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Abstract—Real radar data often consist of a mixture of Gaus-

sian and non-Gaussian clutter. Such a situation creates one or

more inflexion points in the curve of the empirical cumulative

distributed function (CDF). In order to obtain an accurate fit

with sea reverberation data, we propose, in this paper, a tri-

modal gamma disturbance model and two parameter estima-

tors. The non-linear least-squares (NLS) fit approach is used

to avoid computational issues associated with the maximum

likelihood estimator (MLE) and moments-based estimator for

parameters of the mixture model. For this purpose, a combi-

nation of moment fit and complementary CDF (CCDF) NLS

fit methods is proposed. The simplex minimization algorithm

is used to simultaneously obtain all parameters of the model.

In the case of a single gamma probability density function,

a zlog(z) method is derived. Firstly, simulated life tests based

on a gamma population with different shape parameter val-

ues are worked out. Then, numerical illustrations show that

both MLE and zlog(z) methods produce closer results. The

proposed trimodal gamma distribution with moments NLS fit

and CCDF NLS fit estimators is validated to be in qualita-

tive agreement with different cell resolutions of the available

IPIX database.

Keywords—CCDF, estimation, least squares, MLE, modeling,

trimodal Gamma model, zlog(z).

1. Introduction

Modeling of unknown and non-stationary radar sea-clutter

statistics is a serious research subject for target detection

with a constant false alarm rate (CFAR). Compound Gaus-

sian class distributions are useful models for sea-clutter

observed by high resolution radars [1]. It is shown that

gamma, inverse gamma, lognormal, and inverse Gaussian

are efficient disturbances for the texture component charac-

terizing the variability of both sea surface conditions and

selected radar parameters [2]. A two-parameter family of

continuous probability distributions on the positive real line

is such a class of models.

Popular K distribution is widely applied in many disci-

plines of radar signal processing and is obtained from

a gamma distributed texture component. The well-known

Pareto type II model has been shown to occur as intensity

distribution of the compound Gaussian process with an in-

verse gamma texture [3]. The compound Gaussian inverse

Gaussian (CGIG) distribution is constructed if the modu-

lation component follows the inverse Gaussian law [4].

However, in situations when we have a sequence of sea

clutter with two or more distributions, compound-Gaussian

models cited above fail to fit in with empirical data.

This is particularly true for intelligent pixel X-band (IPIX)

backscatter obtained from a small grazing angle and/or

a low-range cell surface, using horizontal antenna polari-

zation for transmit and receive [5], [6].

Various distributions that are probabilistic mixtures of other

distributions have been proposed in the available litera-

ture [7]–[9]. Rosenberg et al. [7] analyzed the KK distribu-

tion for modeling the Ingara radar database with different

scenarios. The addition of multiple looks and a thermal

noise component is considered to produce greater accu-

racy of the mean and underlying shape parameters. In [8],

a mixture of K and lognormal distributions is proposed to

model the clutter data, the target data, or the mix of clutter

and target data. The ML method using the expectation-

maximization approach is presented for estimating the pa-

rameters of the mixture model. Experiments including syn-

thetic aperture radar (SAR) data are conducted to show

the effectiveness of the mixture model against KK and

lognormal-lognormal distributions. In [9], a trimodal dis-

crete (3MD) radar clutter model is utilized for modeling

radar sea-clutter. A six-parameter mixture model is consid-

ered in paper [9], involving a multi-look Gaussian clutter

scenario.

Parameter estimation of clutter models involving shape and

scale parameters is an essential task, particularly if coherent

or non-coherent detection processors are required to com-

ply with the CFAR property. In [10], the authors presented

moment-based methods including higher order moments,
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fractional order moments and log-moments for estimating

K distribution parameters. A method for synthesizing cor-

related K-distributed random fields is also reported. The

Gauss quadrature method based on Legendre and Laguerre

polynomials is applied to constrained non-integer order mo-

ments, zlog(z) and MLE approaches for the estimation of

Pareto type II, K and CGIG clutter parameters [11], [12].

Convergence is verified by using the first two integer order

moments, in which the estimation problem is reduced to

one dimension. Computer simulations are illustrated with

known and unknown clutter-to-noise ratio (CNR).

In [9], four estimation methods based on a mixture of Gaus-

sian distributed parameters are derived: two method-of-

moments estimators (i.e. integer order moments and frac-

tional order moments) and two other, based on NLS fit to

the CCDF and MLE procedures. Accuracy and the com-

putational time of the estimators is compared in terms of

sample size, number of pulses and clutter parameter values.

In [13], the Wilson-Hilferty normal-based approximation

method is proposed to estimate the parameters of a gamma

mixture model. The methodology uses a popular Gaus-

sian mixture clustering algorithm, namely the CLUSTring

(MCLUST) method and a confidence interval-based search

approach to obtain the estimates. Performance comparisons

with the existing expectation maximization (EM) approach

are performed using both simulated and real-life datasets.

In this paper, we extend the recent work presented in [9] by

using a mixture gamma distribution in a single-look trans-

mission. It is an alternative solution proposed as a more

accurate model in some scenes of the IPIX data (low range

resolution) labeled trimodal gamma disturbance. Because

gamma and incomplete gamma functions are presented in

this model, the NLS fit approach is applied in this work

to avoid computational issues associated with ML and mo-

ments estimators of the parameters of mixture models. For

this purpose, the matching of moments and the CCDF ap-

proach is proposed, in which simplex minimization is used

to obtain all model parameters simultaneously.

In the case of single gamma PDF, the zlog(z) method is

derived. Simulated life tests performed with the use of

the gamma population with different values of the shape

parameters are worked out at first. Numerical illustrations

show that both MLE and zlog(z) methods produce closer

results. The proposed trimodal gamma distribution with

moment NLS fit and CCDF NLS fit estimators is validated

to be in qualitative agreement with different cell resolutions

of the available IPIX database.

The paper is organized as follows. In Section 2, we ini-

tially review the mixture gamma distribution, the mixture

gamma CDF and the mixture r-th raw moment’s expression.

Then, in Section 3, we present the MLE- and zlog(z)-based

estimators for a single gamma distribution. After that, esti-

mation procedures based on NLS CCDF fit and NLS mo-

ments fit are presented for the mixture of two and three

gamma distributions. A series of numerical illustrations

is given in Section 4. Finally, conclusions are outlined in

Section 5.

2. Mixture Gamma Distribution

Analysis of high-resolution surveillance radar shows that

statistical mixture models fit accurately with land and sea

reverberation data. Gamma distribution is a two-parameter

family of continuous probability distributions. Exponential

distribution, Erlang distribution, and chi-square distribution

are special cases of the gamma model. The gamma PDF

of the random variable x is given by [14], [15]:

f (x;β ,α) =
β α xα−1

Γ(α)
e−βx

, (1)

where x denotes clutter intensity (power), Γ(.) is the gamma

function, α is the shape parameter and β is the scale pa-

rameter. Its CDF is:

F(x;α,β ) = γ(βx,α) , (2)

where γ(x,a) = 1
Γ(a)

x
∫

0
tα−1e−tdt is the lower incomplete

gamma function [16]. The r-th raw moment can be defined

as:

E[xr] = β−r Γ(α + r)
Γ(α)

. (3)

As discussed, many models, including gamma distribution,

fail to fit in well with real data that follow two or more

densities. This occurs when radar echoes are observed from

small range cells. To this effect, a general mixture gamma

distribution could be capable of describing the majority of

data scenarios given by [13]:

f (x; pi,βi,αi) =
n

∑
i=1

pi
β αi

i xαi−1

Γ(αi)
e−βix , (4)

where pi, i = 1, . . . , n is the probability, and n is the number

of gamma distributions. The corresponding CDF of Eq. (4)

is written as:

F(x; pi,αi,βi) =
n

∑
i=1

piγ(βix,αi) . (5)

The r-th raw moment is given as a function of the gamma

function with fractional variables:

E[xr] =
n

∑
i=1

piβ−r
i

Γ(αi + r)
Γ(αi)

. (6)

The mixture model has 3n−1 parameters, n discrete scale

parameters, βi, n discrete shape parameters αi and n− 1
probabilities pi. Note that, Eqs. (4)–(6) reduce to the mix-

ture expressions given by Bocquet et al. [9] with αi = 1,

βi = 1
bi

and a single look scenario transmission.

3. Parameter Estimation

In this section, we consider some estimators based on MLE,

log-moments, CCDF fit and moments fit of parameters for

gamma distribution and a mixture of two and three gamma

distributions.
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3.1. MLE and zlog(z) Estimators of Gamma PDF

The MLE method has been used to estimate shape and

scale parameters from a finite number of independent sam-

ples, x1, x2, . . . , xN observed [18]. This was achieved by

maximizing the likelihood function (LF), so that:










ln(α̂)− ln
(

〈x〉
)

=
∂

∂ α̂
ln
[

Γ(α̂
]

+
〈

ln(x)
〉

= 0

β̂ =
α̂
〈x〉

. (7)

Simplifying (7) allows to numerically determine α̂ as:







ln(α̂)− ln
(

〈x〉
)

−ψ(α̂)+
〈

ln(x)
〉

= 0

β̂ =
α̂
〈x〉

, (8)

where 〈.〉 denotes the empirical mean and ψ(.) is the psi

function [16]. From formula (8), it can be easily seen that

the resulting MLE for estimating α is non-linear and has

no closed form solutions. Many papers reveal that MLE

and zlog(z) estimators have approximate results, i.e. [17].

To obtain a short execution time, a closed form zlog(z)

estimator is derived below, but with some mathematical

manipulations of log-moments. Using the fact that:

Γ(x+1) = xΓ(x) ,
∂Γ(x)

∂x
= Γ(x)ψ(x)

and
psi(x+1) = ψ(x)+

1
x

[16] ,

the derivative of Eq. (3) with respect to the moment order

r is found to be:

∂
〈

xr
〉

∂ r
=
〈

xr ln(x)
〉

= β−r ln
( 1

β

)Γ(α + r)
Γ(α)

+β−r Γ(α + r)
Γ(α)

ψ(α + r) . (9)

Using the first integer moment, 〈x〉 and Eq. (9) using r = 0
and r = 1, we write:















〈x〉= β−1α
〈

ln(x)
〉

= ln
(

1
β

)

+ψ(α)
〈

x ln(x)
〉

= β−1 ln
(

1
β

)

α +β−1αψ(α +1)

, (10)

Manipulating formula (10) finally produces the closed form

zlog(z) estimator:


















α̂

[

〈

x ln(x)
〉

〈x〉
−
〈

ln(x)
〉

]−1

β̂ =
α̂
〈x〉

. (11)

Equation (11) has no special functions making it easier to

implement compared to (8).

3.2. CCDF Fit and Moments Fit Estimators

Recurrence relations of gamma and incomplete gamma

functions with real variables given in Eqs. (5) and (6)

are not easily tractable analytically. For the case of n = 2,

the corresponding CCDF and moments expressions are:


















CCDF(T ; pi,αi,βi) = pi
[

1− γ(β1T,α1)
]

+(1− p1)
[

1− γ(β2T,α2)
]

E[xr] = p1β−r
1

Γ(α1 + r)
Γ(α1)

+ p2β−r
2

Γ(α2 + r)
Γ(α2)

, (12)

where T is the normalized detection threshold. Note that

the manipulation of equations in formula (12), having five

parameters, could not reduce the complexity of the estima-

tion in one or two dimensions. Moreover, the use of log-

moments does not resolve such an estimation issue. There-

fore, the curve fitting technique is the most suitable ap-

proach for simultaneously estimating all model parameters.

Its convergence is related to the application of an effec-

tive optimization algorithm. Based on expressions (5), (6)

and (12), the fitness functions considered in this work are

written as the sum of quadratic errors between empirical

and theoretical quantities:























FitnessCCDF =
m1

∑
j=1

[

realCCDF j−
n

∑
i=1

pi
[

1−γ(βiTj,αi)
]

]2

FitnessMoment =
m2

∑
j=1

[

〈

xr j
〉

−
n

∑
i=1

piβ
−r j
i

Γ(αi + r j)

Γ(αi)

]2 ,

(13)

subject to αi > 0, βi > 0 and
n
∑

i=1
pi = 1. m1 and m2 denote

numbers of points used in the curves of objective func-

tions. To reduce the research space dimension to 3n− 2,

β1 expression may be inserted in (13) as a function of the

empirical mean 〈x〉 and the model parameters, so that:

β1 =
p1α1

〈x〉−
n

∑
i=2

pi
αi

βi

. (14)

Fig. 1. Simulated CCDF from mixture of gamma distributed

samples for: p1 = 0.3, p2 = 0.5, p3 = 0.2, α1 = 0.01, b1 = 0.006,

α2 = 1, b2 = 1, α3 = 1.2, and b1 = 0.48.
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To show the incapability of modeling radar sea-clutter with

a single gamma distribution, we simulate, in Fig. 1, a mix-

ture of Gaussian (i.e. α = 1) and gamma (i.e. α 6= 1) dis-

tributed clutter using the composition method [20]. The

distorted region of the CCDF curve exhibited by one or

more inflexion points is observed with the presence of

Gaussian and non-Gaussian samples in the data sets.

From [5], it has been shown that several data scenes of the

IPIX database have a similar nature as the CCDF curve

shown in Fig. 1, i.e. a mixture of two or three distributions

with different parameter values. Some of these scenarios

will be presented in Section 4 by means of two estimators.

Based on this, expression (13) is treated as a non-linear

optimization problem involving four or seven parameters

with a mixture of two and three gamma distributions, re-

spectively.

Many optimization algorithms have been proposed in the

literature [14], [19]. Some of them include genetic algo-

rithms, biography-based optimization, simplex minimiza-

tion, and particle swarm optimization [23]. For the purpose

of fast convergence, one has to resort to iterative simplex

minimization search based on the Nelder-Mead (NM) al-

gorithm [19].

3.3. Simplex Minimization Algorithm

Simplex minimization was widely used for solving a va-

riety of optimization problems. The NM simplex algo-

rithm [21], [22] is an enormously popular search method for

multidimensional unconstrained optimization. No deriva-

tive of the cost function is required, which makes the al-

gorithm interesting for noisy problems. The NM algorithm

falls in the more general class of direct search algorithms.

It maintains simplexes being approximations of the optimal

point. The vertices are sorted according to objective func-

tion values. The algorithm attempts to replace the worst

vertex with a new point which depends on the worst point

and the center of the best vertices. The goal of this part

is to provide an NM direct search optimization method to

solve the above constrained optimization problem given by

expression (13).

This algorithms is based on the iterative update of a sim-

plex made up of m+1 points S = {Vi}, i = 1, 2, . . . , m+1.

Each point in the simplex is called a vertex and is associated

with a function value fi = f (Vi). It uses four parameters:

coefficient of refection ρ > 0, expansion χ > 1 with χ > ρ ,

contraction 0 < γ < 1 and shrinkage 0 < σ < 1. The stan-

dard values of these coefficients are ρ = 1, χ = 2, γ = 0.5
and σ = 0.5. Moves of the NM simplex are executed ac-

cording to five main operators: reflection, expansion, inside

contraction, outside contraction, shrink after inside con-

traction, and shrink after outside contraction. These com-

ponents are interpreted by mathematical equations that are

detailed in [21], [22].

The cost function of each estimator is given in expres-

sion (13). In the NM optimizer, the search of unknown pa-

rameters is carried out with constraints, because all model

parameters are real positive. In particular, the two proba-

bilities of trimodal gamma distribution must be limited be-

tween 0 and 1. In the estimation procedure, scale and shape

parameters in (13) are restricted, in the following manner,

to the range of [0, 10]:







































αi = max
[

min(αi,10),0
]

βi = max
[

min(βi,10,)0
]

p1 = max
[

min(p1,1),0
]

p2 = max
[

min(p2,1),0
]

p2 = max
[

min(p2,1),0
]

p2 = max
[

min(p2,1− p1),0
]

, i = 1, . . . , n . (15)

The constraint of the probabilities, p1 and p2 in the interval

of [0, 1] is also considered in (15). Figure 2 summarizes

different steps of the optimization of formula (13) with the

constraint procedure given in (15) using an SM based on

the NM algorithm.

Fig. 2. Flowchart of the simplex minimization algorithm of

expression (13).

4. Numerical Illustrations

In this section, we assess the above MLE, zlog(z), SM

CCDF fit and SM moments fit estimators with the use

of both simulated and real IPIX databases. One, two and

three component gamma distributions are considered for es-

timation and modeling of some scenarios of the radar IPIX

database.

4.1. Gamma Model Case

Consider a random sample of size N = 1000 from a finite

gamma distribution with its PDF as defined in Eq. (1).

A number n = 1000 of Monte Carlo runs is used to average

MSE and bias criterion tests. MLE and zlog(z) methods

85



Zakı́a Terki, Amar Mezache, and Fouad Chebbara

given by formulas (8) and (11) are executed to estimate

gamma PDF parameters.

Through this simulation study, the performance of zlog(z)

estimator is assessed vis-à-vis the MLE method in terms of

MSE and bias estimates of the shape parameter as depicted

in Fig. 3. From these plots, a comparison of estimates

reveals that both approaches produce closer results.

Fig. 3. Estimation comparison of MLE and zlog(z) methods of α
for N = 1000 and n = 1000: (a) MSE metric test, (b) bias metric

test.

An implementation of the zlog(z) methodology will pro-

vide estimates with a shorter execution time than the MLE

method. The zlog(z) procedure may be attributed to the

fact that it uses, in the computation of the adaptive CFAR

detection, a threshold for radar targets embedded in gamma

distributed clutter with unknown parameters. The modeling

of IPIX data with a resolution of 30 m, VV polarization

and 13th range cell is checked, as shown in Fig. 4, using

the two estimators. Figure 4a shows a comparison of em-

pirical and estimated moments with the moments’ orders

between r = 0.1 and r = 2. Figure 4b highlights the fit

of CCDF with real data always using the two estimators.

Fig. 4. Modeling of IPIX data with a resolution of 30 m, VV

polarization and 13th range cell: (a) moments fit test, (b) CCDF

fit test.

It is clearly seen that a single gamma PDF is not capa-

ble of modeling such a data scene. Unfortunately, several

scenarios of IPIX data cannot be fitted by a single gamma

PDF as well. For the purpose of a goodness-of-fit with real

data, we consider in the following subsection a mixture of

two and three gamma distributions.

4.2. Mixture Gamma Model Case

In this subsection, SM moment fit and SM CCDF fit ap-

proaches for the estimation of a mixture of gamma dis-

tributions are implemented on IPIX real-life datasets, as

described in [12], [24]. The IPIX radar experimental data

we processed were collected at Grimsby, Ontario, Canada,

from the Communications Research Laboratory, McMaster

University.

Sea clutter sets to be used here are measured with the

use of the McMaster IPIX radar, a fully coherent X-band

radar, with advanced features, such as dual transmit/receive

polarization, frequency agility, and stare/surveillance mode.
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It is extremely versatile, as each feature is highly adjustable

through software in the control computer. Originally, the

IPIX radar was shorthand for “ice multi-parameter imaging

X-band” radar, called that way as the radar was designed for

the detection of growlers, i.e. small pieces of ice breaking

away from icebergs. After major upgrades introduced be-

tween 1993 and 1998, the high-resolution data collected by

the IPIX radar became a benchmark for testing intelligent

detection algorithms. Accordingly, the adjustable meaning

of the IPIX acronym was changed to “intelligent pixel pro-

cessing X-band” radar, where the term “pixel” refers to

a picture element [24]. The IPIX radar is equipped with

computer control and digital data acquisition capabilities.

In 1998, a database of high-resolution radar measurements

was collected in Grimsby, on the shore of Lake Ontario,

between Toronto and Niagara Falls, Canada. The 222 data

sets in this database focus specifically on the presence of

Fig. 5. Modeling of IPIX data with a resolution of 3 m, HH

polarization and 17th range cell: (a) moments fit test for the case

of 3 gamma PDFs, (b) CCDF fit test of 1 gamma, 2 gamma and

3 gamma PDFs.

Fig. 6. Modeling of IPIX data with a resolution of 15 m, HH

polarization and 5th range cell: (a) moments fit test for the case

of 3 gamma PDFs, (b) CCDF fit test of 1 gamma, 2 gamma and

3 gamma PDFs.

floating objects (targets) of varying size, observed under

varying weather conditions. A graphical representation of

all 222 datasets and images including radar return plots

and time Doppler spectra are available in [24]. The char-

acteristic features of the IPIX radar and the environmental

conditions under which the radar data was collected are

also presented in [24].

The above estimators are executed according to the

flowchart presented in Fig. 2. To start the optimization,

CCDF values in (13) are considered between 10−0.55 and

10−3. On the other side, 200 moments values with orders

between r = 0.1 and r = 2 are taken in formula (13). Our

first study concerns modeling of IPIX data with a high res-

olution of 3 m, HH (horizontal-horizontal) antennas polar-

ization and 17th range cell using one gamma, two gamma

and three gamma PDFs defined by Eqs. (1) and (4), as

shown in Fig. 5. Moment fit curves are depicted for the

case of 3 gamma PDFs – see Fig. 5a – and CCDF fit curves
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are presented for the case of 1 gamma, 2 gamma and 3

gamma PDFs (see Fig. 5b). From Fig. 5a, it is observed

that the mixture of gamma PDF moments has smaller er-

rors between empirical and estimated moment curves. This

indicates that this scenario of IPIX data has probably a mix-

ture of Gaussian and non-Gaussian clutter. From Fig. 5b,

the best tail fitting with such data is obtained by a mixture

of three gamma distributions using the CCDF fit estimator.

Fig. 7. Modeling of IPIX data with a resolution of 30 m, HH

polarization and 11th range cell: (a) moments fit test for the case

of 3 gamma PDFs, (b) CCDF fit test of 1 gamma, 2 gamma and

3 gamma PDFs.

Moreover, it is clearly seen in Fig. 6 that the IPIX data

with a resolution of 15 m, HH polarization and 5th range

cell are well modeled by a mixture of three gamma com-

ponents with the moment fit estimator. This means that

the proposed estimators converge to the best estimates of

respective 7 parameters.

Figure 7, taking into consideration the modeling study of

real data with a low resolution of 30 m, HH polariza-

Fig. 8. Modeling of IPIX data with a resolution of 3 m, VV

polarization and 21st range cell: (a) moments fit test for the case

of 3 gamma PDFs, (b) CCDF fit test of 1 gamma, 2 gamma and

3 gamma PDFs.

Table 1

Comparison of complexity (number of FLOP) and performance of different model structures
`

`
`

`
`

`
`

`
`

`
`

`

IPIX data

Estimator
SQE using 2 gamma CCDF SQE using 3 gamma CCDF SQE using 3 gamma 〈xr〉

HH, 3 m and 17th cell 1.98×10−4 2.32×10−5 0.0195

HH, 15 m and 5th cell 8.48×10−4 3.57×10−5 0.0086

HH, 30 m and 11th cell 5.34×10−4 5.86×10−4 1.98×10−4

VV, 3 m and 21st cell 5.40×10−4 5.37×10−4 5.87×10−7
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tion and 11th range cell, shows the efficiency of both SM

CCDF fit and SM moment fit estimators. Here, two and

three gamma component models offer almost similar re-

sults. For the case of modeling IPIX data with a resolution

of 3 m, VV (vertical-vertical) antenna polarization and 21st

range cell, Fig. 8 depicts the different curves of moments

and CCDFs respectively. It is remarkable that the mixture

of three gamma PDFs additionally ensures goodness-of-fit

with real data. This model has the ability to track empirical

CCDF in the presence of different inflexion points. From

the above, it is shown that the SM moment fit and SM

CCDF fit ensure proper estimation results.

From the above results, the trimodal gamma distribution

fits IPIX data in most cases in terms of different range res-

olutions. Finally, the comparison of fitness function values,

i.e. the sum of quadratic errors (SQE) given in (13) is high-

lighted in Table 1. Residuals corresponding to the CCDF

NLS fit method are calculated for 10−0.55 <CCDF < 10−3.

On the other hand, residuals corresponding to the moments,

i.e. 〈xr〉, the NLS fit method, are calculated for 0.01 < r < 2.

From Table 1, improved results are offered by the CCDF

NLS fit method for a mixture of 3 gamma populations.

5. Conclusion

Two methods for estimating parameters of a mixture of

gamma PDFs were introduced in this paper. One, two

and three gamma component models were considered for

the purpose of parameter estimation and modeling tasks.

The proposed zlog(z) approach does not involve the use of

numerical calculi, but it is used for the case of a single

gamma PDF.

Experiments showed that the latter is not suitable for mod-

eling IPIX data. In order to show the efficiency of the

proposed SM moment fit and SM CCDF fit, modeling of

several data scenes have been tested by means of two and

three gamma component models. From numerical illustra-

tions, it was shown that the best fit with radar echoes was

achieved by a mixture of three gamma PDFs.

The computational time associated with the proposed mo-

ment and CCDF fits is relatively high owing to the fact

that they search seven dimensional spaces. To conclude,

the application of the proposed mixture of three gamma

PDFs with SM CCDF fit and SM moments fit methods is

a novel approach to modeling IPIX radar echoes. In fact,

this model produces excellent tail fitting of the recorded

data.
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