ResNet-50 [24] module (Fig. 3). The loss function has

two components. One is the classification loss Lcls for as-

signing the probability of the object belonging to one of

the classes. Here, as we perform solely person detection,

the estimation distinguishes two classes only. The other is

regression loss Lreg that compares the coordinates of box

ti with the ground-truth coordinates t∗i where i is the box

index, pi is the measure of “objectness” and p∗i is equal to

0 in the event of false detection.

L({pi},{ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i )

+λ
1

Nreg
∑

i
pi ∗Lreg(ti, t∗i ).

(1)

Typically, at the end of the detection procedure in R-CNN

networks, some post-processing methods need to be applied

to reduce the number of regions that overlap too closely.

Non-maximum suppression (NMS) is one of the most com-

monly used algorithms, and its will be elaborated on in the

section concerned with late fusion.

Fig. 3. Single detection model based on Faster-RCNN. Faster-

RCNN typically consists of the RPN that generates a candidate list

of detection boxes. RPN may be realized by one of the selected

convolutional neural network architectures, such as ResNet-50 or

AlexNet. At the end of data processing, ROI pooling is performed

on the list of candidates to produce the final list of results with

classification scores.

4. Results and Discussion

Average precision (AP) is typically used as the evaluation

metric to test the detection methods. AP may be computed

at different ranges of overlap between detection results and

ground-truth bounding boxes. The level of precision with

which two sets of coordinates are capable of describing

the same object is measured by the intersection-over-union

(IOU), defined by the area of overlap between two bounding

boxes divided by the area of union.
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Fig. 4. We experimented with different model fusion patterns,

namely late fusion (a), where the results of two models are merged

into one set of results using dual non-maximum suppression, and

early fusion (b) – where the images from thermal and depth

streams are combined into one input of the model trained to rec-

ognize the compound input.

The authors of the IPHD dataset suggested AP50 (aver-

age precision at IOU=50%) to be the primary evaluation

metric of the challenge. This choice was motivated by the

weakness of the ground-truth labels. Typically, in detec-

tion benchmarks, AP75 is used, and it was calculated in

our experiments as well (average precision at IOU = 75%).

We also added MAP (mean average precision) as defined

in the COCO challenge [2], being the mean value of AP at

IOU=[50%: 5%: 95%].

Our experiments started by training two independent mod-

els based on Faster-RCNN networks, with ResNet-50 serv-

ing as the backbone (Fig. 4). The first one was trained on

thermal images. Random crops and horizontal flips aug-

mented the training set. Network weights were optimized

with the use of the SGD method, with the learning rate

initialized at 0.005 and updated every three epochs. The

thermal detector achieved AP50 equal to 83.23% and AP75
equal to 56.38% (see Table 1). All the results are computed

on the test part of the IPHD dataset (IPHD-test) and are av-

eraged for three repetitions of the training and evaluation

procedures.

The second model – with its architecture identical to the

first one - was trained on depth images. For this setup, we

obtained AP50 = 71.26% and AP75 = 44.01%, respectively.

Detection evaluation metrics for the depth model were

much lower than those for the thermal network. Therefore,

we may consider the depth data to be more challenging

than their thermal counterparts for running the detection

algorithms on.

Some qualitative results of experiments with single-model

detection are shown in Fig. 5. We can see that for the depth

model, there is often a more significant number of false

detections (third column in Fig. 5) and missed detection,

especially for smaller objects (second column in Fig. 5).

Detection errors may be easily explained, since some ob-

jects are difficult to distinguish from people in the depth

scenes for the human observer. On the other hand, we

noticed false detections pointing to a dog visible in the

thermal images. It would be probably reduced by adding

labels of other warm objects (like animals and electrical

appliances) to teach the network to distinguish them from

humans.

4.1. Fusion of Models

Fusion of deep neural models is a technique that can typi-

cally boost the accuracy of results, as shown in paper [25]

in relation to the classification of videos. The authors dis-

tinguished there three approaches to classify the content of

multi-frame data: early fusion, late fusion, and slow fu-

Fig. 5. Qualitative human detection results using IPHD-test data. Blue rectangles indicate ground truth bounding boxes. The consecutive

rows show the detections for a single thermal model (first row, green boxes), the detections for a single depth model (second row, red

boxes), and predictions from the model with early fusion (third row, cyan boxes).
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sion. The division is defined by the point of the network

at which the flow of information is merged. Early fusion

means concatenating the data before further processing it

inside a model. Consequently, in late fusion, the data is

merged at the end of the model. In slow fusion (or middle

fusion), merging is performed at some of the intermedi-

ate layers of the model. The slow fusion technique was

applied to the detection network in the IPHD method dis-

cussed here for reference (results showed in Tab. 1). Also,

the two other approaches (late and early fusion) can be

transferred directly to the domain of multimodal images.

Therefore, we decided to employ them in our experiments.

Late fusion was realized by the application of different ver-

sions of the non-maximum suppression algorithm (NMS).

Models trained in the previous experiments were reused as

components of the fusion system. In the case of early fu-

sion, it was necessary to change the structure of the model

and perform the entire training procedure. Results for the

fusion strategies were compared against results for the sin-

gle image approaches discussed in the preceding section.

The code of the library was written with PyTorch and

it is available online: github.com/weronikagutfeter/

Red-Hot-Deep-Blue.

4.2. Dual-NMS

Our late fusion method was based on non-maximum sup-

pression (NMS) [26]. NMS is a post-processing algorithm

that is typically used to minimize the number of redundant

and overlapping detection results. Simple non-maximum

suppression, also called greedy NMS, begins with sorting

the detection boxes by their scores in the descending order.

Then, results from the sorted list are compared, one by one,

with the remaining results. If the IOU of the compared pair

of boxes is larger than a selected threshold value, the box

with the lower confidence score is removed.

This paper employs a modified version of the NMS algo-

rithm to merge the detection boxes originating from the two

distinct models: thermal and depth. The modified version

of the algorithm is called dual-NMS. The idea behind this

approach is to collect pairs from the two lists of detection

boxes, which are also sorted by their confidence scores,

like in the simple NMS method. Boxes with the highest

scores (from the depth or the thermal lists) are taken, one

by one, and compared with all boxes from the other list.

The selected detection box is paired with the result with

a sufficient IOU and the highest score among the candi-

dates from the other list. The pair is then merged into

a single result, and the final detection box coordinates are

updated by applying weighted averaging of the coordinates

of the components.

Since some unassigned detection boxes may be left af-

ter the pairing, several approaches to managing unpaired

boxes were evaluated. The simplest solution is to remove

the unassigned results, as they are either not present in

any stream, have low confidence scores, or are duplicates.

However, one of the streams is likely to be a more robust

source of detection results. Thus, we may leave the un-

paired samples from this source.

To sum up, we checked four versions of the algorithm:

with all of the unpaired results removed, with all of the

unpaired results kept, with only the unpaired thermal re-

sults kept, and, finally, with the unpaired depth results kept.

For the reference, we compared dual-NMS with the simple

NMS algorithm applied to the concatenated list of detec-

tion boxes. Precision rates of the fusion are presented in

Table 2. For comparison, the results for single model detec-

tors from Table 1 are shown at the bottom. The best results

for late fusion approaches were obtained for the dual-NMS

with thermal results kept, for which AP50 = 83.31% and

AP75 = 57.84%. However, this model was only slightly

better than the single thermal model. It can be concluded

that for the NMS-based system, the impact of the depth

detection module is relatively low.

Table 2

Average precision of detection computed on the IPHD-test dataset for Faster-RCNN after applying a priori (early fusion)

and a posteriori (late fusion) merging techniques. Two best results – one for early fusion and one for late fusion are

shown in bold print

Fusion strategy

Detection precision (std. dev.)

Thermal + depth images

AP50 AP75 MAP

Late fusion with Dual-NMS

Leave all unpaired 77.28% (±0.72) 55.14% (±0.48) 49.91% (±0.57)

Leave unpaired

thermal
83.31% (±0.39) 57.84% (±0.14) 53.18% (±0.32)

Leave unpaired depth 74.90% (±0.56) 50.43% (±0.45) 47.07% (±0.54)

Remove all unpaired 69.63% (±0.44) 52.98% (±0.14) 46.76% (±0.33)

Late fusion with Simple-NMS 73.26% (±0.38) 51.39% (±0.68) 46.62% (±0.47)

Early fusion 88.86% (±0.19) 63.82% (±0.21) 57.42% (±0.38)

Single model
Thermal 83.23% (±0.28) 56.38% (±0.32) 51.77% (±0.29)

Depth 71.26% (±0.59) 44.01% (±0.45) 42.46% (±0.49)
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4.3. Early Fusion

The early fusion approach requires modification of the

model structure in order to accept concatenated data sources

serving as input for the network. The proposed method en-

codes a pair of images consisting of one thermal image

and one depth image in a single pass of the network. The

images are rescaled to 1280× 720 pixels to ensure their

consistent size, and are then stacked to create a 2-channel

multimodal image. As the model structure is less typical

than the structures commonly used in Faster R-CNN net-

works, it limits the options of transfer learning and requires

full retraining. The training dataset needs to be adequately

prepared. In the experiments, both channels were stan-

dardized in the same way as in single-image detection. For

a fair comparison, the fusion model was also realized using

Faster R-CNN architecture with ResNet-50 backbone, as it

was the case in the previous tests.

The early fusion approach surpassed all other methods

tested in this paper. The precision rates obtained equaled

AP50 = 88.86% and AP75 = 63.82%, respectively. The re-

sult was better than for the single thermal model by 6.7%

(AP50) and 13.2% (AP75), and surpassed the dual-NMS

method by 6.6% (AP50) and 10.3% (AP75). Qualitative re-

sults for the early fusion model are shown in the third row

of Fig. 5. Some of the missing and false detections were

eliminated as a result of applying fusion to the detector.

5. Conclusions

The experiments described in this paper prove that it is

possible to detect humans, both in thermal and depth im-

ages, while achieving acceptable precision rates. The rates

are acceptable but still far from the precision level that

may be obtained for RGB images. When comparing the

two types of streams, it may be noticed that the images

with information about the temperature are a better source

of visual information for identifying people. In depth im-

ages, people are harder to distinguish from other objects,

both for our algorithms and for humans. On the other

hand, the thermal network has more false positives in-

dicating other warm objects, such as animals or electric

equipment. This is not the case in the depth model. We

show that merging two types of imaging sources is capa-

ble of improving the outcomes generated by the detection

network. We tested two important fusion strategies: early

fusion (combining images at the network’s input) and late

fusion with a modified non-maximum suppression algo-

rithm, namely dual-NMS. Both variants showed improve-

ments in comparison to single-model detection. The best

solution was obtained when the model was retrained on

compound images (early fusion), and the result was bet-

ter than the one achieved with the dual-NMS approach.

However, we must stress that preparing early fusion mod-

els requires more effort and computational resources. We

used an aligned dataset to make the training procedure pos-

sible. This type of data is not always available. Late fu-

sion approaches allow merging the detection results from

two independent single-source models trained on unaligned

data. Further work on the methods under consideration

requires the dataset to be extended. Access to an RGB

source, for reference purposes, could be valuable for the

development of the algorithm. The order of frames is an-

other piece of information that is missing but may be ob-

tained. After proper labeling, the detection method can

be developed further and converted into a human tracking

solution.
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