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Abstract — This work examines the efficacy of deep learning
(DL) based non-orthogonal multiple access NOMA) receivers in
vehicular communications (VC). Analytical formulations for the
outage probability (OP), symbol error rate (SER), and ergodic
sum rate for the researched vehicle networks are established us-
ing i.i.d. Nakagami-m fading links. Standard receivers, such as
least square (LS) and minimum mean square error (MMSE), are
outperformed by the stacked long-short term memory (S-LSTM)
based DL-NOMA receiver. Under real time propagation circum-
stances, including the cyclic prefix (CP) and clipping distortion,
the simulation curves compare the performance of MMSE and
LS receivers with that of the DL-NOMA receiver. According to
numerical statistics, NOMA outperforms conventional orthogo-
nal multiple access (OMA) by roughly 20% and has a high sum
rate when considering i.i.d. fading links.

Keywords — deep learning (DL), multiple-input multiple-output
(MIMO), non orthogonal multiple access (NOMA), orthogonal
multiple access (OMA).

1. Introduction

Nowadays, vehicles are capable of exchanging, in real time,
data about their speed, position, and driving directions using
vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)
communications [1]. Vehicles may now also receive notifi-
cations from many directions thanks to the technology sup-
porting V2I communication, giving them a clear 360° picture
of every other car in their surroundings [2], so that they are
able to identify potential threats. The V2V device then alerts
drivers via tactile, audible, or visual alarms, [3]-[4] (Fig. 1).
The main drivers of VC applications are multimedia and safe-
ty. While traffic management and multimedia applications
require increased energy efficiency (EE), spectrum efficiency
(SE), and high connectivity in V2I and V2V wireless com-
munications, safety messages need an exceptional end-to-end
dependability and exceptionally low latency [5]. Un fortu-
nately, existing VC technologies, such as wireless access in
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V2V: Vehicle-to-Vehicle communication mode

V2I: Vehicle-to-Infrastructure communication mode
V2P: Vehicle-to-Pedestrian communication mode
V2X: Vehicle-to-Everything communication mode

Fig. 1. Schematic representation of V2I and V2V networks.

vehicular environments, 4G, and LTE-A, are based on or-
thogonal frequency division multiple access (OFDMA) and
are unable of providing the high SE and end-to-end reliability
rates required for enhancing VC.

Non-orthogonal multiple access (NOMA) systems have
gained a lot of interest in recent years due to the advancement
of 5G cellular networks [6]—[8]. The high throughput of NO-
MA, allowing it to serve large numbers of users utilizing the
same time and frequency resources, is the major rationale for
its adoption in 5G [9]. NOMA approaches are divided into
two categories: power-domain and code-domain [10]—[11].
In the power domain variety, NOMA accomplishes multiplex-
ing, but in the code domain, NOMA achieves multiplexing.
The focus of this paper is on the power-domain NOMA
which will be hereinafter referred to simply as NOMA.

NOMA is an approach that is considered of being capable of
meeting data rates and user access needs associated with mul-
timedia applications and the Internet of Things (IoT). NOMA
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is a viable approach for meeting 5G wireless communica-
tions objectives, such as high SE, extremely low latency, and
massive connectivity. It has been often utilized in conjunc-
tion with the MIMO technique, relaying communications,
cognitive cooperative systems, millimeter-wave communica-
tions, and other technologies to maximize sum-rate and user
fairness under fading channel conditions (Fig. 2).
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Fig. 2. Downlink for multiple user NOMA for with different fading
channels conditions.

The rollout of 5G is associated with new features and tech-
nologies allowing operators to take advantage of new infras-
tructure capabilities. Artificial intelligence/machine learning
(AI/ML), a prospect approach for developing adaptive and
predictive systems, has evolved in both vehicles and traditional
wireless networks. ML can handle highly dynamic vehicular
network challenges that traditional solutions, such as classical
control loop design and optimization techniques, cannot cope
with by relying on data-centric methodologies [12]—[13].

V2V and V2X connectivity are the next paradigms in connect-
ed vehicle research. Existing V2X concepts, rely on classical
OMA, which employs orthogonal resources. This makes it
difficult to deploy NOMA, since its performance is strongly
dependent on a large channel gain differential existing be-
tween users. As a result, OMA-based V2X may not be able
to satisfy V2X criteria in high-traffic areas. NOMA provides
multiplexing in the power domain to serve several users at
the same time or to share frequency resources, thus offering
a considerable increase in SE over OMA [14]-[15].

2. Related Work

The SER and OP performance of cooperative NOMA was
examined in [16] and the findings were compared with non-
cooperative NOMA in terms of data throughput, OP, and
diversity gain, considering i.i.d. Nakagami-m fading links.

In [17], the authors investigated a DL-aided NOMA sys-
tem and presented the applications of DL in other wireless
technologies. The authors employed the recurrent neural net-
work (RNN) algorithm for identifying fading channel co-
efficients. In paper [18], the authors investigated an LSTM
NOMA receiver under the frequency flat Rayleigh fading
channel scenario. The LSTM algorithm was employed for
obtaining the optimal receiver. In article [19], the authors in-
vestigated a ubiquitous bidirectional LSTM-based NOMA
receiver under the imperfect successive interference cancella-
tion (SIC) scenario. Simulation results demonstrated that the
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DL-based NOMA receiver performs better than the tradition-
al SIC MIMO-NOMA techniques. However, the authors of
papers [14]-[19] did not consider the time-varying channel
or the node mobility scenario.

In paper [20], the authors investigated a multiple user NOMA
system under frequency flat Rayleigh fading channel condi-
tions. The NOMA approach was used by the BS to provide
connectivity, user fairness, and a high SE for multiusers un-
der time-selective fading channel conditions. In addition, at
the BS, an optimal power allocation mechanism was used
to share the available power by assigning a power allocation
factor to each of the users.

The authors of [21] investigated channel capacity of a DL
MIMO-NOMA system by considering different multi-antenna
scenarios over generalized fading channels in the presence of
perfect and imperfect SIC schemes. The authors looked at
a broad architecture for numerous NOMA users using TAS-
assisted Alamouti space-time codeword transmission. At the
output of the maximum-ratio combiner of the NOMA users,
accurate formulations of the probability density function of
the TAS-OSTBC processed signal-to-noise ratio (SNR) were
generated. The authors also looked at the impacts of power
coeflicients and fading factors on the error performance of
TAS-OSTBC-assisted NOMA users.

The authors of [22] explored a NOMA VC network under
time selective independent but not necessarily identically
distributed (i.n.i.d.) Nakagami-m fading channel conditions.
When a BS communicates with vehicles travelling away
from the BS using single-input multiple-output technology
(SIMO), diversity combining techniques, such as maximum
ratio combining (MRC) and selection combining (SC) are
used at the receiver of each vehicle to fusion the signals
received at the antennas. Analytical formulas of the OP and
ergodic sum rate are obtained in this context for the examined
vehicle networks under the assumption of independent but
not necessarily identically distributed (i.n.i.d.) Nakagami-m
fading channels.

In this paper, we consider DL-based NOMA, assuming that
the channel will become time-selective due to node mobility
conditions. A performance comparison is provided between
a conventional NOMA receiver and a S-LSTM based NO-
MA receiver for various shape parameters values and node
mobility scenarios.

3. Signal and Channel Model

3.1. Time Selective Nakagami-m Fading Channel Model

Due to the presence of node mobility, the channel will become
time selective in nature. The first order autoregressive process,
written as in [23]-[24], is:

d(k) = pd(k — 1) + /1 — p2e(k), )

where k and k—1 denote the two neighboring time instants and
may be used to construct the time selective channel model. The
term e(k) denotes a random process, modeled as CN(0, o2).
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p represents the correlation coefficients that develop as a result
of the node’s mobility and Doppler spread expressed as:

27 fev

Rsc
where f. represents the carrier frequency of the radio wave,
v is the relative velocity between two communicating cellular
users, ¢ denotes the speed of light, Jy(.) denotes the Bessel
function of the zeroth order and first kind, and R represents
the data transmission rate.

p=4Jo

3.2. Signal Model

In our analysis, we have considered i.i.d. Nakagami-m time
selective channel fading connections, with a fading severity
parameter m and the average fading link gain of );, ¢ €
{SD, SR, RD}. The channel is no longer frequency flat and
due to the Doppler spread, it will become the frequency
selective, causing inter symbol interference (ISI). In order
to mitigate the effect of ISI CP is used in the orthogonal
frequency division multiplexing (OFDM) system. Channel
impulse response length should be longer than CP length to
obtain lower SER performance. Due to reflection, refraction,
and scattering, the receiver receives numerous copies of the
signal due to multipath propagation:

(s}

The signal received after the transmission of the OFDM
symbol s(n) is [12]-[18]:

r(n) = z(n) ® d(n) + n(n), @

where d(n) represents time selective i.i.d. Nakagami-m faded
random samples, ® denotes the circular convolution 7(n)
represents the channel noise with the expected value of 0 and
standard deviation of \/Ny/2, i.e. CN(0, Ny/2).

After performing the Fourier transform and removing the CP
at the receiver, the resulting signal is [12]-[18]:

R(k) = X (k)D(k) + N(k), 3)

where R(k), X (k), D(k), and N(k) are the discrete Fourier
transform (DFT) of r(n), (n), d(n), and n(n), respectively.
In an uplink (UL) NOMA transmission, the composite signal
at the BS is [12]-[18]:

M

R(k) =Y \/Pu(n) Xi(k) De (k) + N(k), )

t=1
where R(k) denotes the received signal corresponding to the
transmission of X, (k) and N(k) represents channel noise.
P,(n) represents the power allocated to user ¢ on the k-th
subcarrier. For M subcarriers, the total power is expressed
as P. The optimal power allocation factor is:

aulky = 28,

for user t.

The total available power is expressed as Zi\il Be(k) = 1.
The channel is essentially a multitap type due to multipath
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propagation. Channel impulse response d;(n) for user ¢ is:

K
di(n) = Z di10(k — key),
=1

where dy ; represents the complex channel gain and & ; repre-
sents time delay of the {-th multipath. DFT of d;(n) is given
as d¢ (k). The total number of resolved paths is equal to 50 and
fading links are i.i.d. time selective Nakagami-m distributed.

4. DL-based NOMA Receiver

4.1. S-LSTM Basics

Numerous tasks that former learning algorithms for recurrent
neural networks (RNNs) were not capable of accomplish-
ing may be solved by LSTMs. In a 5G NOMA network,
LSTM may be used for such tasks as channel estimation,
SER computation, optimal power allocation, and OP calcu-
lation. Time-series forecasts may also be successfully made
with LSTMs. Based on real-time wireless propagation da-
ta sets that are studied using different parameters, including
the number of fading channel instances, the authors of [24]
explore a LSTM network for fading channel coefficients of
the DL NOMA system. Currently, S-LSTMs are a reliable
method for resolving complex sequence prediction issues.

An S-LSTM architecture is an LSTM standard composed of
numerous LSTM layers. The model becomes deeper as LSTM
hidden layers are stacked, more appropriately qualifying the
method as DL. A multilayer perceptron neural network may
become deeper by including more hidden layers. It is known
that the additional hidden layers integrate the learnt represen-
tation from the earlier layers to produce new representations
with a high degree of abstraction, taking lines, forms, and
things as examples. Instead of sending a single value, an
LSTM layer located above transmits a set of values to an-
other LSTM layer positioned below. One output time step
is utilized for each input time step, rather than one output
time step for all input time steps [9]. The primary distinc-
tion between LSTM and S-LSTM is that in a S-LSTM-based
system, time slots are essentially sub-carriers, and after con-
sidering the single time step in the S-LSTM architecture,
DL training may be performed by utilizing the multiple user
identification method for a specific sub-carrier.

4.2. Model Training

OFDM data symbols have the form of packets, with a total
of 84 carriers. An OFDM data packet consists of 4 symbols.
For channel estimation, two pilots are assigned. Each OFDM
symbol consists of 2 bits per subcarrier. Because we are
dealing with complicated data symbols, the next step is to
create a feature vector (FV).

At the training stage, the complex data symbol consists of
both real and complex components. The dimension of the
FV is determined by the number of features per sample. The
FV has a size of 84 x 4 x 2 = 672 for 84 sub-carriers. The
S-LSTM NOMA channel estimator is trained to understand
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the signal associated with the k-th subcarrier by incorporating
the necessary label in the training. The label is a number that
indicates the combination of both users’ transmitted symbols.
Because both users are transmitting quadrature amplitude
modulation (QAM) or 4-phase shift keying (PSK) signals,
there will be 20 combinations/labels. In Matlab software,
deep neural networks (DNNs) are developed by connecting
DL layers to the DL Toolbox. Users may construct DL models
and track their development using this tool. The dimension
of the real-valued FV, which is 672, governs the size of the
input to the input layer. The S-LSTM layer has 250 hidden
units, followed by a fully linked layer with an output size of
25-bits. The classification layer generates an estimated label
to map both users’ transmitted signals simultaneously, and
the softmax layer applies the softmax function to the input.

5. Simulation Results

The suggested S-LSTM-based NOMA detector is trained
using simulation data and its performance is compared to
that of the classic SIC receiver method. The prior channel
state information (CSI) increases SER performance, allowing
the MMSE and LS techniques to estimate the fading channel
coefficients, respectively. SER is obtained per sub-carrier for
various SNR regimes. For both offline and online training
stages, the channel is assumed to be time selective or fast
fading to minimize the influence of ISIT and Doppler spread.

To analyze even minor fading channel variations, each OFDM
packet provides a noticeable random phase shift to the fading
channel of each cellular user. For both cellular users, the
target signal-to-interference noise ratio (SINR) is 16 dB. For
optimal or maximum likelihood receivers, which are used
to test the accuracy of S-LSTM-based receivers, the entire
CSI scenario is considered. 520,000 OFDM samples and 250
epochs were used to train this algorithm. When employing
some training pilots that, remove CP or encounter non-linear
clipping noise, S-LSTM-based receivers are more accurate
than standard receivers used in the simulation.

In the simulated scenario, there are 84 subcarriers and a 30-
second long CP. There are 35 multipaths and the carrier
frequency is 3 GHz. To support sophisticated 4PSK and QAM
modulation, the maximum delay spread is set to 30 symbols.

5.1. Investigation of OP for Node Velocity and Shape
Parameters

Simulation findings for NOMA-based 5G vehicle networks
validate analytical formulations of OP and the average sum
rate. A DL V2A environment is analyzed in which 3 users are
travelling away from the BS at 55 km/h. With a transmission
symbol rate of R = 20 Mbps and a carrier frequency of
feo = 6 GHz, the BS connects with user 1, user 2, and user 3.
User 1 is farthest from the BS and has the poorest channel
conditions. The channel state is inversely proportional to the
distance according to:

Hdn

20

Therefore, user 2 is travelling via the best channel. € = 3 is
the path loss exponent. At ¢ = 1, performance factors «q (1),
az(1) and a3(1) for mobile users 1, 2, and 3 are 0.6, 0.27,
and 0.13, respectively. The order of the power coefficients
is altered at ¢-th time instant in accordance with the channel
order of the mobile users at that time instant. The minimum
detection rate for each mobile user is R, = 1 bps/Hz, resulting
in a threshold SNR v, 1 = ¥¢p,2 = YPyp,3 = 1 for NOMA
mobile users, 1, = 7 is the SNR threshold for traditional
OMA, which can be calculated from [9]:

N
1 Z 1
g 10g2 (1 + wth,n) = g 10g2 (1 + wth) . (5)

n=1

The time selective fading channel can be modelled using
the autoregressive process with variance of 02, = 0.01 at
the point in time of ¢ = 3. For single input multiple output
NOMA, the receiver at each vehicle uses optimal combining
and zero forcing schemes, whereas for MIMO-NOMA, it
uses singular value decomposition (SVD). The average SNR
received at each link is separated using an exponential power
decay profile since all diversity branches at each vehicle are
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Fig. 3. OP vs. SNR for single SISO NOMA. (a) m = 2 and (b)

3/2022

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY



Analysis of an LSTM-based NOMA Detector Over Time Selective Nakagami-m Fading Channel Conditions

i.i.d. We use the maximum received average SNR of ); = 3
and a fading factor of § = 0.30 in the simulations.

By assuming a perfect CSI, the outcomes of i.i.d. considera-
tions are contrasted with those of the i.i.d. channel considera-
tion. For m = 2, which represents the Rayleigh fading chan-
nel, Fig. 3a shows the outage performance of three NOMA ve-
hicles and a standard OMA (non-line of sight condition). The
findings reveal that, despite being allocated with the lowest
power coefficient from the BS, the user with the best channel
conditions (user 3) surpasses all three vehicles in terms of out-
age performance. Since they are provided with a higher power
coefficient in NOMA than in OMA, the user with the poorest
channel conditions (user 1) performs badly when compared to
others. However, they outperform the classical OMA scheme.

The outage performance of the users with NOMA and OMA
with m = 2 is shown in Fig. 3b. When compared to m = 3,
performance is better, since the diversity benefit for m = 2 is
bigger. For m = 2, user 1 of NOMA outperforms OMA by
2 dB. However, in the case of m = 2, as opposed tom = 1,
performance decreases owing to i.i.d. considerations being
greater. This indicates that in non-line of sight situations, the
impact of i.i.d. considerations is reduced.

5.2. Effect of the Number of Pilots and Node Mobility

Both LS and MMSE techniques may yield reliable forecasts
when 110 pilots are used, as illustrated in Fig. 4. Nevertheless,
S-LSTM-based NOMA receivers are superior to other tradi-
tional NOMA receivers. A reduction in the number of pilots
(to 30) for both user 1 and user 2 greatly reduces the decod-
ing accuracy of LS and MMSE algorithms to SNR = 14 dB.
The channels are time-selective, and it has been shown that
as the communicating node’s velocity increases, SER power
decreases.

10° FT

Node mobility = 100 mph:,-"' TS
m=1

2| Y Y |
10 ; &
Node mobility = 50 mph, 5
m=1 b

1 1 L 1 L 1 1 L 1 o't HEEL A

0 2 4 6 8 10 12 14 16 18 20
SNR [dB]
-+- 110 pilots, DL NOMA ¢ 30 pilots, DL NOMA
-+ 110 pilots, - LSE NOMA -# 30 pilots, - LSE NOMA
+ 110 pilots, - MMSE NOMA - 30 pilots, - MMSE NOMA

Symbol error rate

Fig. 4. SER vs. SNR of an S-LSTM-based DL NOMA receiver with
110 and 30 pilots over time selective Nakagami-m fading channel
conditions.

In contrast, the DL NOMA receiver can achieve the per-
formance of the 110 pilots example, demonstrating that S-
LSTM-based receivers are more robust for several pilots and
can achieve higher performance with fewer pilots.
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5.3. Analysis of End-to-end System Performance

DL NOMA works considerably better when CP length is
greater than impulse response. It has been discovered that
neither LS nor MMSE receivers are capable of accurately
estimating CSI. When exposed to severe ISI effects, even with
excellent channel estimation, an optimum ML-based NOMA
receiver can no longer offer the best response.

Time selective fading is used to test robustness of the DL
NOMA receiver. SER performance of the DL NOMA receiver
is comparable to that of an ideal ML-based NOMA receiver
when the impact of node mobility is neglected. Additionally,
as fading severity increases, SER performance improves.
Furthermore, the DL NOMA receiver is resilient to the signal
strength of the SLSTM-based DL NOMA receiver for user 2
(low channel gain user or far user), as shown in Fig. 5 and
has a traditional error estimation effect. Furthermore, the
DL NOMA receiver is resilient to the signal strength of the
S-LSTM-based DL. NOMA receiver in the case of user 2
(poor channel gain user or far user), as shown in Fig. 5, and
propagates the estimated effect of flaws in the standard SIC
scheme.

Qgp = Qg =y
m =4, node velocity = 60 mph Qsp = Qg = ey
m =2, node velocity = 120 mph
100 . T T T T
§ (IRt o
= 10 2 it .., < T - ~o
% ~a “% e % N
) \\\ . \\
g 1074 .\\ .\‘ Y \\.
> * . ‘\
wn \. \\ .
1076 ' * ' '
0 5 10 15 20 25
SNR [dB]
-+ DLNOMA, CP=30 -+ MMSE NOMA, CP =30
-+ DLNOMA, CP=25 -+ LSNOMA, CP=25

Fig. 5. SER vs. SNR for S-LSTM-based DL-NOMA receivers for
various CP lengths under time selective Nakagami-m fading links.

The DL receiver has been shown to be resistant to random
phase shifts and offers equal performance to its counterpart
under ideal conditions, when used in a high mobility situation
with a time varying channel. It has been proved through
simulation that lower node velocity enhances end-to-end
system performance.

5.4. SER Investigation Considering the Non-linear CN
Problem

Due to the presence of the nonlinear noise results, higher
backoff from peak output is required to maintain linearity in
the power amplifier. Figure 6 shows the error performance
of MMSE, and an S-LSTM-based NOMA receiver when the
DNN receiver is facing non-linear noise, considering 4QAM
complex modulated symbols. When the clipping ratio is equal
the SER performance the DL NOMA receiver is much better
than that of MMSE for SNR > 12 dB. The S-LSTM receiver
outperforms the standard NOMA receiver, as shown in Fig. 7.
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Qqpp = 10, Qg = 10, Q= 100,

m = 4, node velocity = 80 mph Qgp = 10, Qg = 10, Oy = 50,

m =2, node velocity = 120 mph

Symbol error rate

!

15 20 25

0 5 10
SNR [dB]

-+ MMSE NOMA, with CN
-+ MMSE NOMA, without CN -+ LS NOMA, with CN

-+ DL NOMA, without CN

Fig. 6. SER vs. SNR of the S-LSTM-based NOMA system with and
without CN for various node mobility and fading severities.

However, its detection performance varies depending on the
node’s mobility situation.

Qgp = Qqp = Q= 100, m=4,
node velocity = 100 mph

—_
e |
)

._.
<DI
IS

Symbol error rate

|
=N

—_
(=)

6 8 10 12 14 16 18 20
SNR [dB]

-» number of paths =70, maximum delay =20
=+ number of paths = 100, maximum delay = 20
-= number of paths =40, maximum delay =20
- number of paths = 100, maximum delay = 20

(=]
ey
~

Fig. 7. Error probability vs. SNR considering gaps between testing
and training phases.

5.5. Robustness Investigation over Time Selective Fading

In the online training step, CSI is calculated using data sets
that are identical to those used in the offline training stage, and
4QAM complex modulated symbols are employed. The gap
between online and offline deployments exists in real-time
propagation situations. Furthermore, for the trained model
to work, these differences must be stable. Figure 8 shows
the effect of changing the fading relationship statistics used
throughout the training and testing stages.

5.6. Effect of the LR on SER Performance

Here, the DL NOMA detector’s error probability performance
is examined, and the error rate plots for the two mobile users
are shown in Fig. 9 under time varying channel conditions. It
has been observed that lower LRs yield lower SERs, implying
that greater LRs will result in fast neural network weight up-
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Fig. 8. SER vs. SNR under time selected Nakagami-m fading
connections vs. considering all impairments.

dates and larger validation errors when using 4QAM complex
modulated symbols.
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Fig. 9. SER graphs of the DL NOMA detector under the time
selective Nakagami-m fading channel for various values of LR.
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Fig. 10. SER plots of DL NOMA over time selective Nakagami-m
fading channel settings trained with varying batch sizes.
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5.7. Impact of Batch Size Considering Node Mobility
Conditions

In this step, the training OFDM symbols are separated into
packets, and iteration occurs throughout the training stage.
The full dataset for this study takes 50 iterations to finish the
epoch. Figure 10 depicts the effect of various batch sizes on
DL system performance, demonstrating that bigger batches
improve the SER. Small batches take much less time to
converge compared with large batches in the training phase.
Therefore, validation accuracy is the same. Smaller batches,
on the other hand, result in less accurate testing.

6. Conclusion

Despite being assigned the lowest power coefficient by the BS,
the users with the best channel conditions outperform all other
users in terms of outage performance. Under time varying
channel conditions, it has been observed that lower LRs yield
the lower SERs, implying that greater LRs will result in fast
neural network weight updates and larger validation errors
when using complex modulated symbols. Larger batches need
fewer iterations and DL fading channel coefficients change
rapidly due to time selective fading, but each update uses more
data to build a more accurate gradient estimate. Consequently
larger batch sizes significantly improve spectral efficiency.
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