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Abstract—Defect detection is an important step in industrial

production of monocrystalline silicon. Through the study of

deep learning, this work proposes a framework for classify-

ing monocrystalline silicon wafer defects using deep transfer

learning (DTL). An existing pre-trained deep learning model

was used as the starting point for building a new model. We

studied the use of DTL and the potential adaptation of Mo-

bileNetV2 that was pre-trained using ImageNet for extracting

monocrystalline silicon wafer defect features. This has led

to speeding up the training process and to improving perfor-

mance of the DTL-MobileNetV2 model in detecting and classi-

fying six types of monocrystalline silicon wafer defects (crack,

double contrast, hole, microcrack, saw-mark and stain). The

process of training the DTL-MobileNetV2 model was opti-

mized by relying on the dense block layer and global average

pooling (GAP) method which had accelerated the convergence

rate and improved generalization of the classification network.

The monocrystalline silicon wafer defect classification tech-

nique relying on the DTL-MobileNetV2 model achieved the

accuracy rate of 98.99% when evaluated against the testing

set. This shows that DTL is an effective way of detecting dif-

ferent types of defects in monocrystalline silicon wafers, thus

being suitable for minimizing misclassification and maximiz-

ing the overall production capacities.

Keywords—automated optical inspection, machine learning,

neural network, wafer imperfection identification.

1. Introduction

Detecting silicon wafer defects is one of the challenges

faced by silicon wafer manufacturers. Currently, silicon

wafer inspections are performed manually by relying on

visual inspection (VI) or using an automated optical in-

spection (AOI) process. VI involves an analysis of the

products on the production line. Inspectors must visu-

ally identify any defects on the wafer surface, either using

their naked eyes or under a microscope, before the finished

goods are transferred for packing. Manual inspections in-

volve a contact-based verification of the wafer surface. It

is characterized by a low degree of automation and high

labor intensity, as the elements need to be handled by hu-

mans. Such an approach is labor intensive, inefficient and

means that the process of detecting defects is inaccurate. It

may also lead to the application of various standards due to

objective human judgments, thus failing to meet the strict

requirements of modern industry. On top of that, early de-

tection of defects is important, as production may be halted

to address the root cause of the defect, and manufacturers

may mitigate their potential economic losses (time and cost)

incurred in connection with withdrawing defective wafers

from circulation.

Monocrystalline silicon is commonly used for photovoltaic

(PV) devices. To produce a high-quality solar panel, silicon

wafers must be clean and free from any impurities. How-

ever, various types of defects may occur, such as scratches,

chips and cracks. Other visual defects may also be present

on the surface of solar cells due to uncontrollable factors

encountered during the production phase. Many types of

silicon wafer defects exist that may be detected on the wafer

surface. For the purpose of our study, we obtained digi-

tal images of monocrystalline silicon wafer defects from

LONGi’s production facility based in Kuching, Sarawak,

Malaysia.

AOI is a key technique used in manufacturing to ensure

the quality of printed circuit boards assemblies (PCBA)

used in electronics. By detecting incorrect, missing, and

incorrectly placed component, it is a swift and accurate in-

spection tool ensuring that the PCBs leaving the production

line are detect-free. As such, the technology is capable of

replacing human inspectors, as it is faster with offers higher

accuracy rates.

The AOI-based silicon wafer defect recognition process is

divided into three phases, i.e. image processing, pattern

recognition and classification. Image processing is used to

enhance the images and extract specific, useful features.

Pattern recognition, meanwhile uses statistical information

or machine learning techniques to classify the features into

distinct categories based on their shape, color and texture.

Lastly, the classification stage allows to assign the silicon

wafer defect patterns recognized to specific types. AOI is
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Table 1

The comparison between manual visual inspection (VI) and automated optical inspection (AOI)

Factor VI AOI

Cost High labor cost
AOI replaces visual inspection staff, thus reducing

headcount and resulting in lower labor cost

Efficiency
The average time, more than 5 minutes need to be

spent on inspecting 3,000 wafer elements, and the

defects cannot be identified accurately

AOI may test the same amount in 10 seconds, and

each machine is capable of handling 1.5 production

lines

Stability
Humans suffer from fatigue and emotions, meaning

that they may work while being focused for approxi-

mately 3 hours

AOI uses visual simulations, offering extremely high

stability, and is capable of maintaining the same stan-

dard operating continuously over periods of time that

exceed 24 hours

capable of efficiently handling the detection of particular

defects. However, it continues to suffer from some mis-

classification issues due to the fact that the visual appear-

ance of silicon wafer defects may be similar. Table 1 is

based on LONGi’s production line experience and presents

a comparison between manual visual inspection and AOI,

in terms of cost, efficiency, and stability [1].

Since deep learning (DL) requires a lot of data, trans-

fer learning is the best way to address the DL require-

ment. DTL is an approach adopting the model parameters

learned from a well-known deep learning architecture that

has proven to be effective in learning new data on Ima-

geNet. In this paper, we present our findings on transfer

learning between an ImageNet dataset and the wafer defect

dataset, using the MobileNetV2 model to classify six defect

types shown in Fig. 1.

Fig. 1. Sample images of monocrystalline silicon defect types

(see the digital version for color images).

The double contrast defect may occur in two situations: it

may be caused by an abnormal stoppage of the line and

resumption of its work with different a quality level of the

wire and a different process recipe. It may also be caused

by slicing the wire due to a sudden change caused by an ab-

normal stoppage resulting from previous cuts. Saw-marks,

also known as sawlines, are caused by an abnormal stop-

page occurring during slicing, and by resuming with a wire

of different quality or with a different process recipe. This

phenomenon is restricted to a specific area only, but dou-

ble contrast and saw-marks may occur together in one cut.

Microcracks are caused by the general handling during the

singulation process (wafer-dicing saw process to cut or sep-

arate each row and column of the wafer). Stain defects are

caused by dirty wafers or reduced efficiency of the cleaning

machine. Cracks are caused by knocking from singulation

side or full breakage from microcrack. A hole defect is

a bubble formed during the silicon pulling process.

The motivation behind this study was to address the cur-

rent shortcomings of the AOI visual inspection method

used to identify the aforementioned defects. We adopted

the deep transfer learning (DTL) approach by using the

MobileNetV2 architecture [2], [3] to detect and classify

silicon wafer defects. Supervised learning was used, as we

were using labeled data. This approach is simpler and

more accurate compared to unsupervised learning. This

paper expands the current knowledge on wafer classifica-

tion, relying on a DLT approach that differs from that relied

upon by Mat Jizat et al. [4] for six types of monocrystalline

silicon wafer defects. The methodology was developed

based on our objective to classify monocrystalline silicon

wafer defects into six different categories following a single

AOI pass performed during the quality control process on

the production line. The monocrystalline silicon wafer de-

fects were re-run through the AOI to check for false reject.

Healthy silicon wafers are not covered by the scope of this

study, as they are not identified in the course of the AOI

inspection.

The rest of the paper is outlined as follows. The related

work is discussed in Section 2. Section 3 describes, in de-

tail, the DTL approach, network architecture, and the pro-

cess of building the model. Experimental results are ana-

lyzed in Section 4. Section 5 contains the conclusion and

presents the future work to be performed.

2. Related Work

Deep learning is a branch of the machine learning domain

in which DL algorithms are less dependent on human inter-

vention to learn a hierarchy of features from input data [5].
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DL has been widely used for image classification [6]. The

essence of DL is to learn relevant features by building learn-

ing models with multiple hidden layers. In order to enhance

the accuracy of classification, vast amounts of training data

are required in such an approach.

Deep transfer learning (DTL) in an adaptation of the trans-

fer learning approach, where the knowledge from existing

DL models is stored and transferred to another model to

solve a different, but related problem. DTL is gaining pop-

ularity as the amount of time required to develop the model

and collect the data is reduced drastically. Hence, less ef-

fort is needed for updating DTL models, as once it has

been trained with a sufficient amount data, it may be up-

dated with a small quantity of additional data in a very short

time, without compromising its accuracy [5]. Thus, DTL

is suitable for solving problems involving small amounts of

data.

Mat Jizat et al. [4] evaluated four machine classifiers for

wafer defect detection on a small dataset with less than

1000 images, using InceptionV3 Transfer Learning. Ac-

cording to their reports, logistic regression and stochastic

gradient descent (SGD) exhibit better classification accu-

racy in the range of 85–88%, in comparison with the two

remaining classifiers. The use of more image samples and

further optimization aiming to increase the accuracy rate

are predicted, but no details on the training parameters are

provided to support this suggestion.

Imoto et al. [7] compared DL with the existing automatic

defect classification (ADC) approach used for detecting de-

fects in semiconductor manufacturing. The comparison

showed a significantly higher detection accuracy of DL

compared to ADC. Kudo et al. [8] applied transfer learn-

ing in CNN to solve the issue of dislocation clusters, i.e.

crystallographic defects in a photoluminescence (PL) im-

age of multi-crystalline silicon wafers. Transfer learning

of a convolutional neural network (CNN) was applied to

solve the issue. The input image is a sub-region image

of a whole PL image, and the CNN evaluates whether the

dislocation cluster regions are detected in the upper wafer

image, by using the images of dislocation clusters in lower

wafers as positive examples. The experiment was carried

out under three conditions: negative examples using im-

ages of some depth wafer, randomly selected images, and

images from both types of condition. Then, the accuracy

and Youden’s J statistics were used to evaluate two cases,

which are predictions of occurrences of dislocation clusters

at ten or twenty upper wafers. Results from the investiga-

tion show that accuracy and Youden’s J were better than

the “bag of features” approach in predicting the dislocation

cluster regions.

Lee and Lee [9] evaluated the use of DTL for learning

new defect patterns in wafer images. They found DTL may

be used as effectively as a fully trained DL model (with

the accuracy difference equaling 2%). The advantage of

DTL is that it learns the defects faster. It also enabled

the researchers to obtain a reliable model by updating the

model as needed.

3. Classification of Silicon Wafer

Defects using DTL

The conceptual framework for classifying silicon wafer de-

fects is presented in Fig. 2. Firstly, wafer defect images

are collected with manually inspected ground truth data

by industrial experts. Then, a suitable DTL architecture is

identified based on the available models in the Top-1 results

(based on GPU architecture) which is adopted to classify

monocrystalline silicon wafer defects [10]. The next step

consists in building the input pipeline tasked with read-

ing all the collected sample images from the wafer defect

data sets. After that, experiments are conducted to build

the DTL-MobileNetV2 model by adding additional layers

that learn the six different defect classes using the training

set. The model built was saved and tested by performing

a prediction with the use of the testing set. To improve

the performance of the model obtained further training

sessions were performed by unfreezing the parameters in

the network layer.

3.1. Data Collection

The sample images of the defective wafers were randomly

selected from the existing database compiled by a produc-

tion expert from LONGi. These images were automatically

collected by running the defective wafers through an AOI

machine. Manual classifications performed by industrial

experts are collected as ground truth data. Examples of

images in the dataset may be seen in Fig. 1. The entire

dataset contains 6,000 images, with each defect class being

shown in 1,000 pictures. For each defect class, the images

are randomly divided into three subsets, i.e. training (70%),

validation (15%), and testing (15%) sets. The resolution of

each image is 224× 224× 3. The training set is used to

build the DTL models, while the validation set is used to

provide an unbiased evaluation of the built models and to

refine their parameters. The testing set is used to ensure an

equitable evaluation of the best model built based on the

training set.

3.2. DTL Architecture

The DTL architecture used in this work was based on

MobileNetV2 [2]. We used the pre-trained version of

MobileNetV2 trained using the ImageNet dataset which

contains 14 million images of 22 thousand visual cate-

gories [11]. Based on the learned feature maps of the Mo-

bileNetV2 pre-trained DL algorithm, significant features

were extracted from silicon wafer defect images.

The advantage of using the DTL architecture consists in

the fact that we do not need to use random initialization

for building a new deep learning model. Instead, the model

for classifying the wafer defects shares the same initializa-

tion parameters that were identified as effective during the

learning process, using the ImageNet dataset. To achieve
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Fig. 2. Silicon wafer defect classification framework using DTL.

Table 2

DTL training parameters

Variables Description Values

Base learning rate Initial learning rate 0.001

Learning rate decay Rate decay coefficient after every fifth epoch 0.5

Training epoch Total training iterations 100

Optimizer Optimization method for updating parameters based β1 = 0.9, β2 = 0.999
on training data (we used ADAM)

DropBlock Convolution regularization technique 0.8

Learning strategy Strategy for changing the learning rate Step

a high classification accuracy rate, we refined the model’s

parameters for identifying silicon wafer defects by unfreez-

ing the network layers.

3.3. Experiment Design

The algorithm learned to recognize defects in silicon wafers

by analyzing images of defective silicon wafers. This was

done by feeding the images from the training set into the

DTL architecture. The experiment was designed to assess

the accuracy of using MobileNetV2 as a DL model to clas-

sify silicon wafers into correct defect categories. In addi-

tion, we also evaluated the effects of freezing and unfreez-

ing the DL model’s parameters during the training process.

The training parameters used to conduct the experiments

are listed in Table 2. We refine the training process by un-

freezing the trained network layers using the step learning

strategy. Initially, the learning rate equals 0.001 and de-

creases by a factor of 0.5 every five epochs. During the

training process, the regularized DropBlock method was

used to reduce parameter calculations in the fully con-

nected layer. This allows to avoid network over-fitting and

boosts the accuracy of the process of classifying silicon

defects. The silicon wafer defect features obtained during

the training phase with the use of MobileNetV2 were fed

into a new Softmax layer to obtain the output probability for

each silicon wafer image and its respective defect class. The

model built was then used to classify the images from the

testing set.
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4. Analysis and Discussion of Results

We evaluated the effectiveness of the DTL model using the

standard evaluation measures, namely accuracy and loss.

Accuracy is the percentage of correct predictions made by

the model. It is calculated by dividing the sum of cor-

rect predictions (true positive + true negative) by the total

number of predictions (true positive + true negative + false

positive + false negative). The model loss reflects the er-

ror rate between two probability distributions of the true

defect class and the predicted defect class. It is measured

using cross-entropy, where a higher value indicates that the

predicted defect class diverges from the true defect class.

4.1. DTL Training Accuracy

Due to the stochastic nature of DL, the models can be

built several times using the same set of training data to

assess the accuracy and the compare each model against

its counterparts. No standard number of models that need

to be built has been defined. Most research relied on one

model only, due to time- and resource-related limitations

encountered while building the models [12]. In our experi-

ment, we chose to build three models and to evaluate their

mean and standard deviation [13]. The accuracy of the

DTL-MobileNetV2 model (trained using the training set

and validated using the validation set) for three iterations

is shown in Table 3.

Table 3

Model accuracy results for three iterations

of building the DTL wafer model

Build iteration Accuracy [%]

1 96.70

2 96.05

3 97.20

Mean 96.65

Std dev 0.47

The mean accuracy and standard deviation accuracy of the

DTL MobileNetV2 model are 96.59% and 0.49%, respec-

tively. The best accuracy of DTL MobileNetV2 equals

97.02%, while its lowest accuracy amounts to 96.05%. As

the MobileNetV2 model was designed to shorten the cal-

culation time and reduce model size, we found that it took

182.46 s to train one epoch and that the generated model

size was 12.5 MB. The accuracy obtained is considerably

high. This indicates that the DTL MobileNetV2 model

offers good potential and ensures favorable classification

performance, thus helping in the classification of wafer

defects.

4.2. Batch Size (32 vs. 64)

The impact of different batch sizes on the accuracy of the

model was investigated as well. Masters and Luschi [14]

reported that best performance in their experiments was

achieved with batch sizes of 16, 32 and 64 for an

ImageNet dataset. In this paper, models of batch sizes 32

and 64 were trained and results obtained before and after

their fine tuning were combined to conduct a more com-

prehensive comparison analysis. The batch size of 16 was

excluded from the experiment as it is computationally and

time intensive. We added two additional layers on top of

the existing MobileNetV2 that will classify wafer defects

into the six respective classes.

In order to compare the effectiveness of using DTL

without fine tuning the model (all network layers frozen),

we conducted the training phase for 100 epochs. We fur-

ther executed another 100 epochs by unfreezing the net-

work layers to optimize the model for monocrystalline sil-

icon wafer defects. This process updates the weights of

ImageNet feature maps to features specifically associ-

ated with the dataset. The detailed results from before

and after fine tuning for the batch sizes of 32 and 64

are shown in Table 4. From the experiment using batch

size 32, the built model’s training accuracy equals 91.32%,

and validation accuracy amount to 91.78% before fine tun-

ing. When the model was fine tuned, the training accuracy

improved to 97.68%, and validation accuracy was 97.2%.

Figure 3 shows the accuracy and loss versus the epoch dur-

ing training for the two different batch sizes.

Using the batch size of 64, the built model achieved

a training accuracy of 91.52% and a validation accuracy

of 91.80% before being fine tuned. After the model was

fine tuned, the result improved to 98.05% in terms of

training accuracy and 97.67% in terms of validation ac-

curacy.

The results of the experiments have shown that the larger

the batch, the faster the deep learning algorithm con-

verges, and the shorter the time required to achieve bet-

ter training accuracy. On top of that, from the visual and

table results, it is safe to say that with the increase of the

batch size, the accuracy of the model prediction will be

improved to a certain extent, and the mean accuracy and

mean loss are better than outcomes specified in the lit-

erature.

Upon performing the optimization, the DTL model learned

more features and classified the wafer defects better.

This can be clearly seen on the right side of the graph

in Fig. 3. The improvement stemmed from the fact that the

optimized model was allowed to learn new features, up-

date its weights and biases from the data that was different

from the ImageNet data. Although there are two declin-

ing spikes, the accuracy was still better than the frozen

results. The two declining spikes may be caused by the

sample data in that validation batch which is harder to

classify by the DTL model. Overall, the findings prove

that unfreezing the network layers during the model train-

ing phase produces a better result than when the layers

are frozen. We speculate that the same model parameters

could be adopted when using other DL algorithms, such as

DenseNet201.
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Table 4

Accuracy and loss of the DTL MobileNetV2 model training and validation for batch sizes of 32 and 64

Models Batch size
Mean of training Mean of training Mean of validation Mean of validation

accuracy [%] loss [%] accuracy [%] loss [%]

Freeze
32 91.32 4.50 91.78 4.35

64 91.52 4.17 91.80 4.08

Unfreeze
32 97.68 1.34 97.20 1.95

64 98.05 0.81 97.67 0.94

Fig. 3. Training and validation accuracy of batch sizes 32 (a)–(b)

and 64 (c)–(d) versus epoch during model training.

4.3. Classification Accuracy

To evaluate the DTL MobileNetV2 model built for classi-

fying silicon wafer defects, a classification prediction was

performed with new sample images of wafer defects from

the testing set. The model evaluation accuracy against the

testing set is at 98.99%. As we do not compare differ-

ent DTL architectures in this work, we have not performed

a significant test for the results. The visualization of the

defect classification confusion matrix into six types is

shown Fig. 4a which depicts the number of correct and

incorrect classifications, and the corresponding percentage

is presented in Fig. 4b. Examples of images and their cor-

responding classifications performed using the DTL model

are illustrated in Fig. 5. Based on the confusion matrix,

the model successfully classified the double contrast de-

Fig. 4. Confusion matrix using (a) the exact number of predicted

images and (b) accuracy percentage.
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Fig. 5. Sample of defect classification prediction results of 25 images from the testing set.

fect (with the accuracy rate of 95%). More training and

customization of the DL is needed to recognize the crack

defect, as the classification accuracy for this class was the

lowest.

5. Conclusion

In this work, we present a solution allowing to classify

monocrystalline silicon wafer defects using deep transfer

learning. The experiments were carried out using a real-

world dataset from a production plant. We found that

DTL MobileNetV2 was capable of accurately identifying

certain defects with limited training sample size. It was

also determined that batch size influenced the results as

well, both in terms of accuracy and loss percentage. We

also showed that a batch size of 64 offered higher accu-

racy (before and after fine tuning) than a smaller batch

size of 32.

Despite the success in training the model and classifying

wafer defects, several limitations have been encountered.

Firstly, the dataset could be improved by adding perfect

wafers that had passed AOI defect inspection. Secondly, the

methodology relied upon in this work was not designed for

real-time classification. Prospects for future work include

collection of perfect and defective wafer samples from di-

versified production facilities to expand the dataset, fur-

ther customization of the DTL MobileNetV2 solution using

other new deep learning models, and integration with a real

time mobile terminal.
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