
Paper RED-LE: A Revised Algorithm

for Active Queue Management
Samuel O. Hassan

Department of Mathematical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

https://doi.org/10.26636/jtit.2022.160022

Abstract—The random early detection (RED) algorithm was

developed in 1993. Nearly three decades later, several im-

proved variants have been proposed by scientists. The use of

a (pure) linear function for computing packet drop probabili-

ty has turned out to be a disadvantage, leading to the prob-

lem of large delays. Such a problem may be addressed by

using linear and non-linear (i.e. as exponential) packet drop

probability functions. This paper proposes a revised RED

active queue management algorithm named RED-linear expo-

nential (RED-LE). This variant involves an interplay of linear

and exponential drop functions, in order to improve the per-

formance of the original RED algorithm. More importantly,

at low and moderate network traffic loads, the RED-LE al-

gorithm employs the linear drop action. However, for high

traffic loads, RED-LE employs the exponential function for

computing the packet drop probability rate. Experimental re-

sults have shown that RED-LE effectively controls congestion

and offers an improved network performance under different

traffic loads.

Keywords—active queue management, network congestion,

routers, RED-LE, simulation.

1. Introduction

Network congestion may be described as a condition in

which the amount of incoming data packets (generated traf-

fic) is greater than the amount that the network’s available

resources are capable of accommodating [1]–[5]. The prob-

lem of network congestion affects the quality of service

(QoS), as it leads to high packet delays, loss rates, and low

throughput [2], [4], [5]–[9].

A router plays an important role in the process of con-

trolling network congestion, as it allows to achieve im-

proved network performance rates [9]. Router-based con-

gestion control algorithms, such as active queue manage-

ment (AQM), effectively circumvent network congestion by

dropping packets at an early stage, before the buffer be-

comes full and sends a feed- back signal to sources in order

to reduce their transmission rates [10]–[12].

The most prominent type of an AQM algorithm is random

early detection (RED), developed by Floyd and Jacobson

in 1993 [11]. RED continues to serve as a basis for many

new AQM algorithms [12]. Upon the arrival of each packet

at the router, RED updates the average queue size (denoted

avg) which is used as an indicator for congestion detection.

To perform this computation, the current status of the queue

is examined.

If the router’s queue is non-empty, avg value is determined

using the exponential weighted moving average (EWMA)

mechanism in the following manner:

avg = (1−Wq)avg′+(Wq×qcur) , (1)

where Wq ∈ [0,1] represents a preset weighting factor, avg′

represents the previously computed average queue size, and

qcur represents the current queue size.

However, if the router’s queue is empty, avg is determined

as:

avg = (1−Wq)
n
×avg′ , (2)

with

n = f (q−current−time−q−idle−time) , (3)

where q−current−time denotes the current time,

q−idle−time denotes the beginning of queue idle time,

and f (t) denotes a linear function of time t.
The probability of dropping a packet in RED depends on

avg in the following manner:

Pb =











0, if avg ∈ [0,minT H)

maxP(avg−minT H
maxT H−minT H), if avg ∈ [minT H,maxT H)

1, if avg≥ maxT H
,

(4)

where minT H is the router’s minimum queue threshold,

maxT H represents the router’s maximum queue threshold,

maxP represents the maximum packet drop probability, and

Pb stands for the initial packet dropping probability.

In RED, if avg∈ [0,minT H) then no packet will be dropped

and if avg ∈ [minT H,maxT H), then the packets are ran-

domly dropped with the probability of:

Pb = maxP(
avg−minT H

maxT H−minT H
) . (5)

Finally, if avg ≥ maxT H, then the packet is forced to be

dropped, with a probability of one. The final packet drop

probability Pa therefore given by:

Pa =
Pb

1− count×Pb
, (6)

where count represents the number of packets that arrived

since the last dropped packet.

91

Samuel O. Hassan

There are several models in literature that modify the

linear probability function of RED algorithm in an at-

tempt to overcome its weaknesses. In this paper, another

improvement-aiming modification is suggested, known as

the random early detection-linear exponential (RED-LE)

algorithm. The RED-LE algorithm uses both linear and

exponential packet drop functions instead of a (pure) linear

packet drop probability function of RED, while retaining

RED’s other characteristics.

The rest of the paper is organized as follows. A review of

related works on the RED algorithm is provided in Sec-

tion 2. A description of RED-LE is given in Section 3.

The simulation configuration is presented and the results

are discussed in Section 4. Finally, a brief conclusion is

given in Section 5.

2. Related Works

To increase the throughput of RED, Floyd developed,

in [13], the gentle RED (GRED) variant in which a linear

function is employed to compute the packet drop proba-

bility when avg lies within the minT H and maxT H queue

threshold range – Eq. (5) – while another linear function

is employed to compute the packet drop probability when

avg is within the maxT H and 2×maxT H threshold range –

Eq. (7):

Pb = maxP+(1−maxP)
avg−minT H

maxT H
. (7)

To ensure higher stability, Giménez et al. developed a new

RED variety called BetaRED, which involves a beta dis-

tribution function to compute the packet drop probability

instead of a linear function when avg value is within the

minT H and maxT H threshold range [12].

In [14], an attempt to reduce the number of input param-

eters for RED was made by Abdel-Jaber, known as Expo-

nential RED (RED E) in which a (pure) exponential drop

function given in Eq. (8) is employed to compute the packet

drop probability when avg value is between the minT H and

maxT H queue thresholds.

Pb =















0, if avg ∈ [0,minT H)

eavg− eminT H

emaxT H − eminT H , if avg ∈ [minT H,maxT H)

1, if avg≥ maxT H

.

(8)

To increase RED’s throughput, Zhang et al. proposed,

in [15], the MRED variety in which a quadratic function is

employed to compute the packet drop probability when avg
is within the minT H and maxT H queue threshold range

given by Eq. (9), while a linear function is employed to

compute the packet drop probability when avg is within

the maxT H and 2×maxT H queue threshold range as stated

in Eq. (10).

Pb = maxP
avg2−minT H2

maxT H2−minT H2 , (9)

Pb = maxP+(1−maxP)
avg−minT H

maxT H
. (10)

To achieve a trade-off between delay and throughput per-

formance metrics, Paul et al. suggested, in [16], the Smart

RED (SmRED) scheme, given in Eq. (11), in which

a quadratic function is employed to compute the packet drop

probability when avg lies within the minT H and Target
queue threshold range, while a linear function is employed

to compute the packet drop probability when avg lies within

the Target and maxT H queue threshold range:

Pb=































0, if avg∈ [0,minT H)

maxP
(avg−minT H

maxT H −minT H

)2
, if avg∈ [minT H,Target)

maxP
√

avg−minT H

maxT H−minT H
, if avg∈ [Target,maxT H)

1, if avg≥ maxT H
(11)

in which

Target = minT H +
maxT H−minT H

2
. (12)

In order to obtain improved throughput, Suwannapong and

Khunboa developed, in [17], yet another variety of RED,

named Congestion Control RED (CoCo-RED) which in-

volves both linear and an exponential drop functions. The

linear function is employed when avg value is within the

minT H and maxT H queue threshold range, while the ex-

ponential function is employed when avg value is within

the maxT H and K queue threshold range:

Pb=















0, if avg ∈ [0,minT H)

maxP
avg−minT H

maxT H−minT H
, if avg ∈ [minT H,maxT H)

abavg, if avg ∈ [maxT H,K)
(13)

in which

a =
1

(

e
ln(1/maxP)
K−maxT H

)maxT H ×maxP (14)

and

b = e
ln(1/maxP)
K−maxT H . (15)

Feng et al. [18] proposed a three-section RED (TRED)

which employs the usage of a non-linear drop action,

a linear drop action, and a non-linear drop function for

low, moderate, and high buffer occupancy rates, respec-

tively. TRED results in high throughput at high traffic loads

and achieves a reduced delay at high traffic loads.

In order to increase throughput, Zhou et al. proposed,

in [19], another variant named non-linear RED (NLRED)

in which a quadratic function is employed to compute the

packet drop probability when avg value is between the

minT H and maxT H queue thresholds.

To reduce the packet loss rate, Kumhar et al. developed,

in [20], quadratic RED (QRED) in which a quadratic func-

tion is deployed to compute the packet drop probability

92

RED-LE: A Revised Algorithm for Active Queue Management

when avg value lies within the minT H −maxT H queue

threshold range:

Pb =

(

avg−minT H
K−minT H

)2

(16)

or

Pb = 1−
(

K−avg
K−minT H

)2

, (17)

in which K represents the buffer size.

To achieve increased throughput, Adamu et al. developed,

in [21], the flexible RED (FXRED) algorithm. At low and

moderate traffic loads, i.e. when avg value lies within the

minT H and ∆ queue threshold range, FXRED uses a non-

linear function to drop packets. However, at high traffic

loads, i.e. when avg value lies within the ∆ and maxT H
queue threshold range, FXRED switches to a linear pattern

for aggressive drop action. In FXRED, ∆ was chosen in

the following manner:

∆ =
minT H +maxT H

2
. (18)

Furthermore, to improve throughput performance, the self-

adaptive RED (SARED) algorithm developed by Adamu

et al. in [4] is quite similar to RED, except that either

a quadratic or linear drop function is employed when avg
lies within the minT H and maxT H threshold range. The

quadratic drop function is employed for lower and mod-

erate buffer occupancies, while a linear drop function is

employed for higher buffer occupancies, respectively.

3. Random Early Detection-Linear

Exponential (RED-LE)

The proposed algorithm is named random early detection-

linear exponential (simply denoted by RED-LE). This re-

vised RED algorithm involves an interplay of linear and

exponential drop functions in order to increase the perfor-

mance of the original RED algorithm. The improved packet

drop probability is:

Pb=































0, if avg ∈ [0,minT H)

2maxP
avg−minT H

maxT H−minT H
, if avg∈ [minT H,Target)

elog(maxP)
2(maxT H−avg)
maxT H−minT H , if avg∈ [Target,maxT H)

1, if avg≥ maxT H
(19)

in which

Target =
maxT H +minT H

2
. (20)

Considering the curve given in Fig. 1, RED-LE breaks

the section between minT H and maxT H queue thresholds

Fig. 1. RED-LE’s drop probability function curve.

into two parts which include both a linear drop function

and an exponential drop function, such that:

• At low and moderate traffic loads which account for

cases with minT H ≤ avg < Target, the packet drop

function is expressed as:

Pb = 2maxP
avg−minT H

maxT H−minT H
. (21)

Target is a mid-point threshold defined according to

Eq. (20).

• At high traffic load which account for cases where

Target ≤ avg < maxT H, the packet drop function is

expressed as:

Pb = elog(maxP)
2(maxTH−avg)
maxT H−minTH . (22)

Using Eq. (22), a more aggressive drop action will

be achieved at high load.

It is worth to mention that Target serves the purpose of

distinguishing between two traffic scenarios: lower and

moderate buffer occupancies, and higher buffer occupan-

cies. A detailed pseudo-code for RED-LE is presented in

Algorithm 1.

4. Simulations

In this section, the proposed RED-LE AQM algorithm is

implemented using the ns-3 simulator [22]. The effective-

ness of RED-LE is evaluated and compared against two

algorithms, namely TRED and RED E, under three differ-

ent network traffic loads: low, moderate, and high.

The simulation double dumbbell topology (shown in Fig. 2)

consists of N TCP connecting sources transmitting to one

sink (denoted by D) via two routers R1 and R2. These two

routers R1 (with the algorithm implemented) and R2 are

connected together via a bottleneck link with a capacity of

10 Mbps and a propagation delay of 100 ms. Other hosts

are connected to the routers via 100 Mbps links charac-

terized by a propagation delay of 5 ms. The N number of

93

Samuel O. Hassan

Algorithm 1. Detailed RED-LE’s algorithm

1: Initialization:

2: avg = 0
3: count =−1
4: Upon every packet arrival do

5: Calculate the average queue size avg
6: if router’s queue is non-empty then

7: avg = (1−Wq)avg′+(Wq×qcur)
8: else

9: Compute n in which

10: n = f (q−current−time−q−idle−time)
11: avg = (1−Wq)

n×avg′

12: end if

13: if avg < minT H then

14: Accept the packet

15: Set count = count−1
16: else if minT H ≤ avg < Target then

17: Set count = count +1
18: Based on the linear drop function compute the final

drop probability Pa:

19: Pb = 2maxP(avg−minT H
maxT H−minT H)

20: Pa = Pb/(1− count×Pb)
21: Drop arriving packet according to Pa
22: Set count = 0
23: else if Target ≤ avg < maxT H then

24: Set count = count +1
25: Based on the exponential drop function compute the

final drop probability Pa:

26: Pb = elog(maxP)
2(maxT H−avg)
maxT H−minTH

27: Pa = Pb/(1− count×Pb)
28: Drop arriving packet according to Pa
29: Set count = 0
30: else if maxT H ≤ avg then

31: Drop arriving packet

32: Set count = 0
33: end if

34: if count= -1 then

35: When the router’s queue becomes empty

36: Set q−idle−time = q−current−time
37: end if
38:

39: Saved variables:

40: avg: average queue size

41: q−idle−time: beginning of queue idle time

42: count: packets since last dropped packet
43:

44: Preset input parameters:

45: minT H: router’s queue minimum threshold

46: maxT H: router’s queue maximum threshold

47: maxP: maximum packet drop probability

48: Wq: weighting factor
49:

50: Other:

51: Pb: current packet marking probability

52: qcur: current queue size

53: q−current−time: current time

54: f (t): a linear function of time t

Fig. 2. Network topology.

flows was varied to indicate various levels of traffic loads in

the network. The TCP implementation used is New Reno.

The buffer size was set to 250 packets, while simulation

time was set to 100 s. Other configurations are shown in

Table 1.

Table 1

Simulation setup

Input parameter Algorithm Value

minT H TRED, RED E & RED-LE 30 packets

Target RED-LE 60 packets

maxT H TRED, RED E & RED-LE 90 packets

maxP TRED & RED-LE 0.1

Wq TRED, RED E & RED-LE 0.002

4.1. Scenario 1 – Low Load

In this scenario, the number of connecting sources is set

to 5. As shown in Fig. 3a, the RED-LE algorithm re-

duces the average queue size better than both TRED and

RED E algorithms. As shown in Table 2, RED-LE reduced

the queue size by 1.9437% and 14.1522% compared with

TRED and RED E, respectively.

Delay performance is shown in Fig. 3b, RED-LE outper-

formed both TRED and RED E. As shown in Table 3, de-

lays in RED-LE were by 0.0226% and 0.1140% shorter

when compared with TRED and RED E, respectively.

Figure 3c shows throughput performance. RED E clearly

outperformed both TRED and RED-LE, although the re-

sults of RED-LE were better than those of TRED. A de-

tailed analysis is presented in Table 4.

4.2. Scenario 2 – Moderate Load

In this scenario, the number of connecting sources is set

to 20. As shown in Fig. 4a, the proposed RED-LE algo-

rithm is clearly more efficient at reducing the average queue

size than both TRED and RED E algorithms. As shown in

Table 2, RED-LE reduced it by 5.2565% and 29.7475%

percentage decrement when compared with TRED and

RED E, respectively.

Delay performance is shown in Fig. 4b, RED-LE satis-

factorily outperformed both TRED and RED E. As shown

94

RED-LE: A Revised Algorithm for Active Queue Management

Fig. 3. Low load condition graphs: (a) average queue size, (b) de-

lay, (c) throughput.

Table 2

Performance in terms of average queue size [packets]

Traffic load
AQM algorithm

TRED RED−E RED-LE

Low 11.1701 23.3786 9.2264

Moderate 16.3599 40.8509 11.1034

High 40.7549 62.0096 27.9556

in Table 3, RED-LE reduced the delay by 0.1777%

and 0.8593% compared with TRED and RED E, respec-

tively.

Table 3

Performance in terms of delay [ms]

Traffic load
AQM algorithm

TRED RED E RED-LE

Low 1.3918 1.4832 1.3692

Moderate 5.8040 6.4856 5.6263

High 15.2848 16.8606 14.3817

Figure 4c shows throughput performance. RED E clearly

obtained the highest value when compared with TRED and

RED-LE. An analysis is presented in Table 4.

Fig. 4. Moderate load condition graphs: (a) average queue size,

(b) delay, (c) throughput.

95

Samuel O. Hassan

Table 4

Performance in terms of throughput [Mbps]

Traffic load
AQM algorithm

TRED RED E RED-LE

Low 9.0105 9.4899 9.3054

Moderate 9.7709 9.7915 9.6858

High 9.7917 9.8696 9.5417

4.3. Scenario 3 – High Load

In this scenario, the number of connecting sources is set

to 50. Again, as shown in Fig. 5a, the proposed RED-LE

Fig. 5. High load condition graphs: (a) average queue size,

(b) delay, (c) throughput.

algorithm clearly outperformed both TRED and RED E al-

gorithms in terms of maintaining a small average queue

size. As presented in Table 2, RED-LE reduced the queue

size by 12.7993% and 34.0540% compared with TRED and

RED E, respectively.

The delay plot for the three algorithms is shown in Fig. 5b.

RED-LE clearly obtained shorter delays than both TRED

and RED E. As presented in Table 3, RED-LE reduced

them by 0.9031% and 2.4789% compared with TRED and

RED E, respectively.

Figure 5c shows throughput performance. RED E obtained

the highest value when compared with both TRED and

RED-LE. A more detailed analysis is presented in Table 4.

5. Conclusion

In this study, a modest modification is introduced to the

packet drop probability function of the RED algorithm.

More specifically, a RED-linear exponential (RED-LE)

algorithm was suggested for implementation in routers.

A comparison was made between the RED-LE algorithm

and two other AQM algorithms, namely TRED and RED E,

under various traffic load scenarios in a widely-used net-

work simulator. From experimental results, it can be con-

cluded that RED-LE ensures better and more efficient con-

gestion control by obtaining reduced average queue size and

delay values.

References

[1] A. A. Abu-Shareha, “Controlling delay at the router buffer using

modified random early detection”, Int. J. of Comp. Netw. and Com-

mun. (IJCNC), vol. 11, no. 6, pp. 63–75, 2019

(DOI: 10.5121/ijcnc.2019.11604).

[2] S. B. Danladi and F. U. Ambursa, “DyRED: An enhanced random

early detection based on a new adaptive congestion control”, in Proc.

of the 15th Int. Conf. on Electron., Comp. and Comput. ICECCO

2019, Abuja, Nigeria, 2019

(DOI: 10.1109/ICECCO 48375.2019.9043276).

[3] M. Baklizi, H. Abdel-Jaber, S. Ramadass, N. Abdullah, and M. An-

bar, “Performance assessment of AGRED, RED and GRED con-

gestion control algorithms”, Inform. Technol. J., vol. 11, no. 2,

pp. 255–261, 2012 (DOI: 10.3923/itj.2012.255.261).

[4] A. Adamu, Y. Surajo, and M. T. Jafar, “SARED: Self-adaptive ac-

tive queue management scheme for improving quality of service in

network systems”, J. of Comp. Sci., vol. 22, no. 12, pp. 253–267,

2021 (DOI: 10.7494/csci.2021.22.2.4020).

[5] N. Kaur and R. Singhai, “Congestion control scheme using network

coding with local route assistance in mobile adhoc network”, Int. J.

of Comp. Appl. in Technol., vol. 60, no. 3, pp. 242–253, 2019

(DOI: 10.1504/ijcat.2019.100298).

[6] L. Pei, F. Wu, and S. Wang, “Periodic, quasi-periodic and chaotic

oscillations in two heterogeneous AIMD/RED network congestion

models with state-dependent round-trip delays”, Int. J. of Bifurcation

and Chaos, vol. 31, no. 6, 2150124, 2021

(DOI: 10.1142/S0218127421501248).

[7] H. Mohammed, G. Attiya, and S. El-Dolil, “Active queue manage-

ment for congestion control: Performance evaluation, new approach,

and comparative study”, Int. J. of Comput. and Netw. Technol.,

vol. 5, no. 2, pp. 37–49, 2017 (DOI: 10.12785/IJCNT/050201).

[8] A. Ahmed and N. Nasrelden, “New congestion control algorithm

to improve computer networks performance”, in Proc. of the 28th

Int. Conf. on Innovat. Trends in Comp. Engin. ITCE 2018, Aswan,

Egypt, 2018, pp. 87–93 (DOI: 10.1109/ITCE.2018.8316605).

96

RED-LE: A Revised Algorithm for Active Queue Management

[9] H. Abdel-Jaber, A. Shehab, M. Barakat, and M. Rashad, “IGRED:

An improved gentle random early detection method for manage-

ment of congested networks”, J. of Intercon. Netw., vol. 19, no. 2,

1950004, 2019 (DOI: 10.1142/S021926591950004X).

[10] J. Aweya, M. Ouellette, and D. Y. Montuno, “A control theoretic

approach to active queue management”, Comp. Netw., vol. 36, no.

2, pp. 203–235, 2001 (DOI: 10.1016/S1389-1286(00)00206-1).

[11] S. Floyd and V. Jacobson, “Random early gateway for conges-

tion avoidance”, IEEE/ACM Trans. on Network., vol. 1, no. 4,

pp. 397–413, 1993 (DOI: 10.1109/90.251892).

[12] A. Giménez, M. A. Murcia, J. M. Amigó, O. Martínez-Bonastre,

and J. Valero, “New RE-type TCP-AQM algorithms based on beta

distribution drop functions” [Online]. Available:

https://arxiv.org/pdf/2201.01105.pdf

[13] S. Floyd, “Recommendation on using the gentle – variant of RED”,

2000 [Online]. Available: http://www.icir.org/floyd/red/gentle.html

[14] H. Abdel-Jaber, “An exponential active queue management method

based on random early detection”, J. of Comp. Netw. and Commun.,

vol. 2020, article ID 80904682020, 2020

(DOI: 10.1155/2020/8090468).

[15] Y. Zhang, J. Mab, Y. Wang, and C. Xu, “MRED: An improved non-

linear RED algorithm”, in Int. Proc. of Comp. Science and Inform.

Technol., vol. 44, no. 2, pp. 6–11, 2012

(DOI: 10.7763/IPCSIT.2012.V44.2).

[16] A. K. Paul, H. Kawakami, A. Tachibana, and T. Hasegawa, “An

AQM based congestion control for ENB RLC in 4G/LTE network”,

in Proc. of the IEEE Canadian Conf. on Elec. and Comp. Engin.

CCECE 2016, Vancouver, BC, Canada, 2016

(DOI: 10.21109/CCECE.2016.7726792).

[17] C. Suwannapong and C. Khunboa, “Congestion control in CoAP

observe group communication”, Sensors, vol. 19, no. 3433,

pp. 1–14, 2019 (DOI: 10.3390/s19153433).

[18] C.-W. Feng, L.-F. Huang, C. Xu, and Y.-C. Chang, “Congestion con-

trol scheme performance analysis based on nonlinear RED”, IEEE

Systems J., vol. 11, no. 4, pp. 2247–2254, 2017

(DOI: 10.1109/JSYST.2014.2375314).

[19] K. Zhou, K. L. Yeung, and V. O. K. Li, “Nonlinear RED: A sim-

ple yet efficient active queue management scheme”, Comp. Netw.,

vol. 50, pp. 3784–3794, 2006 (DOI: 10.1016/j.comnet.2006.04.007).

[20] D. Kumhar, A. Kumar, and A. Kewat, “QRED: An enhancement

approach for congestion control in network communications”, Int. J.

of Inform. Technol., vol. 13, pp. 221–227, 2021

(DOI: 10.1007/s41870-020-00538-1).

[21] A. Adamu, V. Shorgin, S. Melnikov, and Y. Gaidamaka, “Flexible

random early detection algorithm for queue management in routers”,

in Distributed Computer and Communication Networks. 23rd In-

ternational Conference, DCCN 2020, Moscow, Russia, Septem-

ber 14-18, 2020, Revised Selected Papers, V. M. Vishnevskiy,

K. E. Samouylov, and D. V. Kozyrev, Eds. LNCS, vol. 12563,

pp. 196–208. Springer, 2020 (DOI: 10.1007/978-3-030-66471-8 16).

[22] “The Network Simulator ns-3” [Online]. Available:

http://www.nsnam.org

Samuel O. Hassan received

his M.Sc. and Ph.D. degrees

in Computer Science from

Obafemi Awolowo University,

Ile-Ife, Nigeria. Currently, he is

a Lecturer at the Department of

Mathematical Sciences (Com-

puter Science Unit), Olabisi On-

abanjo University, Ago-Iwoye,

Nigeria. He is a Certified Infor-

mation Technology Practitioner

(C.itp). His research interests spans computational mathe-

matics, computer networks and communications, mathe-

matical modeling and simulation, and Internet congestion

control.

E-mail: samuel.hassan@oouagoiwoye.edu.ng

Department of Mathematical Sciences

Olabisi Onabanjo University

Ago-Iwoye, Nigeria

97

