
Paper

Towards a Unified Architecture

of Knowledge Management System

for a Research Institute
Jarosław Sobieszek

Abstract—This paper presents some elements of architecture

of planned knowledge management system dedicated to re-

search institutions. Main contributions include social exten-

sion of the idea of adaptive hermeneutic agent and prelim-

inary implementation of domain specific language for devel-

opment of knowledge management systems. Work described

here concentrated on practical verification of viability of pro-

posed ideas and took form of a prototype software system,

which can be used by a group of researchers to easily find

and recommend relevant information.

Keywords—creativity support, knowledge management, model-

driven software development, tagged collaborative filtering.

1. Introduction

One of the possible definitions of knowledge manage-

ment [1] is:

“Knowledge Management is the discipline of enabling indi-

viduals, teams and entire organisations to collectively and

systematically create, share and apply knowledge, to better

achieve their objectives.”

The tasks of knowledge management can be summarized

by a checklist often used by journalists to verify that they

present the whole picture of a situation. This list, known as

Five Ws and H, consists of six interrogatives, which when

applied to knowledge management [2] roughly correspond

to:

• “when”’ – time management,

• “what” – task management,

• “how” and “where” – information management,

• “who” – people management,

• “why” – goal management.

As can be seen, this list encompasses a wide range of dif-

ferent fields and potential techniques. Very often the solu-

tions tend to be tailored to the needs of commercial enti-

ties, since they are created by large software corporations,

which need to recoup their investment. The needs and ex-

pectations of research institutions are, to a significant de-

gree, different and were only partially explored by theorists

and especially by practitioners of knowledge management.

One of the possible reasons for this disparity is a fact that

processes of knowledge creation in academia are quite dif-

ferent to the ones at commercial institutions [3].

Our group at National Institute of Telecommunications, mo-

tivated to a significant degree by local practical need, de-

cided to explore the topic of knowledge management in

research institutions. Our main goal is creation of an in-

tegrated system which will merge traditional approaches

to knowledge management with theories of creativity sup-

port [3]. Secondary requirements include architectural flex-

ibility, which should simplify planned future deployments

in other institutions, and low cost of proposed solution, to

expand the group of potential users.

This paper presents results of an experiment conducted to

investigate feasibility of proposed approach to development

of knowledge management systems. We decided to limit

the scope of this study to a small, but none the less use-

ful part of the complete system, and focus our attention on

the creativity support component. Section 2 presents three

topics relevant to the presented application outlining, re-

spectively, theory of knowledge creation, representation of

preferences and interests, and integrated approach to devel-

opment of information systems. Section 3 justifies some of

design decisions and describes structure of the prototype.

Section 4 summarizes main results presented in this article

and details potential further enhancements and directions

of future research.

2. Background

2.1. Creative Environment

Creative environment [3] is a comprehensive theory de-

scribing a place, where knowledge is created, shared and

used. One of the most important aspects of this idea is

identification of various knowledge creation processes and

description of ways to support them.

The basis of this theory is formed by a model of knowl-

edge creation called Nanatsudaki. The name is a Japanese

phrase meaning seven waterfalls, and corresponds to the

structure of this model. It is composed of seven so called

knowledge creation spirals, which describe processes of

knowledge creation typically encountered in both research

and industrial institutions. The cyclic nature of the spirals

54

Towards a Unified Architecture of Knowledge Management System for a Research Institute

reflects the fact, that knowledge creation is a perpetual and

self-propelled (positive feedback) endeavour.

One of these processes, called hermeneutic spiral, describes

the activity of gathering sources, most often in a form

of publications by other researchers, analyzing them and

reflecting on them in search of new research ideas. It

forms the very basis of a large part of scientific work.

The hermeneutic spiral is also known as EAIR (enlight-

enment-analysis-hermeneutic immersion-reflection) spiral,

an acronym derived from the four phases of this knowl-

edge creation process.

• Enlightenment is a phase that starts with having an

idea, which is considered to be worthy of further

involvement and during which potential sources of

information are explored and research materials are

gathered.

• Analysis is a phase of rational study of relevant ma-

terials.

• Hermeneutic immersion is a phase during which con-

cepts and ideas rationally explored in previous stage

are absorbed into one’s intuitive perception.

• Reflection is a phase during which new research ideas

are intuitively considered and explored.

Another related concept is that of adaptive hermeneutic

agent (AHA), a software system designed to support the

knowledge creation process represented by the EAIR spi-

ral. The original idea [3] described a system, which helped

individual researcher to find relevant materials on the web

and which was largely based on algorithmic analysis of

document content. We decided to replace this mechanisms

with framework for cooperation, motivated to some degree

by growing importance of social web sites. This approach

encourages collaboration and will hopefully lead to a more

comprehensive realization of the idea of creative environ-

ment.

2.2. Tagged Collaborative Filtering

Knowledge representation is another important aspect of

the architecture of knowledge management system. Here,

we describe the representation of preferences and interests,

since this information forms the basis of the proposed sys-

tem.

Nowadays, Internet stores routinely use so called recom-

mender systems [4] which propose goods the customer

might be interested in buying. Generally, approaches to

construction of these systems fall into two broadly defined

categories.

First of them, called content based, concentrates on cre-

ating profiles which aim to explicitly describe both users

and products. This technique relies on additional domain

specific information, which could be hard to gather.

Alternative approach called collaborative filtering [5] or so-

cial information filtering relies only on past user behavior,

predicting future interest based on preferences that were

expressed by a preferably large group of users. These pref-

erences could have been specified explicitly, taking form

of ratings which quantify level of satisfaction, or could

be extracted from more implicit sources, such as histories

of purchases or page views. Generally such information

is more readily available which partially explains relative

popularity of solutions based on collaborative filtering. Ad-

ditionally, it is a more versatile approach, since it does not

depend on content being recommended.

Formally, let U and I denote, respectively, sets of users

and items, with |U | = nU and |I| = nI . Rating function r :

U × I → S is a mapping of user-item pairs into a rating

scale S which is most often represented as a sequence of

natural numbers, usually of length 5 or 10. Values of this

function for a given sets of users and items can be tabu-

larized to form a matrix R = [rui]U×I , where rui is a rating

given by user u to item i. This formulation of the prob-

lem allows us to alternatively define collaborative filtering

(or at least its most common form) to be an algorithm for

estimation of missing entries of a matrix.

Tagging is another method commonly used for knowl-

edge representation. The idea is to associate short phrases,

known as tags, to provide additional information about

some data. This is closely related to a concept of keywords

used by librarians to index textual resources.

This two approaches can be merged to form what we have

called tagged collaborative filtering which can be viewed as

a multicriteria variant of collaborative filtering. Standard

formulation of multicriteria analysis requires all values of

the criteria to be specified, so a different name better re-

flects the fact that in this case they are optional. This

approach is also quite similar to some of the methods used

for content based recommendation systems, though one sig-

nificant difference is that the tags can be used to not only

describe content, but also, for example, preferences of the

users.

Formally, we introduce another dimension into domain of

the rating function which now becomes r : U × I ×T → S,

where T is a set of tags. Both of the constituent ideas can

now be expressed by imposing some limits on the dimen-

sionality of sets used in its definition. Tagging is equivalent

to reduction of rating scale S to a binary alternative, col-

laborative filtering is equivalent to reduction of tag set T

to a single implied value which can be called quality or

satisfaction.

Since collaborative tagging can be viewed as an approach

to ontology construction, it should be possible to further

extend this idea, and apply more sophisticated semantic

structures to describe relations between tags, which could

be then used for collaborative filtering.

2.3. Model-Driven Software Engineering

Software development is a complex process. One of the

most common approaches to dealing with complexity is an

55

Jarosław Sobieszek

idea of splitting the problem into parts and dealing with

them on an individual basis, also known as divide and con-

quer. When it is applied on a conceptual level, the parts

are often called layers. This approach, when applied to

software engineering, usually splits the process into three

phases (analysis, design and development) corresponding

to semantic, structural and technological aspects of the

problem.

Duplication is probably one of the most pervasive prob-

lems in software development. It is usually considered

harmful to the quality of the affected systems, though

there are some specific cases when it is actually helpful,

e.g., loop unrolling which repeats statements in the body

of the loop to reduce the number of tests and jumps, of-

ten leads to a faster execution of the program and is one

of the techniques used for code optimization. The advice

of avoiding duplication was expressed by a pragmatic rule

of software development [6], known as DRY (don’t repeat

yourself).

The risks of duplication of information were recognized,

for example, in a field of relational databases, where a de-

sign technique called normalization [7] aims to minimize

structural problems associated with having multiple sources

of the same data. Designs which do not follow this prac-

tice are more susceptible to the occurrence of so called data

anomalies, which can lead to a loss of data integrity.

Canonical layered approach to software development does

not have any mechanisms which prevent duplication. It can

be seen as one of the tasks of project manager. This ar-

rangement can fail, especially since higher layers of this

process often produce only design documents, which are

often perceived only as a direction for future work. Addi-

tionally, since lower levels build upon previous steps, they

tend to rephrase at least some of the work that was already

done, which can introduce inconsistencies.

Model-driven software development (MDSD) is one of the

possible techniques, which help to reduce duplication. It

is a design philosophy emphasizing the role of models as

a cornerstone of process of software creation.

Structure of model is determined by another model, called

metamodel, which can be seen as a specification of vocab-

ulary that can be used to define models. This class-instance

relationship can be extended indefinitely, though in practice

there is usually no need to go beyond three levels, with the

most generic one defined in a recursive way. Model level

is application specific, metamodel level provides a general-

ized view of a problem domain, and metametamodel level

is associated with software development environment al-

lowing it to access lower level constructs in a standardized

way.

Individual models can be connected with transformations

(see Fig. 1), which describe methods of converting one

model into the other. Usually, conversion of models to/from

their textual representation is treated separately using tech-

niques, which facilitate text parsing and generation.

The process of software development can be seen from

a global perspective as a directed graph, whose nodes are

Fig. 1. Context of model transformations. Explanations: M2M –

model to model, M2T – model to text, T2M – text to model.

models and edges are model transformations. The sources,

that is the nodes which are not a destination of any trans-

formation, represent models which need to be specified by

the developer. The transitions are another part which needs

to be defined. The output of the process is represented by

sinks, that is the nodes which are not a source of any trans-

formation. They correspond for example to source code,

documentation or user interface definitions.

One important consequence of imposing this kind of struc-

ture is that, the process of software development can be

easily split into parts, which reflect certain perspectives,

or ways of looking at the resulting system. For example,

the process of development of data warehouse, can be split

into several pieces: one that defines a transformation of

domain specific model into a domain independent repre-

sentation, the other one describes a way of implementing

that representation in a specific runtime environment and

yet another one specifies configuration information. This

decomposition can reflect the structure of the development

team, when the first transformation is defined by a business

analyst, the second one by a software engineer, and the last

one by maintenance staff.

Some of the other advantages of this approach include for-

malization of knowledge and greater potential for reusabil-

ity. It forces the developer to formalize the approach used

to solve the problem. From a point of view of future main-

tenance of the system it is a great advantage, since it docu-

ments all the decisions made by the developer and bridges

the semantic gap that often arises between concept repre-

sentations at different levels.

This technique is foremost a way to introduce static struc-

ture to the problem, so it won’t be of much use in situations

where the complexity is mostly of algorithmic nature. It

will be of great help mostly in large heterogeneous infor-

mation systems characterized by high structural and low

algorithmic complexity, such as data warehouses or knowl-

edge management systems.

We have decided to use probably the most popular approach

to model-driven software development, namely model-

driven architecture (MDA) [8]. It was developed under the

auspices of Object Management Group (OMG), a widely

known organization, which has, for example, standardized

the Unified Modeling Language (UML).

56

Towards a Unified Architecture of Knowledge Management System for a Research Institute

The specific tool we have used is known as openArchi-

tectureWare (OAW). It’s a modular code generation frame-

work, nicely integrated with Eclipse development environ-

ment and based on Eclipse Modeling Framework (EMF).

One of the distinguishing features of this tool is its

support for text to model transformations, which en-

ables the developer to easily define domain specific lan-

guages (DSL).

3. Prototype

Primary goal of the work presented here was to explore

the ideas and techniques described in Section 2. This exam-

ination took a form of a prototype software system, whose

primary function is the ability to catalogue and search for

various objects related to the field of research. On one

hand, it can be viewed as a greatly simplified knowledge

management system dedicated to research institutions, on

the other hand, it is a social incarnation of an adaptive

hermeneutic agent.

Social aspect of the system is emphasized by its approach

to editing the data. It mimics wiki-like systems in that re-

gard, allowing any user to add, edit and delete content from

the database. With this freedom comes the disadvantage of

increase in maintenance work, since information stored in

the system needs to be protected from willful destruction.

On the other hand, it lowers barriers to participation ex-

panding the potential group of contributors. Wikipedia is

a proof that this approach is both feasible and has a lot of

potential.

Since semantic profile information needs to be stored on

a per-user basis, to fully use the system one has to create

an user account. The need to do this can be viewed as

cumbersome, and potentially discourage some of the likely

users. Therefore, we decided to make the registration pro-

cess optional, and allow users to use the system without

providing any additional information. Such passive users

do not contribute to collaborative filtering, though hope-

fully if they find it useful, they will become more active

participants. This reflects our philosophy that it is better to

encourage than to force.

Another aspect that emphasizes this laissez-faire user ex-

perience is approach to ontology creation. Basically, there

are two generic ways of building ontologies, known, respec-

tively, as top-down and bottom-up approach. First of them

is a more formalized process, where a group of experts

progressively specializes the vocabulary used to describe

the problem domain. Somewhat similar technique, known

as mind mapping, is often utilized for brainstorming and

note taking. The other approach starts with a collection

of items describing the problem domain. They are ana-

lyzed to extract the most specialized concepts, which are

then repeatedly generalized. This approach is susceptible

to automation, where first step can use keyword extraction

algorithms, followed by a series of clusterizations, to form

the final ontology.

Ours is basically a bottom-up approach, though with one

crucial difference, when compared to automatic method

described above. It replaces computer algorithms with

a framework for cooperation, which should allow inter-

ested parties to form the ontology as a byproduct of their

evaluation of source material. This approach is known as

folksonomy, which is portmanteau made by combining folk

and taxonomy, and is often used to describe the emergent

process of ontology creation happening in a group of col-

laborating people.

As was already mentioned, we decided to investigate the

feasibility of using model-driven approach to construction

of knowledge management systems. Thus, the backbone

of prototype presented here is formed by a definition of

a metamodel (Fig. 2), which formalizes vocabulary used to

System:

"system" ":"

(options+=Option | classes+=Class)*;

Option:

"option" name=IDIDID "=" value=STRINGSTRINGSTRING;

Class:

"class" name=IDIDID ":"

(options+=Option | attributes+=Attribute)+;

Attribute:

name=IDIDID ":" type=Type (options=TypeParams)?;

EnumEnumEnum Type:

string="String" | m2o="ManyToOne" |

m2m="ManyToMany";

TypeParams:

"(" TypeParam ("," TypeParam)* ")";

TypeParam:

IDIDID | INTINTINT;

Fig. 2. Specification of model parser.

describe the structure of this system. It is a simple object-

oriented representation, composed of classes, which besides

having attributes for storing values, can also be connected

to each other with one of the two relations, namely many-

to-one and many-to-many. Additionally both system and

classes definitions can be annotated with metadata, which

are called options here, that have a textual form and were

used to specify labels displayed in the user interface. While

not very elaborate, this metamodel is sufficient to describe

a wide range of practical applications.

Based on the metamodel definition, we constructed a sim-

plified model (Fig. 3) of publications catalogue. It con-

sists of four classes, which represent respectively person,

publication, institution and journal, connected with some

self-explanatory relations. Thorough description of this par-

ticular application was not our goal, but it is something,

that can be easily achieved. Thanks to chosen approach,

what needs to be done from a technical point of view

is a simple change of model definition. It is also possible

to completely change the focus, and create, for example,

a social bookmarking application or a movie database.

57

Jarosław Sobieszek

Again, all that is strictly necessary is a change of model de-

finition.

systemsystemsystem:

classclassclass Person:

first name: StringStringString(100)

last name: StringStringString(100)

affiliation: ManyToOneManyToOneManyToOne(Institution)

classclassclass Publication:

title: StringStringString(200)

authors: ManyToManyManyToManyManyToMany(Person)

journal: ManyToOneManyToOneManyToOne(Journal)

classclassclass Institution:

name: StringStringString(200)

classclassclass Journal:

name: StringStringString(100)

Fig. 3. Model of the prototype system.

The prototype took a form of a web application devel-

oped using Django framework. This allows it to be used

on a variety of platforms, including, for example, mobile

phones. Basic functionality focuses on providing create-

read-update-delete (CRUD) interface to a catalogue de-

scribing some objects. User interface (Fig. 4) follows

a common three-pane design. The central one displays

information about object or a list of objects, the left one

allows browsing specific classes of objects, and the right

one provides interface for searching the database.

Fig. 4. User interface.

Functionality related to recommendation is at the moment

limited to tagging. Every object can be annotated with

keywords, which are then displayed in two separate lists.

First of them shows tags of a logged in user, second one

of all the other users aggregated to form a tag cloud. Key-

words used by user to describe objects form a profile, also

displayed as a tag cloud, which enables easy access to re-

lated content. Without logging in user cannot associate key-

words with objects, and can only see a list of tags added by

other people.

4. Conclusions and Future Work

In this paper we presented some elements of architecture

of planned knowledge management system dedicated to re-

search institutions. Main contributions include social ex-

tension of idea of adaptive hermeneutic agent and early

stage of implementation of domain specific language for

description of knowledge management systems. Work de-

scribed here was preliminary, and its main goal was verifi-

cation that proposed approach is viable direction of future

efforts. The results of this feasibility study were encourag-

ing, and we intend to build upon them in our forthcoming

projects.

One of the more evident directions of future work

is extension of adaptive hermeneutic agent component,

which was only partially implemented. Especially, to fully

utilize it, the profile needs to be directly editable and al-

low for more direct specification of preferences. Also meta-

model, even though it is sufficient to describe a wide range

of real world applications, needs to be extended, if it is

to be used for construction of more comprehensive knowl-

edge management applications. One simple, yet very power-

ful, addition would be introduction of processes [9], which

are widely used for description of sequences of actions

and, thus, well suited to support many of management

tasks.

Other more long-term possibilities include addition of dif-

ferent algorithms for constructive manipulation of data

gathered in presented system. For example, network struc-

tures could be analyzed, to compute impact factor of ob-

jects [10]. Similar approach is used by some search en-

gines [11], and would extend scope of potential applica-

tions. Also interesting would be formalization of semantic

structure of this system, built upon work done in fields of

ontological engineering and semantic web [12], [13]. This

would make the data amenable to more intricate automatic

processing.

References

[1] R. Young, “Definition of knowledge management” [Online]. Avail-

able: http://www.knowledge-management-online.com/

Definition-of- Knowledge-Management.html

[2] R. Young, “The future of knowledge management” [Online]. Avail-

able: http://knol.google.com/k/ron-young/

the-future-of-knowledge-management/1emn5abyls393/4

[3] Creative Environments: Issues of Creativity Support for the Knowl-

edge Civilization Age, A. P. Wierzbicki and Y. Nakamori, Eds.,

Studies in Computational Intelligence. Berlin-Heidelberg: Springer-

Verlag, 2007, vol. 59.

[4] G. Adomavicius and A. Tuzhilin, “Toward the next generation of

recommender systems: a survey of the state-of-the-art and pos-

sible extensions”, IEEE Trans. Knowl. Data Eng., vol. 17, no. 6,

pp. 734–749, 2005.

[5] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collab-

orative filtering to weave an information tapestry”, Commun. ACM,

vol. 35, no. 12, pp. 61–70, 1992.

[6] A. Hunt and D. Thomas, The Pragmatic Programmer: From Jour-

neyman to Master. Boston: Addison-Wesley, 1999.

58

Towards a Unified Architecture of Knowledge Management System for a Research Institute

[7] E. F. Codd, “A relational model of data for large shared data banks”,

Commun. ACM, vol. 13, no. 6, pp. 377–387, 1970.

[8] O. Pastor and J. C. Molina, Model-driven Architecture in Practice:

A Software Production Environment Based on Conceptual Modeling.

Berlin-Heidelberg: Springer-Verlag, 2007.

[9] M. Dumas, Wil M. van der Aalst, and A. H. ter Hofstede, Process

Aware Information Systems: Bridging People and Software Through

Process Technology. Hoboken: Wiley, 2005.

[10] J. E. Hirsch, “An index to quantify an individual’s scientific research

output”, Proc. Nat. Acad. Sci., vol. 102, pp. 165–169, 2005.

[11] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond:

the Science of Search Engine Rankings. Princeton: Princeton Uni-

versity Press, 2006.

[12] G. Antoniou and F. van Harmelen, A Semantic Web Primer. Cam-

bridge: The MIT Press, 2004.

[13] Towards the Semantic Web: Ontology-driven Knowledge Manage-

ment, J. Davies, D. Fensel, and F. van Harmelen, Eds. Chichester:

Wiley, 2003.

Jarosław Sobieszek received

his M.Sc. degree in computer

science from Warsaw Univer-

sity of Technology, Poland, in

2002. Currently he is a re-

searcher at National Institute of

Telecommunications, where he

prepares his Ph.D. thesis in the

area of knowledge management.

His research interests include

machine learning, artificial in-

telligence, knowledge management and model-based ap-

proaches to software development.

e-mail: J.Sobieszek@itl.waw.pl

National Institute of Telecommunications

Szachowa st 1

04-894 Warsaw, Poland

59

