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Abstract—Randomness testing is one of the essential and eas-

iest tools for the evaluation of the features and quality of

cryptographic primitives. The faster we can test, the greater

volumes of data can be checked and evaluated and, hence,

more detailed analyses may be conducted. This paper presents

a method that significantly reduces the number of distances

calculated in the minimum distance, Bickel-Breiman, and m

nearest points tests. By introducing a probabilistic approach

with an arbitrarily low probability of failure, the number

of calculated distances proportional to the number of re-

quired distances and independent of the number of points was

achieved. In the well-known Diehard’s minimum distance and

3D spheres tests, the quantity of computations achieved is re-

duced by the factors of 394 and 771, respectively.

Keywords—Bickel-Breiman test, minimum distance test, m near-

est pairs test, randomness test.

1. Introduction

Testing of randomness is important, as a variety of analyses

concerned with cryptographic primitives may be reduced to

examining appropriately crafted binary sequences. In each

such case, the quality of the analysis increases with the

volume of data checked, but this leads to increases in time

and cost as well. Any improvements in randomness testing

translate directly into the quality of evaluation of RNGs,

symmetric ciphers, hash functions, and other cryptographic

primitives.

First proposed in Diehard as minimum distance and 3D

spheres tests, then found in TestU01 as m nearest pairs test

and, of course, ported to Dieharder as diehard 2dsphere and

diehard 3dsphere a family of minimum distance tests raised

and took its place in randomness testing. Computationally,

the main part of these tests consists in calculating distances

between n points randomly placed in a t dimensional hy-

pertorus. Naive implementation leads to the calculation of

n(n−1)/2 distances, which, in some cases, may be unac-

ceptable.

Dieharder and NIST’s Statistical Test Suite, are the two

most commonly used test suites. Both are slightly outdated,

but still remain popular due to their availability.

We will distinguish three test cases:

1. minimum distance,

2. m nearest pairs,

3. Bickel-Breiman.

The first one is a special case of the second case, but be-

cause it relies on a different method to speed up the calcu-

lation process, we make a distinction between the two.

The most general formulation is the closest-pair problem,

for which deterministic algorithms operating in O(n logn)
are known (described in [1]–[4]), as well as probabilistic

algorithms with linear complexity due to [5]–[6].

The best-known deterministic method for performing the

minimum distance test is based on Fischler’s upper estima-

tion for minimum distance. The algorithm may be found

in [7]–[9]. As shown in the following section, this method

is characterized by linear complexity.

The contribution of this research consists in introducing

a probabilistic approach to minimum distance estimation

with an arbitrarily low probability of failure. Even for ex-

tremely low probabilities of failure, it is possible to obtain

significantly lower estimations of minimum distance, lead-

ing to the number of calculated distances being independent

of the number of points.

Similar approaches for the m nearest pairs and the Bickel-

Breiman tests are proposed in the subsequent sections. In

all three tests, we obtained the number of calculated dis-

tances that was proportional to the number of the needed

distances and was independent of the number of points or

the number of dimensions.

In the remaining part of this paper, for the sake of clarity,

we shall simply refer to a cube and a torus, instead of a t
dimensional hypercube and a hypertorus.

2. Minimum Distance Test

In this paragraph, we will consider an algorithm deployed

to identify two nearest points between n points that are

randomly placed in a t dimensional hypertorus. In 2002,

Fischler published a paper [7] on correcting and speeding

up minimum distance tests, like the two mentioned from

Diehard. Fischler’s method is based on dividing the torus

into equal cubes and on calculating distance only between

points in the same or adjoining cubes. The smaller the

cubes, the fewer distances have to be calculated. But below

a certain point, no points in the same or in adjoining cubes

may be identified, and an error occurs. Fischler gave the

upper estimate for the minimum distance in the set of n
points in a t dimensional unit hypertorus:
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it is equal to twice the length of the edge of the sub-cube.

As it will be shown below, this is unnecessary over the

secure approach.

To determine the expected number of calculated distances,

let us consider to-the-right-and-down approach illustrated

in Fig. 1 for the two-dimensional case.

Fig. 1. To-the-right-and-down approach for calculating distances

in a 2D torus.

For every cube (fully colored), we need to calculate the

distance for every pair of points in that cube and from

every point to all points in cubes to the right and down

(highlighted by corresponding light color).

For t > 2 dimensional case we can for example test all cubes

in volume consisting of a series of 3-by- . . . , -by-3 t − 1,

t−2 . . . , 3 cubes, “line” 3-by-1 and single cube. Note that

the last two can be treated as one- and zero-dimensional

cubes-of-cubes. The total number of cubes in this volume

is (3t −1)/2. From Fischler’s formula, we can calculate

the number of cubes as:

⌊
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n
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⌋t

6
2tn

t
t
2

.

Note that only for t up to 4 expected number of points in

every cube will not exceed 1.

Using binomial distribution, the expected number of calcu-

lated distances per cube is:
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where p =
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.

If we omit the floor function in p for a large n, we get the

approximation:

EF ≈
1
2

(
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4

)t

,

and the total number of calculated distances:

1
2

(

3
2

)t

t
t
2 n.

In Diehard’s minimum distance test, we have n = 8000
and t = 2, which gives us the maximum number of 1262

squares and the expected number of calculated distances

slightly exceeds 18,138. For the 3D spheres test, we have

n = 4000 and t = 3, which gives the maximum number

of 183 cubes and the expected number of calculated dis-

tances 37021. For n = 3000 and t = 5 one would get 45 5D

cubes and expected number of calculated distances equal-

ing 1,066,477. Those numbers mean, respectively, 1,764,

216, and 4.2 times fewer computations compared to the

basic naive algorithm.

From Fig. 1, we can observe that the distance is calculated

if and only if two points collide in the same double-cube

cube composited from (3t −1)/2 base cubes. To find two

nearest points, all we need is at least one such collision,

which leads us to a different approach of finding the maxi-

mum number of dividing cubes.

We start from the probability of no collisions when placing

n points in K boxes being small enough:

K!
(K−n)!Kn 6 ε ,

where ε can be, for example, 10−20.

For efficiently solve this inequality for K, the well-known

relation is used:

e−x
> 1− x ,

which leads to:

K!
(K−n)!Kn =

n

∏
i=1

K− i+1
K

=
n

∏
i=1

(

1−
i−1

K

)

6

n

∏
i=1

e−
i−1
K = e−

1
K ∑n

i=1 (i−1) = e−
n(n−1)

2K 6 ε ,

and the upper limit for K is:

K 6−
n(n−1)

2lnε
.

However, the number of boxes K is not the number of

needed cubes, which in fact is:
⌊

−
n(n−1)

2lnε

⌋

3t .

In the following considerations, the following formula will

be used:
⌊

t

√

−
n(n−1)

2lnε

⌋t

3t .

104



Speeding Up Minimum Distance Randomness Tests

Similarly, we can calculate the expected number of calcu-

lated distances per cube:

EC =
1
2

n(n−1) p2 [3t (1− p)+ p
]

,

where p =

⌊

t
√

−
n(n−1)

2lnε

⌋−t

3−t .

Assuming n is large after omitting the floor function, we

get:

EC ≈
2ln2 ε

n(n−1)3t ,

and the total number of calculated distances is:

− lnε ,

which is independent of the number of points.

According to proposed method for the three examples, we

have:

• 24992 squares and 46 distances,

• 1653 cubes and 48 distances,

• 275 5D cubes and 76 distances.

Those numbers mean that the number of computations is

394, 771, and 14,033 times smaller compared to Fischler’s

method, respectively.

If, instead of inequality for e−x, Stirling’s approximation for

factorial is used, a slightly better formula may be obtained:

(

K
K−n

)K−n+ 1
2

e−n
6 ε ,

which unfortunately cannot be efficiently solved for K and,

therefore, was omitted. However, there is not so little flaw

in this method.

According to the approach shown in Fig. 1, for any point put

into a torus, the distances would be calculated only to the

Fig. 2. A flaw in to-the-right-and-down approach.

points in the same or neighboring sub-cubes. Unfortunately,

in some cases this could lead to a failure in finding the

nearest point.

Let us consider a 2-dimensional case and a point which is

located somewhere in the center square. The smaller green

circle shown in Fig. 2 covers the entire area inside a 3-by-3

square, such that for any point therein, if there are points

closer to the one that is marked, then they are also in that

area. This is not true for a larger circle. In this case, for

every point outside the green circle, there are points outside

the 3-by-3 square which are closer to the one marked, but

because they are not situated in the neighboring squares,

they will not be included in the search. This error can

be fully eliminated only when Fischler’s formula is used,

because it guarantees that the minimum distance will be

lower than the radius of the smaller circle. The largest

circle corresponds to all points taken into consideration. In

a 2-dimensional case, a 3-by-3 square occupies less than

36% of the maximum size circle, in 3D – less than 16%

of the maximal sphere, and in 5D – less than 2.6%, which

creates a significant discomfort.

We will use the cumulative distribution function for the

minimum distance between n points in a t dimensional hy-

pertorus:

Pr(D 6 d) = 1− e
−dt n(n−1)Vt (1)

2 ,

where

Vt (r) =











πhrt

h!
, t = 2h ,

2hπh−1rt

t!!
, t = 2h−1 ,

is the volume of a t dimensional hypersphere of ra-

dius r [10].

After skipping the floor function, in the minimum distance

test, we get the length of the sub-cube’s edge, which is

equal to the radius of the smaller circle as:

K =
1
3

t

√

−2lnε
n(n−1)

,

and the probability of the minimum distance being greater

is:

ε
Vt (1)

3t ,

which for ε = 10−20 equals 10−7 for t = 2, 0.00079 for

t = 3, and 0.369 for t = 5.

By inverting this argumentation, we can easily find such

a sub-cube size that assures an arbitrarily low probability

of that flaw affecting the computed distances. From:

e
−dt n(n−1)Vt (1)

2 6 ε ,

we get

d >
t

√

−
2lnε

n(n−1)Vt (1)
,
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which returns the number of sub-cubes

K =

⌊

t

√

−
n(n−1)Vt (1)

2lnε

⌋t

.

Assuming n is large and omitting the floor function, the

total number of calculated distances is:

− lnε
3t

Vt (1)
.

According to the proposed method, for the same three ex-

amples, we have:

• 1,5152 squares and 251 distances,

• 913 cubes and 573 distances,

• 145 5D cubes and 4,065 distances.

Those numbers are substantially worse than those obtained

previously, but the expected number of computed distances

is still independent of the number of points.

This flaw will not play an important role in the following

two tests, because the number of points in each 3-by- . . .
cube will be significantly greater than one.

3. Bickel-Breiman Test

In the Bickel-Breiman test [11], the aim is to find the near-

est point for every point out of n points randomly placed

in a t dimensional hypertorus. In this case, the analytic ap-

proach leads to the lack of ability of dividing into sub-cubes

– for a randomly chosen point, the maximum distance to

the nearest point is
√

t
2 .

To cope with this, we need a collision for every point

placed, so we start with the probability of not finding any

other point in the 3t cube:

(

1−
3t

K

)n−1

,

and then the probability that not all the points will find

their neighbor is:

1−

[

1−
(

1−
3t

K

)n−1
]n

6 ε .

With simple transformations we obtain:

K 6
3t

1− n−1
√

1− n
√

1− ε
.

As before, the expected number of calculated distances per

cube is:

EBB =
1
2

n(n−1)
1

K2

[

3t
(

1−
1
K

)

+
1
K

]

,

and the total number of calculated distances:

1
2

n(n−1)
1
K

[

3t
(

1−
1
K

)

+
1
K

]

,

which is analogically in naive method, “only” with coeffi-

cient 1
K

[

3t
(

1− 1
K

)

+ 1
K

]

.

This time the improvement is not as spectacular as in the

previous case. It could be approximated as:

1

1− n−1
√

1− n
√

1− ε

times faster.

For the same three examples, this time we have:

• 362 squares and 144 times fewer calculated distances,

• 123 cubes and 64 times fewer calculated distances,

• 65 5D cubes and 32 times fewer calculated distances,

than in the naive approach, when ε = 10−20.

4. m Nearest Points Test

This test can be found in the TestU01 library [12] and is

described in paper [10].

Because of the existing recommendation that n > 4m2, we

can assume that the number of nearest points m is much

smaller than the total number of points n. In fact, it is

so small that in every case from examples presented in

Section 3, we get more distances calculated per every sub-

cube than actually needed.

To find m nearest pairs, at least m collisions are needed,

having the probability of:

1−
m−1

∑
r=0

K!
(K−n+ r)!Kn

{

n
n− r

}

.

For given n and m, while applying Stirling’s formula for

factorial and tabulating values of all needed Stirling’s num-

bers, the number of cubes K can be efficiently computed

Fig. 3. Expected number of calculated distances as a function of
√

n in a 2-dimensional case.
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Fig. 4. Expected number of calculated distances as a function of
√

n in a 5-dimensional case.

Fig. 5. Expected number of calculated distances as a function of

the number of dimensions.

numerically. Like in the minimum distance test, the ob-

tained value of K should be multiplied by 3t .

On the three examples researched, we have:

• 1,4552 squares and 1632 times fewer calculated dis-

tances,

• 1233 cubes and 1,076 times fewer calculated dis-

tances,

• 245 5D cubes and 1,024 times fewer calculated dis-

tances,

than using the formula for the Bickel-Breiman test, so the

effort pays off.

The three graphs presented show the relation between the

number of points, dimensions, and the expected number of

calculated distances. In Figs. 3 and 4, one can observe that

in every case the expected number of calculated distances

grows linearly according to the
√

n or, in fact, to the m.

The deviations observed arise from the necessary flooring

of
t
√

K.

Figure 5 shows how the number of dimensions affects the

expected number of calculated distances for a different

number of points. In all cases m =
√

n
2 .

Similarly, the gradual increase in the number of calculated

distances arises from the flooring of
t
√

K – otherwise they

would be constant. To understand the cause of that growth,

one can calculate the actual number of sub-cubes for a dif-

ferent t. Let n = 1,024,000, m = 505 and ε = 10−20, for

which we obtain K = 706,379,797 and from the formula:

⌊

t√K
⌋t

values from 282,475,249 (t = 10) to 706,336,929 (t = 2).

5. Implementation

At the beginning, let us consider the minimum distance test

and four approaches to implementing it:

• naive implementation using a general-purpose single

thread processor (CPU),

• implementation based on sub-cubes with Fischler’s

result, using a general-purpose single thread proces-

sor,

• implementation based on sub-cubes with the pre-

sented method, using a general-purpose single thread

processor,

• parallel implementation on a GPU engine.

None of the above methods can be compared with regard

to the number of computed distances only, due to the fact

that:

• naive implementation is based on calculating the dis-

tance for all pairs of points,

• naive implementation requires no additional memory,

• the amount of time consumed to review the data will

depend on the number of sub-cubes,

• there is no obvious method for implementing the sub-

cubes method using a GPU,

• the parallel implementation on a GPU accelerator

consists in calculating the distance for all other points

for every point,

• the parallel implementation works on a GPU whose

compute cores differ significantly from those of CPU

cores for which the sub-cubes method is suitable.
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Depending on the hardware platform used, it may turn out

that the following estimates are inadequate, but they should

be easy to adapt and reproduce.

To perform any valid comparisons between the four cases

mentioned above, two factors have to be determined:

• the ratio between naive and on sub-cubes based im-

plementations,

• comparison of the speed of a single core of CPU and

GPU.

The second factor is easy to obtain. We will consider two

top computational devices:

• Tesla V100S PCIe accelerator with 5120 Nvidia

CUDA cores and 16.4 TFLOPS on single-precision

performance [13],

• AMD Ryzen Threadripper 3990X processor with 64

cores and 128 threads [14] and 3.7 TFLOPS on

single-precision performance [15].

It may be assumed that:

• Tesla should be able to calculate 4.43 times more

distances than the AMD processor,

• the single core of the AMD processor should be able

to calculate 9.02 times more distances than the single

core of the Tesla processor.

Based on this assumption, the parallel implementation on

the Nvidia Tesla GPU may be estimated as:

• 443 times faster for n = 8,000 and t = 2 or n = 4,000
and t = 3,

• 332 times faster for n = 3000 and t = 5,

than naive implementation on a single core of the AMD

CPU. For n = 8,000 and t = 2, we assumed two runs of

calculations due to lack of cores limitations.

As mentioned above, the results will vary depending on the

quality of the implementation, so we have limited our two

procedures to the evaluation of the square of the distance.

Therefore, the only optimization was the limitation of the

number of sub-cubes to the power of 2 only.

Table 1

Mean time to complete the calculations for different test

cases and methods

Test case n = 8000 n = 4000 n = 3000
method t = 2 t = 3 t = 5

Naive 180.14 67.53 63.81

Fischler’s 1.13 0.95 10.23

Proposed 5.19 1.49 1.72

In Table 1 we present the mean times in milliseconds, re-

quired to complete the calculations for different test cases

and methods used.

Based on these results, the following conclusions may be

formulated:

• time for the naive method strictly depends on the

number of calculated distances,

• the sub-cubes method is significantly faster,

• time for sub-cubes depends not only on the number

of calculated distances, but also on the number of

sub-cubes,

• depending on the test case, the number of sub-cubes

based on the Fischler’s estimate or on the proposed

approach renders better results, suggesting that nei-

ther of them is optimal.

The last of the above findings has led to a series of tests,

each consisting in the execution performed for a different

number of cubes.

For the t-dimensional case, the number of sub-cubes is 2dt ,

where d = 2,3, . . . , and 2d is the number of divisions for

every dimension. d = 2 is the smallest reasonable case,

and d, based on our results, is the maximum case. In

Table 2 we show the mean times (in milliseconds) required

to complete the calculations for different test cases and

numbers of sub-cubes.

Table 2

Mean time to complete the calculations for different test

cases and numbers of sub-cubes

Test case n = 8000 n = 4000 n = 3000
d t = 2 t = 3 t = 5

2 151.67 19.26 10.23

3 24.48 2.21 1.72

4 4.22 0.95

5 1.53 0.69

6 1.13 1.49

7 1.00

8 1.12

9 1.81

10 5.19

This means that the tuned sub-cubes method is capa-

ble of evaluating the minimum distance 180, 98, and 37

times faster in the considered cases, compared to the naive

method.

Finally, implementations performed with the use of the

CPU and GPU can be compared. A simple division shows

that a parallel implementation on a GPU will complete

a single evaluation run 2.5 to 9 times faster than a single-

core implementation using the sub-cubes method, but the

AMD processor may handle up to 128 parallel runs, so the

total throughput is greatly in favor of the tuned sub-cubes

method.

For the m nearest pairs test and for a small m, the results

are similar to those presented above. For bigger values, as

well as for the Bickel-Breiman test, the GPU-based imple-

mentation will be faster.
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6. Conclusion

The Fischler’s approach, a solution that has so far been

the best known deterministic method for speeding up the

minimum distance test performed on a single thread CPU,

was significantly improved. Furthermore, means for simi-

lar improvements of two other tests have been presented.

The methods presented, although of the probabilistic va-

riety, offer the ability to practically mitigate error proba-

bility. Thanks to the significant reduction in the number

of the computed distances, the tests could be performed

on longer sequences, thus increasing their detection capa-

bilities. After precise tuning, minimum distance and m

nearest pairs tests may be run on modern multicore CPU

processors and are capable of outperforming GPUs.

Because minimum distance and 3D spheres tests are only

some of many tests in Dieheard’s and Dieharder’s portfo-

lios, total time complexity gains seem not impressive. On

the other hand, the results obtained allow to extend the ex-

isting packages by tests covering much longer sequences

and thus offering a greater detection capacity.

Further work may be concerned with generalizing the pre-

sented methods in order to apply these to more general

problems, e.g. the closest bichromatic pair problem.
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